[1] WANG H,FENG H,LI J. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage[J]. Small,2014,10(11):2165-2181. [2] 王诚,邱平达,蔡克迪,等. 铝空气电池关键技术研究进展[J]. 化工进展,2016,35(5):1396-1403. WANG C,QIU P D,CAI K D,et al. Research progress of the key technologies for aluminum air battery[J]. Chemical Industry and Engineering Progress,2016,35(5):1396-1403. [3] GONG K P,DU F,XIA Z H,et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science,2009,323(5915):760-764. [4] BASHYAM R,ZELENAY P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature,2006,443(7107):63-66. [5] STANKOVICH S,DIKIN D A,DOMMETT G H,et al. Graphene-based composite materials[J]. Nature,2006,442(7100):282-286. [6] YOO E,OKATA T,AKITA T,et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface[J]. Nano Lett.,2009,9(6):2255-2259. [7] 杨美妮,林瑞,张路,等. 聚吡咯在质子交换膜燃料电池中的应用[J]. 化工进展,2014,33(12):3230-3245. YANG M N,LIN R,ZHANG L,et al. Applications of polypyrrole in proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress,2014,33(12):3230-3245. [8] LEFEVRE M,PROIETTI E,JAOUEN F,et al. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science,2009,324:71-74. [9] XIA B,YAN Y,WANG X,et al. Recent progress on graphene-based hybrid electrocatalysts[J]. Mater Horiz,2014,1(4):379-399. [10] SHAO Y,ZHANG S,WANG C,et al. Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction[J]. Journal of Power Sources,2010,195(15):4600-4605. [11] GUO J W,ZHAO T S,PRABHURAM J,et al. Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells[J]. Electrochimica Acta,2005,51(4):754-763. [12] LI Y,TANG L,LI J. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites[J]. Electrochemistry Communications,2009,11(4):846-849. [13] WANG J,YIN G,SHAO Y,et al. Effect of carbon black support corrosion on the durability of Pt/C catalyst[J]. Journal of Power Sources,2007,171(2):331-339. [14] HU T H,YIN Z S,GUO J W,et al. Synthesis of Fe nanoparticles on polyaniline covered carbon nanotubes for oxygen reduction reaction[J]. Journal of Power Sources,2014,272:661-671. [15] XU W,PIGNATELLO J J,MITCH W A. Role of black carbon electrical conductivity in mediating hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)transformation on carbon surfaces by sulfides[J]. Environmental Science & Technology,2013,47(13):7129-7136. [16] SUN S,ZHANG G,GAUQUELIN N,et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports,2013,3(5):65-65. [17] CHOI C H,LIM H K,CHUNG M W,et al. Long-range electron transfer over graphene-based catalyst for high-performing oxygen reduction reactions:importance of size,N-doping,and metallic impurities[J]. Journal of the American Chemical Society,2014,136(25):9070-7. [18] YIN Z S,HU T H,WANG J L,et al. Preparation of highly active and stable polyaniline-cobalt-carbon nanotube electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell[J]. Electrochimica Acta,2014,119:144-154. [19] ZHANG P,HOU X,MI J,et al. From two-dimension to one-dimension:the curvature effect of silicon-doped graphene and carbon nanotubes for oxygen reduction reaction[J]. Physical Chemistry Chemical Physics,2014,16(33):17479-17486. [20] XIE X,CHEN S,DING W,et al. An extraordinarily stable catalyst:Pt NPs supported on two-dimensional Ti3C2X2(X=OH,F) nanosheets for oxygen reduction reaction[J]. Chemical Communications,2013,49(86):10112-10114. [21] NAGUIB M,MOCHALIN V N,BARSOUM M W,et al. 25th anniversary article:MXenes:a new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. [22] GHIDIU M,LUKATSKAYA M R,ZHAO M Q,et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. [23] 谭习有,黎华玲,彭洪亮,等. 石墨烯制备新技术及其在燃料电池催化剂中的应用[J]. 化工进展,2013,32(s1):158-167. TAN X Y,LI H L,PENG H L,et al. Progress in new preparation techniques of graphene and application for catalysts in fuel cells[J]. Chemical Industry and Engineering Progress,2013,32(s1):158-167. [24] ZHAO X,LIU M,CHEN Y,et al. Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries[J]. J Mater. Chem. A,2015,3(15):7870-7876. [25] FENG H,LIU Y,LI J. Highly reduced graphene oxide supported Pt nanocomposites as highly efficient catalysts for methanol oxidation[J]. Chemical Communications,2015,51(12):2418-2420. [26] POH C K,LIM S H,PAN H,et al. Citric acid functionalized carbon materials for fuel cell applications[J]. Journal of Power Sources,2008,176(1):70-75. [27] AVILA GARCIA I,PLATA TORRES M,DOMINGUEZ CRESPO M A,et al. Electrochemical study of Pt-Pd,Pt-Ru,Pt-Rh and Pt-Sn/C in acid media for hydrogen adsorption-desorption reaction[J]. J Alloy Compd.,2007,434:764-767. [28] JIN H,ZHANG H,ZHONG H,et al. Nitrogen-doped carbon xerogel:a novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells[J]. Energy & Environmental Science,2011,4(9):3389-3394. [29] ANTOLINI E,GIORGI L,POZIO A,et al. Influence of Nafion loading in the catalyst layer ofgas-diffusion electrodes for PEFC[J]. Journal of Power Sources,1999,77(2):136-142. [30] XIE Z,HOLDCROFT S. Polarization-dependent mass transport parameters for orrinperfluorosulfonic acid ionomer membranes:an EIS study using microelectrodes[J]. Journal of Electroanalytical Chemistry,2004,568:247-260. [31] RAMASWAMY N,MUKERJEE S. Fundamental mechanistic understanding of electrocatalysis of oxygen reduction on Pt and non-Pt surfaces:acid versus alkaline media[J]. Advances in Physical Chemistry,2012. http://dx.doi.org/10.1155/2012/491604. [32] STAMENKOVIĆ V,SCHMIDT T J,ROSS P N,et al. Surface segregation effects in electrocatalysis:kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces[J]. Journal of Electroanalytical Chemistry,2003,554/555:191-199. [33] MENG Y,SONG W,HUANG H,et al. Structure-property relationship of bifunctional MnO2 nanostructures:highly efficient,ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media[J]. Journal of the American Chemical Society,2014,136(32):11452-64. [34] BIAN W,YANG Z,STRASSER P,et al. A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution[J]. Journal of Power Sources,2014,250:196-203. [35] HUANG C,LI C,SHI G. Graphene based catalysts[J]. Energy & Environmental Science,2012,5(10):8848. [36] ZHANG Y,GE J,WANG L,et al. Manageable N-doped graphene for high performance oxygen reduction reaction[J]. Sci. Rep.,2013,3(7468):2771-1771. [37] YANG W,FELLINGER T P,ANTONIETTI M. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases[J]. Journal of the American Chemical Society,2011,133(2):206-209. |