[1] 张晓明,黄碧纯,叶代启. 低温等离子体光催化净化空气污染物技术研究进展[J]. 化工进展,2005,24(9):964-967. [2] FUJISHIMA A,HONDA K. Electrochemical photocatalysis of water at a semiconductor electrode[J]. Nature,1972,238(1):37-38. [3] 黄颖,闫常峰,郭常青,等. 半导体Z反应光解水制氢的光能转换效率及研究进展[J]. 化工进展,2014,33(12):3221-3230. [4] WARREN S C,THIMSEN E. Plasmonic solar water splitting[J]. Energy Environ. Sci.,2012,5(1):5133-5146. [5] ANSARI S A,KHAN M M,KALATHIL S,et al. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm[J]. Nanoscale,2013,5(19):9238-9246. [6] CHENG H, FUKU K, KUWAHARA Y, et al. Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light[J]. J. Mater. Chem. A,2015,3(10):5244-5258. [7] 王欢,崔文权,韩炳旭,等. Ag/AgX(X=Cl,Br,I)等离子共振光催化剂的研究进展[J]. 化工进展,2013,32(2):346-351. [8] LINIC S,CHRISTOPHER P,INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat. Mater.,2011,10(12):911-921. [9] AWAZU K,FUJIMAKI M,ROCKSTUHL C,et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide[J]. J. Am. Chem. Soc.,2008,130(5):1676-1680. [10] 邵磊,阮琦锋,王建方. 局域表面等离激元[J]. 物理学报,2014, 43(5):290-298. [11] WANG P,HUANG B,DAI Y,et al. Plasmonic photocatalysts:harvesting visible light with noble metal nanoparticles[J]. Phys. Chem. Chem. Phys.,2012,14(28):9813-9825. [12] JIANG R B,LI B X,FANG C H,et al. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications[J]. Adv. Mater., 2014,26(31):5274-5309. [13] WANG C,ASTRUC D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion[J]. Chem. Soc. Rev., 2014,43(20):7188-7216. [14] 张骞,周莹,张钊,等. 表面等离子体光催化材料[J]. 化学进展, 2013,25(12):2020-2027. [15] CHEN H J,SHAO L,LI Q,et al. Gold nanorods and their plasmonic properties[J]. Chem. Soc. Rev.,2013,42(7):2679-2724. [16] RUAN Q F,SHAO L,SHU Y W,et al. Growth of monodisperse gold nanospheres with diameters from 20nm to 220nm and their core/satellite nanostructures[J]. Adv. Opt. Mater.,2014,2(1):65-73. [17] CUSHING S K,LI J,MENG F,et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor[J]. J. Am. Chem. Soc.,2012,134(36):15033-15041. [18] LIU L,OUYANG S,YE J H. Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance[J]. Angew. Chem. Int. Ed.,2013,52(26):6689-6693.. [19] WANG F,LI C H,CHEN H J,et al. Plasmonic harvesting of light energy for Suzuki coupling reactions[J]. J. Am. Chem. Soc.,2013, 135(15):5588-5601. [20] TANAKA A,OGINO A,IWAKI M,et al. Gold-titanium(Ⅳ) oxide plasmonic photocatalysts prepared by a colloid-photodeposition method:correlation between physical properties and photocatalytic activities[J]. Langmuir,2012,28(36):13105-13111. [21] MONDAL C,PAL J,GANGULY M,et al. A one pot synthesis of Au-ZnO nanocomposites for plasmon enhanced sunlight driven photocatalytic activity[J]. New J. Chem.,2014,38(7):2999-3005. [22] TANAKA A,HASHIMOTO K,KOMINAMI H. Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light[J]. J. Am. Chem. Soc.,2012,134(35):14526-14533. [23] DEPUCCIO D P,BOTELLA P,O'ROURKE B,et al. Degradation of methylene blue using porous WO3,SiO2-WO3,and their Au-loaded analogs:adsorption and photocatalytic studies[J]. ACS Appl. Mater. Interfaces,2015,7(3):1987-1996. [24] HAN S,HU L,GAO N,et al. Efficient self-assembly synthesis of uniform CdS spherical nanoparticles-Au nanoparticles hybrids with enhanced photoactivity[J]. Adv. Funct. Mater.,2014,24(24):3725-3733. [25] XU L,YIN Z Y,CAO S-W,et al. Rational synthesis of triangular Au-Ag2S hybrid nanoframes with effective photoresponses[J]. Chem. Eur. J.,2014,20(10):2742-2745. [26] MANNA G,BOSE R,PRADHAN N. Photocatalytic Au-Bi2S3 heteronanostructures[J]. Angew. Chem. Int. Ed.,2014,53(26):6743-6746. [27] ZHANG Z Y,LI A,CAO S W,et al. Direct evidence of plasmon enhancement on photocatalytic hydrogen generation over Au/Pt decorated TiO2 nanofibers[J]. Nanoscale,2014,6(10):5217-5222. [28] KIMA M,KIM Y K,LIM S K,et al. Efficient visible light-induced H2 production by Au@CdS/TiO2 nanofibers:synergistic effect of core-shell structured Au@CdS and densely packed TiO2 nanoparticles[J]. Appl. Catal. B:Environ.,2015,166:423-431. [29] REN S,WANG B,ZHANG H,et al. Sandwiched ZnO@Au@Cu2O nanorod films as efficient visible-light-driven plasmonic photocatalysts[J]. ACS Appl. Mater. Interfaces,2015,7(7):4066-4074. [30] YE M,ZHOU H,ZHANG T,et al. Preparation of SiO2@Au@TiO2 core-shell nanostructures and their photocatalytic activities under visible light irradiation[J]. Chem. Eng. J.,2013,226:209-216. [31] ZHANG H,WANG G,CHEN D,et al. Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of Ag[J]. Chem. Mater.,2008,20(20):6543-6549. [32] ZHAI H J,WANG L J,SUN D W,et al. Photocatalytic activity of Ag-ZnO heterostructure for degradation of rhodamine B under direct sunlight[J]. Cryst. Res. Technol.,2014,49(10):794-799. [33] SUN S M,WANG W Z,ZENG S Z,et al. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation[J]. J. Hazard. Mater., 2010,178(1-3):427-433. [34] LIU Y,CHI M,DONG H L,et al. Ag/CdS heterostructural composites:fabrication,characterizations and photocatalysis[J]. Appl. Surf. Sci.,2014,313:58-562. [35] TANG Y X,JIANG Z L,XING G C,et al. Efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processes[J]. Adv. Funct. Mater.,2013,23(23):2932-2940. [36] WANG D J,XUE G L,ZHEN Y Z,et al. Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities[J]. J. Mater. Chem.,2012,22(11):4751-4758. [37] CHEN D L,LI T,CHEN Q Q,et al. Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates[J]. Nanoscale,2012,4(17):5431-5439. [38] SUBASH B,KRISHNAKUMAR B,SWAMINATHAN M,et al. Highly efficient solar active and reusable photocatalyst:Zr-loaded Ag-ZnO for reactive red 120 dye degradation with synergistic effect and dye-sensitized mechanism[J]. Langmuir,2013,29(3):939-949. [39] NAYA S I,NIKAWA T,KIMURA K,et al. Rapid and complete removal of nonylphenol by gold nanoparticle/rutile titanium (Ⅳ) oxide plasmon photocatalyst[J]. ACS Catal.,2013,3(5):903-907. [40] QIAN K,SWEENY B C,JOHNSTON-PECK A C,et al. Surface plasmon-driven water reduction:gold nanoparticle size matters[J]. J. Am. Chem. Soc.,2014,136(28):9842-9845. [41] MISRA M,KAPUR P,SINGLA M L. Surface plasmon quenched of near band edge emission and enhanced visible photocatalytic activity of Au@ZnO core-shell nanostructure[J]. Appl. Catal. B:Environ., 2014,150:605-611. [42] KONG B,TANG J,SELOMULYA C,et al. Oriented mesoporous nanopyramids as versatile plasmon-enhanced interfaces[J]. J. Am. Chem. Soc.,2014,136(19):6822-6825. [43] LIU T X,LI B X,HAO Y G,et al. A general method to diverse silver/mesoporous-metal-oxidenanocomposites with plasmon-enhanced photocatalytic activity[J]. Appl. Catal. B:Environ.,2015,165:378-388. [44] HEILIGTAG F J, CHENG W, MENDONÇA V R, et al. Self-assembly of metal and metal oxide nanoparticles and nanowires into a macroscopic ternary aerogel monolith with tailored photocatalytic properties[J]. Chem. Mater.,2014,26(19):5576-5584. [45] WANG P,HUANG B B,QIN X Y,et al. Ag@AgCl:a highly efficient and stable photocatalyst active under visible light[J]. Angew. Chem. Int. Ed.,2008,47(41):7931-7933. [46] 王朋. 表面等离子体增强AgX(X=Cl,Br,I)及其复合材料的制备、表征和光催化性能研究[D]. 济南:山东大学,2010. [47] SUN L,ZHANG R,WANG Y,et al. Plasmonic Ag@AgCl nanotubes fabricated from copper nanowires as high-performance visible light photocatalyst[J]. ACS Appl. Mater. Interfaces,2014,6(17):14819-14826. [48] XIAO X,GE L,HAN C,et al. A facile way to synthesize Ag@AgBr cubic cages with efficient visible-light-induced photocatalytic activity[J]. Appl. Catal. B:Environ.,2015,163:564-572. [49] ATWATER H A,Polman A. Plasmonics for improved photovoltaic devices[J]. Nat. Mater.,2010,9(3):205-213. |