[1] ZHANG Y,FENG H,WU X,et al. Progress of electrochemical capacitor electrode materials:a review[J]. Int. J. Hydrogen Energ., 2009,34(11):4889-4899. [2] 刘洋,艾长春,胡意,等. 碳包覆金属氧化物作为超级电容器电极材料的研究进展[J]. 化工进展,2013,32(8):1849-1854. [3] 冯辉霞,王滨,谭琳,等. 导电聚合物基超级电容器电极材料研究进展[J]. 化工进展,2014,33(3):689-695. [4] CONWAY B E. Electrochemical supercapacitors, scientific fundamentals and technological applications[M]. New York:Plenum Press,1999. [5] YAGHI O M,OCKWIG N W,KIM J,et al. Reticular synthesis and the design of new materials[J]. Nature,2003,423(6941):705-714. [6] 农洁静,赵文波,覃显业,等. 金属有机骨架(MOFs)为壳的核壳结构材料研究进展[J]. 化工进展,2015,34(3):774-783. [7] 李小娟,何长发,黄斌,等. 金属有机骨架材料吸附去除环境污染物的进展[J]. 化工进展,2016,35(2):586-594. [8] HE Y,ZHOU W,QIAN G,et al. Methane storage in metal-organic frameworks[J]. Chem. Soc. Rev.,2014,43(16):5657-5678. [9] LI S L,XU Q. Metal-organic frameworks as platforms for clean energy[J]. Energ. Environ. Sci.,2013,6(6):1656-1683. [10] 侯丹丹,刘大欢,阳庆元,等. 金属-有机骨架材料在气体膜分离中的研究进展[J]. 化工进展,2015,34(8):2907-2915. [11] LIU J,CHEN L,HAO C,et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis[J]. Chem. Soc. Rev.,2014,43(16):6011-6061. [12] KRENO L E,LEONG K,FARHA O K,et al. Metal-organic framework materials as chemical sensors[J]. Chem. Rev.,2012,112(2):1105-1125. [13] TIAN D,ZHOU X,ZHANG Y,et al. MOF-derived porous Co3O4 hollow tetrahedra with excellent performance as anode materials for lithium-ion batteries[J]. Inorg. Chem.,2015,54(17):8159-8161. [14] MEROZAN A, JAOUEN F. Metal-organic frameworks for electrochemical applications[J]. Energ. Environ. Sci.,2012,5(11):9269-9290. [15] TAN Y Y,ZHANG W,GAO Y L,et al. Facile synthesis and supercapacitive properties of Zr-metal organic frameworks[J]. RSC Adv.,2015,5(23):17601-17605. [16] LEE D Y,SHINDE D V,KIM E K. Supercapacitive property of metal-organic frameworks with different pore dimensions and morphology[J]. Micropor. Mesopor. Mater.,2013,171(10):53-57. [17] LIAO C M,ZUO Y K,ZHANG W,et al. Electrochemical performance of metal-organic frameworks synthesized by a solvothermal method for supercapacitors[J]. Russ. J. Electrochem., 2012,49(10):983-986. [18] KANG L,SUN S,KONG L,et al. Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors[J]. Chinese Chem. Lett.,2014,25(6):957-961. [19] CHOI K M,JEONG H M,PARK J H,et al. Supercapacitors of nanocrystalline metal-organic frameworks[J]. ACS Nano,2014,8(7):7451-7457. [20] DU M,CHEN M,YANG X G,et al. A channel-type mesoporous In(Ⅲ)-carboxylate coordination framework with high physicochemical stability for use as an electrode material in supercapacitors[J]. J. Mater. Chem. A,2014,2(25):9828-9834. [21] WEN P,GONG P,SUN J, et al. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density[J]. J. Mater. Chem. A,2015,3(26):13874-13883. [22] WANG L,FENG X,REN L,et al. Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI[J]. J. Am. Chem. Soc.,2015,137(15):4920-4923. [23] BANERJEE P C,LOBO D E,MIDDAG R,et al. Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites:more than the sum of its parts[J]. ACS Appl. Mater. Inter.,2015,7(6):3655-3664. [24] BERENGUE R,RUIZ-ROSAS R,GALLARDO A,et al. Enhanced electro-oxidation resistance of carbon electrodes induced by phosphorus surface groups[J]. Carbon,2015,95:681-689. [25] LIU B,SHIOYMA H,AKITA T,et al. Metal-organic framework as a template for porous carbon synthesis[J]. J. Am. Chem. Soc.,2008, 130(16):5390-5391. [26] MO S,SUN Z,HUANG X J,et al. Synthesis,characterization and supercapacitive properties of hierarchical porous carbons[J]. Synthetic Met.,2011,162(1/2):85-88. [27] YAN X,LI X,YAN Z,et al. Porous carbons prepared by direct carbonization of MOFs for supercapacitors[J]. Appl. Surf. Sci.,2014, 308(3):306-310. [28] YI H,WANG H,JING Y,et al. Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life[J]. J. Power Sources,2015,285:281-290. [29] YANG S J,NAM S,KIM T,et al. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework[J]. J. Am. Chem. Soc., 2013,135(20):7394-7397. [30] WANG J,DING B,XU Y,et al. Crumpled nitrogen-doped graphene for supercapacitors with high gravimetric and volumetric performances[J]. ACS Appl. Mater. Inter.,2015,7(40):22284-22291. [31] WEI J,HI Y,LIANG Y, et al. Nitrogen-doped nanoporous carbon/graphene nano-sandwiches:synthesis and application for efficient oxygen reduction[J]. Adv. Funct. Mater.,2015,25(36):5768-5777. [32] HOU Y, HUANG T Z, WEN Z H, et al. Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions[J]. Adv. Energy Mater.,2014,4(11):1-8. [33] JEON J W,SHARMA R,MEDURI P,et al. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors[J]. ACS Appl. Mater. Inter.,2014,6(10):7214-7222. [34] HAO F,LI L,ZHANG X H,et al. Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micropolyhedra by direct carbonization of zeolitic imidazolate framework-11[J]. Mater. Res. Bull.,2015,66:88-95. [35] ZHANG Z Q,LI X,YANG Y,et al. Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal-organic framework method for lithium-ion cathode[J]. J. Mater. Chem. A, 2014,2(21):7912-7916. [36] WANG H,ZHI L,LIU K,et al. Thin-sheet carbon nanomesh with an excellent electrocapacitive performance[J]. Adv. Funct. Mater.,2015, 25(34):5420-5427. [37] KE S F,WU Y S,DENG H X. Metal-organic frameworks for lithium ion batteries and supercapacitors[J]. J. Solid Chem.,2015,223:109-121. [38] YANG H,KRUGER P E,TELFER S G. Metal-organic framework nanocrystals as sacrificial templates for hollow and exceptionally porous titania and composite materials[J]. Inorg. Chem.,2015,54(19):9483-9490. [39] WU R,WANG D P,KUMAR V,et al. MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications[J]. Chem. Commun.,2015,51(5):3109-3112. [40] JIANG Z,LU W,LI Z,et al. Synthesis of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors[J]. J. Mater. Chem. A,2014,2(23):8603-8606. [41] YU X Y,YU L,WU B H,et al. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties[J]. Angew. Chem. Int. Ed.,2015,54(18):5331-5335. [42] YANG J Q,DUAN X C,GUO W, et al. Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors[J]. Nano Energy,2014,5(2):74-81. [43] HUANG T F,ZHAO C H,ZHENG R J,et al. Facilely synthesized porous ZnCo2O4 rodlike nanostructure for high-rate supercapacitors[J]. Ionics,2015,21(11):3109-3115. [44] DENG D H,PANG H,DU J M,et al. Fabrication of cobalt ferrite nanostructures and comparison of their electrochemical properties[J]. Cryst. Res. Technol.,2012,47(10):1032-1038. [45] MAITI S, PRAMANIK A, MAHANTY S. Influence of imidazolium-based ionic liquid electrolytes on the performance of nano-structured MnO2 hollow spheres as electrochemical supercapacitor[J]. RSC Adv.,2015,5(52):41617-41626. [46] KIM T K,LEE K J,CHEON J Y,et al. Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal-organic frameworks[J]. J. Am. Chem. Soc.,2013,135(24):8940-8946. [47] MAITI S,PRAMANIK A,MAHANTY S. Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide[J]. Chem. Commun.,2014,50(79):11717-11720. [48] LIU L X,GUO H,LIU J,et al. Self-assembled hierarchical yolk-shell structured NiO@C from metal-organic frameworks with outstanding performance for lithium storage[J]. Chem. Commun.,2014,50(67):9485-9488. [49] MENG F L,FANG Z G,LI Z X,et al. Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors[J]. J. Mater. Chem. A,2013,1(24):7235-7241. [50] ZHANG Y Z,WANG Y,XIE Y T,et al. Porous hollow Co3O4 with rhombic dodecahedral structure for high-performance supercapacitors[J]. Nanoscale,2014,6(23):14354-14359. [51] SALUNKHE R,TANG J,KAMACHI Y,et al. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework[J]. ACS Nano,2015,9(6):6288-6296. |