1 |
金涌, 程易, 白丁荣, 等. 中国流态化技术研发史略[J]. 化工进展, 2023, 42(6): 2761-2780.
|
|
JIN Yong, CHENG Yi, BAI Dingrong, et al. Fluidization research and development in China[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2761-2780.
|
2 |
李洪钟, 郭慕孙. 回眸与展望流态化科学与技术[J]. 化工学报, 2013, 64(1): 52-62.
|
|
LI Hongzhong, KWAUK Mooson. Review and prospect of fluidization science and technology[J]. CIESC Journal, 2013, 64(1): 52-62.
|
3 |
ZHANG Hai, Junfu LYU, YUE Guangxi. A review on research and development of CFB combustion technology in China[J]. Powder Technology, 2023, 414: 118090.
|
4 |
KOSAKA Fumihiko, SASAYAMA Tomone, LIU Yanyong, et al. Direct and continuous conversion of flue gas CO2 into green fuels using dual function materials in a circulating fluidized bed system[J]. Chemical Engineering Journal, 2022, 450: 138055.
|
5 |
CHOI Seungyeong, YUN Maroosol, KIM Kiwoong, et al. Energy-efficient design of dual circulating fluidized bed system for CCUS by multi-tube configuration with junctions[J]. Energy, 2022, 245: 123258.
|
6 |
OSMAN Mogahid, ZAABOUT Abdelghafour, CLOETE Schalk, et al. Mapping the operating performance of a novel internally circulating fluidized bed reactor applied to chemical looping combustion[J]. Fuel Processing Technology, 2020, 197: 106183.
|
7 |
WANG Chao, ZHU Lianfeng, ZHANG Mengjuan, et al. A two-stage circulated fluidized bed process to minimize tar generation of biomass gasification for fuel gas production[J]. Applied Energy, 2022, 323: 119639.
|
8 |
NELSON Thomas O, KATARIA Atish, MOBLEY Paul, et al. RTI’s solid sorbent-based CO2 capture process: Technical and economic lessons learned for application in coal-fired, NGCC, and cement plants[J]. Energy Procedia, 2017, 114: 2506-2524.
|
9 |
WANG Wei, LU Bona, ZHANG Nan, et al. A review of multiscale CFD for gas-solid CFB modeling[J]. International Journal of Multiphase Flow, 2010, 36(2): 109-118.
|
10 |
WANG Chengxiu, BARGHI Shahzad, ZHU Jesse. Hydrodynamics and reactor performance evaluation of a high flux gas-solids circulating fluidized bed downer: Experimental study[J]. AIChE Journal, 2014, 60(10): 3412-3423.
|
11 |
LI Yongzheng, ZHAI Guangwei, ZHANG Haitao, et al. Experimental and predictive research on solids holdup distribution in a CFB riser[J]. Powder Technology, 2019, 344: 830-841.
|
12 |
SU Xin, WANG Chengxiu, PEI Huajian, et al. Experimental study of solids motion in an 18 m gas-solids circulating fluidized bed with high solids flux[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 23468-23480.
|
13 |
LI Hongzhong, XIA Yashen, TUNG Yuanki, et al. Micro-visualization of clusters in a fast fluidized bed[J]. Powder Technology, 1991, 66(3): 231-235.
|
14 |
孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495.
|
|
KONG Lingfei, CHEN Yanpei, WANG Wei. Dynamic study of mesoscale structures of particles in gas-solid fluidization[J]. CIESC Journal, 2022, 73(6): 2486-2495.
|
15 |
SHAFFER Frank, GOPALAN Balaji, BREAULT Ronald W, et al. High speed imaging of particle flow fields in CFB risers[J]. Powder Technology, 2013, 242: 86-99.
|
16 |
COCCO Ray, SHAFFER Frank, HAYS Roy, et al. Particle clusters in and above fluidized beds[J]. Powder Technology, 2010, 203(1): 3-11.
|
17 |
HARRIS A T, DAVIDSON J F, THORPE R B. The prediction of particle cluster properties in the near wall region of a vertical riser (200157)[J]. Powder Technology, 2002, 127(2): 128-143.
|
18 |
LU Huilin, SUN Qiaoqun, HE Yurong, et al. Numerical study of particle cluster flow in risers with cluster-based approach[J]. Chemical Engineering Science, 2005, 60(23): 6757-6767.
|
19 |
WANG Junwu. Continuum theory for dense gas-solid flow: A state-of-the-art review[J]. Chemical Engineering Science, 2020, 215: 115428.
|
20 |
CAHYADI Andy, ANANTHARAMAN Aditya, YANG Shiliang, et al. Review of cluster characteristics in circulating fluidized bed (CFB) risers[J]. Chemical Engineering Science, 2017, 158: 70-95.
|
21 |
FONG Kee Onn, COLETTI Filippo. Experimental analysis of particle clustering in moderately dense gas-solid flow[J]. Journal of Fluid Mechanics, 2022, 933: A6.
|
22 |
WEI Xiaoyang, YANG Jingsi, ZHU Jesse. Experimental analysis of phase segregation in gas-solid circulating fluidized bed riser with direct image calibration[J]. Chemical Engineering Journal, 2020, 379: 122301.
|
23 |
GRACE J R, WAIREGI T, BROPHY J. Break-up of drops and bubbles in stagnant media[J]. The Canadian Journal of Chemical Engineering, 1978, 56(1): 3-8.
|
24 |
LU Xuesong, LI Songgeng, DU Lin, et al. Flow structures in the downer circulating fluidized bed[J]. Chemical Engineering Journal, 2005, 112(1/2/3): 23-31.
|
25 |
GUO Yue, YIN Shangyi, LU Shibing, et al. An image processing method for feature extraction and dynamic tracking of particle clusters in CFBs[J]. Particuology, 2023, 77: 1-13.
|
26 |
FRANK Michael, DRIKAKIS Dimitris, CHARISSIS Vassilis. Machine-learning methods for computational science and engineering[J]. Computation, 2020, 8(1): 15.
|
27 |
ZHANG Yifu, WANG Chunyu, WANG Xinggang, et al. Fairmot: On the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129(11): 3069-3087.
|
28 |
LI Zhuoling, DONG Minghui, WEN Shiping, et al. CLU-CNNs: Object detection for medical images[J]. Neurocomputing, 2019, 350: 53-59.
|
29 |
朱礼涛, 欧阳博, 张希宝, 等.机器学习在多相反应器中的应用进展[J]. 化工进展, 2021, 40(4): 1699-1714.
|
|
ZHU Litao, OUYANG Bo, ZHANG Xibao, et al. Progress on application of machine learning to multiphase reactors[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1699-1714.
|
30 |
任喜伟, 何立风, 姚斌, 等. 油水界面测量过程中自适应阈值聚类优化算法[J]. 化工进展, 2019, 38(2): 779-789.
|
|
REN Xiwei, HE Lifeng, YAO Bin, et al. Clustering optimization algorithm with adaptive threshold for oil-water interface detection process[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 779-789.
|
31 |
WANG Tianyu, DENG Aiming, HE Yurong, et al. Artificial intelligence-based approach for cluster identification in a CFB riser[J]. Chemical Engineering Science, 2023, 268: 118379.
|
32 |
YIN Shangyi, ZHONG Wenqi, SONG Tao, et al. Clusters identification and meso-scale structures in a circulating fluidized bed based on image processing[J]. Advanced Powder Technology, 2019, 30(12): 3010-3020.
|
33 |
WANG Chengxiu, LAN Xingying, SUN Zeneng, et al. Cluster identification by a k-means algorithm-assisted imaging method in a laboratory-scale circulating fluidized bed[J]. Industrial & Engineering Chemistry Research, 2022, 61(1): 942-956.
|
34 |
WANG Chengxiu, LI Zhihui, WEI Jianjin, et al. Quantitative measurement of solids holdup for group A and B particles using images and its application in fluidized bed reactors[J]. Processes, 2022, 10(3): 610.
|
35 |
LIU Xinhua, XU Guangwen, GAO Shiqiu. Micro fluidized beds: Wall effect and operability[J]. Chemical Engineering Journal, 2008, 137(2): 302-307.
|
36 |
SÁNCHEZ-DELGADO S, ALMENDROS-IBÁÑEZ J A, GARCÍA-HERNANDO N, et al. On the minimum fluidization velocity in 2D fluidized beds[J]. Powder Technology, 2011, 207(1/2/3): 145-153.
|
37 |
漆小波. 循环流化床提升管气固两相流动力学研究[D]. 成都: 四川大学, 2003.
|
|
QI Xiaobo. Gas-Solids Two Phase Flow Dynamics in Circulating Fluidized Bed Risers[D]. Chengdu: Sichuan University, 2003.
|
38 |
WEI Xiaoyang, ZHU Jesse. A comprehensive characterization of aggregative flow in a circulating fluidized bed (1): High-density riser[J]. Industrial & Engineering Chemistry Research, 2020, 59(22): 10315-10327.
|
39 |
XU Jing, ZHU Jesse. A new method for the determination of cluster velocity and size in a circulating fluidized bed[J]. Industrial & Engineering Chemistry Research, 2012, 51(4): 2143-2151.
|
40 |
YANG Jingsi, ZHU Jesse. Cluster identification using image processing[J]. Particuology, 2015, 23: 16-24.
|
41 |
WEI Xiaoyang, ZHU Jesse. Tracking the flow dynamics in circulating fluidized bed through high-speed photography[J]. Industrial & Engineering Chemistry Research, 2019, 58(37): 17540-17548.
|
42 |
WANG Chengxiu, LI Zhihui, SUN Zeneng, et al. Visualization on the meso-scale particle flow in turbulent fluidized bed reactors with lower H0/D ratios via image processing[J]. Chemical Engineering Journal, 2023, 452: 139124.
|