| [1] |
QUEIROZ L P, NOGUEIRA I B R, RIBEIRO A M. Flavor Engineering: A comprehensive review of biological foundations, AI integration, industrial development, and socio-cultural dynamics[J]. Food Research International, 2024, 196: 115100.
|
| [2] |
SUNG Jeehye, FROST Scott, Joon Hyuk SUH. Progress in flavor research in food: Flavor chemistry in food quality, safety, and sensory properties[J]. Food Chemistry: X, 2025, 25: 102071.
|
| [3] |
KEMP Sarah E, COMMITTEE IFST PFSG. Application of sensory evaluation in food research[J]. International Journal of Food Science & Technology, 2008, 43(9): 1507-1511.
|
| [4] |
KIANI Sajad, MINAEI Saeid, Mahdi GHASEMI-VARNAMKHASTI. Fusion of artificial senses as a robust approach to food quality assessment[J]. Journal of Food Engineering, 2016, 171: 230-239.
|
| [5] |
DI ROSA Ambra Rita, LEONE Francesco, CHELI Federica, et al. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment—A review[J]. Journal of Food Engineering, 2017, 210: 62-75.
|
| [6] |
毛海涛. 混合机器学习与机理建模的香精产品设计[D]. 大连: 大连理工大学, 2020.
|
|
MAO Haitao. Fragrance product design with a hybrid machine learning and mechanistic modeling approach[D]. Dalian: Dalian University of Technology, 2020.
|
| [7] |
ZENG Xiangquan, CAO Rui, XI Yu, et al. Food flavor analysis 4.0: A cross-domain application of machine learning[J]. Trends in Food Science & Technology, 2023, 138: 116-125.
|
| [8] |
GOEL Mansi, BAGLER Ganesh. Computational gastronomy: A data science approach to food[J]. Journal of Biosciences, 2022, 47(1): 12.
|
| [9] |
YANG Xin, Chi-Tang HO, GAO Xiaoyu, et al. Machine learning: An effective tool for monitoring and ensuring food safety, quality, and nutrition[J]. Food Chemistry, 2025, 477: 143391.
|
| [10] |
QUEIROZ Luana P, REBELLO Carine M, COSTA Erbet A, et al. Transfer learning approach to develop natural molecules with specific flavor requirements[J]. Industrial & Engineering Chemistry Research, 2023, 62(23): 9062-9076.
|
| [11] |
ROJAS Cristian, BALLABIO Davide, CONSONNI Viviana, et al. Quantitative structure-activity relationships to predict sweet and non-sweet tastes[J]. Theoretical Chemistry Accounts, 2016, 135(3): 66.
|
| [12] |
BO Weichen, QIN Dongya, ZHENG Xin, et al. Prediction of bitterant and sweetener using structure-taste relationship models based on an artificial neural network[J]. Food Research International, 2022, 153: 110974.
|
| [13] |
DUTTA Prantar, JAIN Deepak, GUPTA Rakesh, et al. Classification of tastants: A deep learning based approach[J]. Molecular Informatics, 2023, 42(12): e202300146.
|
| [14] |
ANDROUTSOS Lampros, PALLANTE Lorenzo, BOMPOTAS Agorakis, et al. Predicting multiple taste sensations with a multiobjective machine learning method[J]. NPJ Science of Food, 2024, 8: 47.
|
| [15] |
ZIMMERMANN Yoel, SIEBEN Leif, SENG Henrik, et al. A chemical language model for molecular taste prediction[J]. NPJ Science of Food, 2025, 9(1): 122.
|
| [16] |
KOU Xingran, SHI Peiqin, GAO Chukun, et al. Data-driven elucidation of flavor chemistry[J]. Journal of Agricultural and Food Chemistry, 2023, 71(18): 6789-6802.
|
| [17] |
TUWANI Rudraksh, WADHWA Somin, BAGLER Ganesh. BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules[J]. Scientific Reports, 2019, 9(1): 7155.
|
| [18] |
ROJAS Cristian, BALLABIO Davide, CONSONNI Viviana, et al. Classification-based machine learning approaches to predict the taste of molecules: A review[J]. Food Research International, 2023, 171: 113036.
|
| [19] |
MALAVOLTA Marta, PALLANTE Lorenzo, MAVKOV Bojan, et al. A survey on computational taste predictors[J]. European Food Research and Technology, 2022, 248(9): 2215-2235.
|
| [20] |
DUTTA Prantar, GAJULA Kishore, VERMA Nitu, et al. Computational screening of umami tastants using deep learning[J]. Molecular Diversity, 2025, 29(4): 2979-2993.
|
| [21] |
BANERJEE Priyanka, PREISSNER Robert. BitterSweetForest: A random forest based binary classifier to predict bitterness and sweetness of chemical compounds[J]. Frontiers in Chemistry, 2018, 6: 93.
|
| [22] |
SONG Renxiu, LIU Kaifeng, HE Qizheng, et al. Exploring bitter and sweet: The application of large language models in molecular taste prediction[J]. Journal of Chemical Information and Modeling, 2024, 64(10): 4102-4111.
|
| [23] |
QUEIROZ Luana P, REBELLO Carine M, COSTA Erbet A, et al. Generating flavor molecules using scientific machine learning[J]. ACS Omega, 2023, 8(12): 10875-10887.
|
| [24] |
JI Xiaohong, WANG Zhen, GAO Zhifeng, et al. Uni-Mol2: Exploring molecular pretraining model at scale[EB/OL]. (2024-07-01)[2025-07-24]. .
|
| [25] |
GOEL Mansi, GROVER Nishant, BATRA Devansh, et al. FlavorDB2: An updated database of flavor molecules[J]. Journal of Food Science, 2024, 89(11): 7076-7082.
|
| [26] |
ZIAIKIN Evgenii, DAVID Moran, USPENSKAYA Sofya, et al. BitterDB: 2024 update on bitter ligands and taste receptors[J]. Nucleic Acids Research, 2025, 53(D1): D1645-D1650.
|
| [27] |
CHAROENKWAN Phasit, YANA Janchai, NANTASENAMAT Chanin, et al. iUmami-SCM: A novel sequence-based predictor for prediction and analysis of umami peptides using a scoring card method with propensity scores of dipeptides[J]. Journal of Chemical Information and Modeling, 2020, 60(12): 6666-6678.
|
| [28] |
ROJAS Cristian, BALLABIO Davide, PACHECO SARMIENTO Karen, et al. ChemTastesDB: A curated database of molecular tastants[J]. Food Chemistry: Molecular Sciences, 2022, 4: 100090.
|
| [29] |
Jean-Baptiste CHÉRON, CASCIUC Iuri, GOLEBIOWSKI Jérôme, et al. Sweetness prediction of natural compounds[J]. Food Chemistry, 2017, 221: 1421-1425.
|
| [30] |
GRADINARU Teodora-Cristiana, PETRAN Madalina, DRAGOS Dorin, et al. PlantMolecularTasteDB: A database of taste active phytochemicals[J]. Frontiers in Pharmacology, 2022, 12: 751712.
|
| [31] |
SUNDARARAJAN Mukund, TALY Ankur, YAN Qiqi. Axiomatic attribution for deep networks[EB/OL]. (2017-06-13)[2025-07-24]. .
|