化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1118-1132.DOI: 10.16085/j.issn.1000-6613.2023-0452
• 化工过程与装备 • 上一篇
张玉红1(), 李轩宇2, 冯春健3, 马春迅1, 张晨1, 周洋洋1, 毕海胜1()
收稿日期:
2023-03-23
修回日期:
2023-05-06
出版日期:
2024-03-10
发布日期:
2024-04-11
通讯作者:
毕海胜
作者简介:
张玉红(1998—),女,硕士研究生,研究方向为油气储运系统安全检测技术。E-mail:3451086638@qq.com。
基金资助:
ZHANG Yuhong1(), LI Xuanyu2, FENG Chunjian3, MA Chunxun1, ZHANG Chen1, ZHOU Yangyang1, BI Haisheng1()
Received:
2023-03-23
Revised:
2023-05-06
Online:
2024-03-10
Published:
2024-04-11
Contact:
BI Haisheng
摘要:
油气田金属管道腐蚀穿孔风险日趋严重,管道泄漏事故时有发生,玻璃钢管、钢骨架增强聚乙烯复合管、柔性复合管等非金属管道以其良好的耐蚀性和适用性在油气田开发生产系统中逐渐受到青睐。然而,由于管道在长期服役过程中遭受内外压载荷、介质腐蚀等老化作用,随之而来的诸如基体开裂、管体脆断、纤维/基体界面脱黏、层间分离等各种失效问题亟待解决。基于此现状,文章综述了油气田常用非金属管道特点、应用、失效原因,以及非金属管道探测定位、无损检测技术、风险评估和寿命预测方法,针对非金属管道损伤失效的预防在管道制造、施工、运行、应用、维修及关键技术等方面提出了相关建议,并对非金属管道失效预防技术攻关方面进行展望,为非金属油气管道失效预测方法及其防控技术的相关研究提供有效支撑。
中图分类号:
张玉红, 李轩宇, 冯春健, 马春迅, 张晨, 周洋洋, 毕海胜. 油气田非金属管道失效预测及防控技术研究进展[J]. 化工进展, 2024, 43(3): 1118-1132.
ZHANG Yuhong, LI Xuanyu, FENG Chunjian, MA Chunxun, ZHANG Chen, ZHOU Yangyang, BI Haisheng. Research progress on failure prediction and prevention technology of non-metallic pipes in oil and gas fields[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1118-1132.
类型 | 组成 | 优点 | 缺点 | 适用场合 |
---|---|---|---|---|
高压玻璃钢管 | 玻璃纤维和特殊树脂复合 | 耐腐蚀,强度高,水力特性好,维护费用低且可设计性强[ | 连接、拐弯处渗漏,脆性大,T≤93℃,DN≤400[ | 高压注水系统、注聚合物、低压气液混输、污水管道 |
钢骨架塑料复合管 | 高密度聚乙烯塑料、钢丝或钢带复合 | 耐压耐蚀;摩擦小、不易结垢、结蜡;保温和机械性能好[ | 施工专业性强;冬季管道易冻结、冻胀,T≤80℃,p≤4MPa[ | 油田注水系统和输送聚合物母液 |
柔性复合管 | 改性高密度聚乙烯为内层,增强纤维为中间层,聚乙烯为外层 | 承压能力大,柔性好、适用地形起伏地区,管径20~300mm[ | 接头易泄漏,不适合输送高温介质,T≤100℃ | 气田开发注醇、油气水集输管线、海上油气开发[ |
连续增强塑料复合管 | 钢丝及不同性能的聚乙烯 | 耐高温、柔韧性好、一般优于柔性复合管 | 易发生脆断,抗破坏能力差且不易修复 | 油气集输、注水,地形起伏较大区块 |
塑料合金复合管 | 内层塑料合金,增强层为玻璃纤维、环氧树脂或不饱和聚酯树脂,外层为抗老化、抗冲击的树脂层[ | 管道防腐蚀性能更好,内壁光滑且不易结蜡,阻力系数小 | 会出现连接接头失效情况 | 油田注水和污水处理系统、原油集输系统 |
表1 我国油气田常用非金属管道特点
类型 | 组成 | 优点 | 缺点 | 适用场合 |
---|---|---|---|---|
高压玻璃钢管 | 玻璃纤维和特殊树脂复合 | 耐腐蚀,强度高,水力特性好,维护费用低且可设计性强[ | 连接、拐弯处渗漏,脆性大,T≤93℃,DN≤400[ | 高压注水系统、注聚合物、低压气液混输、污水管道 |
钢骨架塑料复合管 | 高密度聚乙烯塑料、钢丝或钢带复合 | 耐压耐蚀;摩擦小、不易结垢、结蜡;保温和机械性能好[ | 施工专业性强;冬季管道易冻结、冻胀,T≤80℃,p≤4MPa[ | 油田注水系统和输送聚合物母液 |
柔性复合管 | 改性高密度聚乙烯为内层,增强纤维为中间层,聚乙烯为外层 | 承压能力大,柔性好、适用地形起伏地区,管径20~300mm[ | 接头易泄漏,不适合输送高温介质,T≤100℃ | 气田开发注醇、油气水集输管线、海上油气开发[ |
连续增强塑料复合管 | 钢丝及不同性能的聚乙烯 | 耐高温、柔韧性好、一般优于柔性复合管 | 易发生脆断,抗破坏能力差且不易修复 | 油气集输、注水,地形起伏较大区块 |
塑料合金复合管 | 内层塑料合金,增强层为玻璃纤维、环氧树脂或不饱和聚酯树脂,外层为抗老化、抗冲击的树脂层[ | 管道防腐蚀性能更好,内壁光滑且不易结蜡,阻力系数小 | 会出现连接接头失效情况 | 油田注水和污水处理系统、原油集输系统 |
探测方法 | 原理 | 应用局限 |
---|---|---|
探地雷达法 | 依靠电磁波的传播、反射进行工作,根据反射波形的强度、时间、传播路径等信息确定地下管道结构和具体深度 | 受管道埋深[ |
示踪法 | 将金属导线或示踪探头随管道同时埋于地下,利用接收器接收来自金属导线或探头的电磁信号确定管道位置和埋深 | 不适用于在役管道探测,且探测深度有限,具有一定的局限性 |
声学管道定位法 | 依靠声波的传播和反射,经数据分析获取图像来实现定位 | 只能探测已知大致走向的管道 |
表2 常用埋地非金属管线探测方法原理及特点
探测方法 | 原理 | 应用局限 |
---|---|---|
探地雷达法 | 依靠电磁波的传播、反射进行工作,根据反射波形的强度、时间、传播路径等信息确定地下管道结构和具体深度 | 受管道埋深[ |
示踪法 | 将金属导线或示踪探头随管道同时埋于地下,利用接收器接收来自金属导线或探头的电磁信号确定管道位置和埋深 | 不适用于在役管道探测,且探测深度有限,具有一定的局限性 |
声学管道定位法 | 依靠声波的传播和反射,经数据分析获取图像来实现定位 | 只能探测已知大致走向的管道 |
发射功率/W | 两电极间距/m | 收发距/m | 两电极埋深范围/m | 发射频率/kHz | 回路电流强度/mA | 观测剖面长度/m |
---|---|---|---|---|---|---|
10 | 500 | 50 | 1.5~2 | 8 | 27.8 | 50 |
表3 应用诱导偶极电磁感应法进行管道探测数据
发射功率/W | 两电极间距/m | 收发距/m | 两电极埋深范围/m | 发射频率/kHz | 回路电流强度/mA | 观测剖面长度/m |
---|---|---|---|---|---|---|
10 | 500 | 50 | 1.5~2 | 8 | 27.8 | 50 |
检测技术 | 适用管道类型 | 可检测缺陷类型 | 优缺点 |
---|---|---|---|
射线检测 | 热塑性塑料管、增强热固性塑料管、增强热塑性塑料管、内衬管 | 气孔、夹杂、分层、脱黏、裂纹等 | 检测面积大、速度快,可检测表面及内部缺陷,无法获取缺陷深度、检测试件不能太厚且存在辐射[ |
超声检测 | 热塑性塑料管、增强热固性塑料管 | 气孔、分层、脱黏、夹杂、裂纹等 | 灵敏度高、指向性好、穿透能力强,需要耦合剂,不适合深层缺陷检测 |
声发射检测 | 增强热固性塑料管、增强热塑性塑料管 | 裂纹扩展、纤维断裂、泄漏、应变、分层等 | 可实现缺陷定位、实时监测,对微小缺陷不敏感,需耦合剂和传感器 |
渗透检测 | 热塑性塑料管、增强热固性塑料管、增强热塑性塑料管、内衬管 | 表面开口缺陷 | 方便简单、成本低廉、缺陷显示直观、灵敏度高,但检测速度慢 |
红外热成像检测 | 热塑性塑料管、增强热固性塑料管、增强热塑性塑料管、内衬管 | 结垢、壁厚主要偏差、内壁缺陷深度、接头内缺胶 | 非接触式,检测面积大,可检测外部和内部缺陷,但检测精度有限,数据处理耗时长且只能从一侧进行识别[ |
表4 非金属管道无损检测技术
检测技术 | 适用管道类型 | 可检测缺陷类型 | 优缺点 |
---|---|---|---|
射线检测 | 热塑性塑料管、增强热固性塑料管、增强热塑性塑料管、内衬管 | 气孔、夹杂、分层、脱黏、裂纹等 | 检测面积大、速度快,可检测表面及内部缺陷,无法获取缺陷深度、检测试件不能太厚且存在辐射[ |
超声检测 | 热塑性塑料管、增强热固性塑料管 | 气孔、分层、脱黏、夹杂、裂纹等 | 灵敏度高、指向性好、穿透能力强,需要耦合剂,不适合深层缺陷检测 |
声发射检测 | 增强热固性塑料管、增强热塑性塑料管 | 裂纹扩展、纤维断裂、泄漏、应变、分层等 | 可实现缺陷定位、实时监测,对微小缺陷不敏感,需耦合剂和传感器 |
渗透检测 | 热塑性塑料管、增强热固性塑料管、增强热塑性塑料管、内衬管 | 表面开口缺陷 | 方便简单、成本低廉、缺陷显示直观、灵敏度高,但检测速度慢 |
红外热成像检测 | 热塑性塑料管、增强热固性塑料管、增强热塑性塑料管、内衬管 | 结垢、壁厚主要偏差、内壁缺陷深度、接头内缺胶 | 非接触式,检测面积大,可检测外部和内部缺陷,但检测精度有限,数据处理耗时长且只能从一侧进行识别[ |
检测技术 | 适用管道类型 | 可检测缺陷类型 | 成熟度 |
---|---|---|---|
超声导波技术 | 增强热固性树脂管、增强热塑性塑料管、热塑性复合管、热塑性塑料管道 | 管道变形、接头缺陷、裂纹、分层 | 有实际产品,已有相关实验证明有效性 |
微波检测技术 | 增强热固性树脂管、增强热塑性塑料管、热塑性复合管、热塑性塑料管道 | 树脂固化程度、纤维和基体脱黏、纤维失效、基体开裂、分层、冲击损伤 | 处于研究阶段,已有相关实验证明有效性,多应用于非金属零件检测 |
超声相控阵技术 | 非金属管道 | 电熔、热熔对接接头(体积型缺陷检测)、裂纹、穿孔、分层 | 已有现场应用(接头处) |
太赫兹波检测技术 | 增强热固性树脂管、增强热塑性塑料管、热塑性复合管、热塑性塑料管道 | 裂纹、孔隙、分层、毫米级变形、剩余壁厚、泄漏 | 多用于航空航天领域,目前尚未应用于非金属管道方面 |
表5 非金属管道新型无损检测技术
检测技术 | 适用管道类型 | 可检测缺陷类型 | 成熟度 |
---|---|---|---|
超声导波技术 | 增强热固性树脂管、增强热塑性塑料管、热塑性复合管、热塑性塑料管道 | 管道变形、接头缺陷、裂纹、分层 | 有实际产品,已有相关实验证明有效性 |
微波检测技术 | 增强热固性树脂管、增强热塑性塑料管、热塑性复合管、热塑性塑料管道 | 树脂固化程度、纤维和基体脱黏、纤维失效、基体开裂、分层、冲击损伤 | 处于研究阶段,已有相关实验证明有效性,多应用于非金属零件检测 |
超声相控阵技术 | 非金属管道 | 电熔、热熔对接接头(体积型缺陷检测)、裂纹、穿孔、分层 | 已有现场应用(接头处) |
太赫兹波检测技术 | 增强热固性树脂管、增强热塑性塑料管、热塑性复合管、热塑性塑料管道 | 裂纹、孔隙、分层、毫米级变形、剩余壁厚、泄漏 | 多用于航空航天领域,目前尚未应用于非金属管道方面 |
寿命预测方法 | 原理 | 特点 |
---|---|---|
SH | 利用PE材料在高温下拉伸时裂纹中微纤维产生应变硬化特性来预测管道寿命 | 无需表面活性剂、试验时间短,但要求温度高,尚处于理论研究阶段 |
PENT | 试样置于80℃的空气或水中并施加静载荷,经计算可预测带有初始缺陷的压力管道寿命 | 实验时间较长,部分试验需在应力腐蚀开裂介质中进行,预测准确度不高 |
长期静液压实验 | 将充满介质的管材样品置于一定温度介质中,施加不同压力直至最终破坏,经数据拟合确定管道失效寿命与应力关系 | 实验周期长,滞后于管道发展速度,但预测结果准确、可靠度高 |
循环载荷CRB实验 | 室温下循环拉伸试样并发生慢速裂纹扩展直至失效,基于线弹性断裂力学的理论进行寿命预测 | 实验时间短、无需表面活性剂,无法直接测量裂纹深度,预测较为保守 |
老化实验 | 基于失效依据和实验数据作图拟合公式计算寿命 | 预测结果准确,但实验条件再现性差 |
表6 PE管寿命预测方法比较
寿命预测方法 | 原理 | 特点 |
---|---|---|
SH | 利用PE材料在高温下拉伸时裂纹中微纤维产生应变硬化特性来预测管道寿命 | 无需表面活性剂、试验时间短,但要求温度高,尚处于理论研究阶段 |
PENT | 试样置于80℃的空气或水中并施加静载荷,经计算可预测带有初始缺陷的压力管道寿命 | 实验时间较长,部分试验需在应力腐蚀开裂介质中进行,预测准确度不高 |
长期静液压实验 | 将充满介质的管材样品置于一定温度介质中,施加不同压力直至最终破坏,经数据拟合确定管道失效寿命与应力关系 | 实验周期长,滞后于管道发展速度,但预测结果准确、可靠度高 |
循环载荷CRB实验 | 室温下循环拉伸试样并发生慢速裂纹扩展直至失效,基于线弹性断裂力学的理论进行寿命预测 | 实验时间短、无需表面活性剂,无法直接测量裂纹深度,预测较为保守 |
老化实验 | 基于失效依据和实验数据作图拟合公式计算寿命 | 预测结果准确,但实验条件再现性差 |
1 | 盛丽媛. 非金属管道在油田地面工程中的应用[J]. 广州化工, 2017, 45(17): 15-17. |
SHENG Liyuan. Application of non-metallic pipes in oilfield[J]. Guangzhou Chemical Industry, 2017, 45(17): 15-17. | |
2 | 裴胜利, 杨洋, 邵景妍. 非金属管线在油田的应用[J]. 石化技术, 2015, 22(10): 99. |
PEI Shengli, YANG Yang, SHAO Jingyan. Application of non-metallic oil pipeline[J]. Petrochemical Industry Technology, 2015, 22(10): 99. | |
3 | ZUBAIL A, TRAIDIA A, MASULLI M, et al. Carbon and energy footprint of nonmetallic composite pipes in onshore oil and gas flowlines[J]. Journal of Cleaner Production, 2021, 305: 127150. |
4 | 张万杰. 非金属管道在油气集输系统中的应用[J]. 油气田地面工程, 2003, 22(7): 92. |
ZHANG Wanjie. Application of nonmetallic pipeline in oil and gas gathering and transportation system[J]. Oil-Gasfield Surface Engineering, 2003, 22(7): 92. | |
5 | 亓树成, 曾丽华, 石剑英, 等. 腐蚀控制与防护技术在新疆油田的应用[J]. 化工进展, 2014, 33(5): 1351-1355. |
QI Shucheng, ZENG Lihua, SHI Jianying, et al. Application of corrosion control and protection technology in Xinjiang oilfield[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1351-1355. | |
6 | 商永滨, 李言, 李刚, 等. 非金属管道在油气田中的应用[J]. 内蒙古石油化工, 2020, 46(2): 14-18. |
SHANG Yongbin, LI Yan, LI Gang, et al. Application of non-metallic piping in oil and gas fields[J]. Inner Mongolia Petrochemical Industry, 2020, 46(2): 14-18. | |
7 | ZHANG Yongqiang, LIU Li, YANG Zhigang, et al. Combination application strategy of non-metal compound pipe and its verification[J]. Materials Science Forum, 2019, 944: 873-880. |
8 | 刘博昱. 关于埋地非金属管道完整性管理技术的思考[J]. 化学工程与装备, 2020(1): 194-196. |
LIU Boyu. Thoughts on integrity management technology of buried nonmetallic pipelines[J]. Chemical Engineering & Equipment, 2020(1): 194-196. | |
9 | 付安庆, 袁军涛, 李轩鹏, 等. 油气田地面管道内腐蚀现状及防腐技术研究进展[J]. 石油管材与仪器, 2021, 7(6): 14-25. |
FU Anqing, YUAN Juntao, LI Xuanpeng, et al. Gathering pipeline corrosion of oil and gas field and its anti-corrosion technologies[J]. Petroleum Tubular Goods & Instruments, 2021, 7(6): 14-25. | |
10 | 全娇娇. 集输油用柔性复合管的环境适用性评价研究[D]. 西安: 西安石油大学, 2020. |
QUAN Jiaojiao. Research on environmental suitability evaluation of flexible composite pipe for oil gathering and transportation[D]. Xi’an: Xi’an Shiyou University, 2020. | |
11 | 张冠军, 齐国权, 戚东涛. 非金属及复合材料在石油管领域应用现状及前景[J]. 石油科技论坛, 2017, 36(2): 26-31. |
ZHANG Guanjun, QI Guoquan, QI Dongtao. Present conditions and prospect for application of non-metallic and composite materials for oil pipeline[J]. Oil Forum, 2017, 36(2): 26-31. | |
12 | 尚娟, 鲁仰辉, 郑津洋, 等. 掺氢天然气管道输送研究进展和挑战[J]. 化工进展, 2021, 40(10): 5499-5505. |
SHANG Juan, LU Yanghui, ZHENG Jinyang, et al. Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5499-5505. | |
13 | 葛鹏莉, 羊东明, 韩阳, 等. 内穿插修复技术在塔河油田的应用[J]. 腐蚀与防护, 2014, 35(4): 384-386. |
GE Pengli, YANG Dongming, HAN Yang, et al. Application of interpolation recovery technique of polyethylene pipes in Tahe oilfield[J]. Corrosion & Protection, 2014, 35(4): 384-386. | |
14 | 蔡彪. 管道内穿插聚乙烯管修复技术在南堡油田的应用[J]. 石油工程建设, 2020, 46(2): 73-75. |
CAI Biao. Application of PE pipe internal penetration technique for repairing pipeline in Nanpu Oilfield[J]. Petroleum Engineering Construction, 2020, 46(2): 73-75. | |
15 | 雷国康. 内衬HDPE在艾哈代布油田的研究应用[J]. 全面腐蚀控制, 2019, 33(7): 8-10. |
LEI Guokang. The study and application of HDPE lining in Ahdeb oil field[J]. Total Corrosion Control, 2019, 33(7): 8-10. | |
16 | 刘碧峰, 罗晓明, 马先平, 等. HDPE管道修复技术在大港南部油田的应用[J]. 油气储运, 2010, 29(8): 638-639. |
LIU Bifeng, LUO Xiaoming, MA Xianping, et al. Application of HDPE pipeline repair technology in Dagang south oilfield[J]. Oil & Gas Storage and Transportation, 2010, 29(8): 638-639. | |
17 | BONIS M, MACDONALD R. H2S+CO2 corrosion: Additional learnings from field experience[C]//2015 NACE International Corrosion Conference, 2015: 1-6. |
18 | HUNT E M, EARL P, BARAKY M, et al. MIC resistant HDPE lining for seawater applications[C]// Corrosion 2017, 2017: 1-6. |
19 | 张丽. 大庆油田非金属管道应用技术现状及对策[J]. 油气田地面工程, 2012, 31(11): 14-16. |
ZHANG Li. Present situation and countermeasures of non-metallic pipeline application technology in Daqing Oilfield[J]. Oil-Gas Field Surface Engineering, 2012, 31(11): 14-16. | |
20 | 陶佳栋, 卢明昌, 曾万蓉. 玻璃钢管道在油气田的应用与发展[J]. 石油管材与仪器, 2017, 3(5): 1-4. |
TAO Jiadong, LU Mingchang, ZENG Wanrong. Application and development of fiber reinforced plastic pipe in oil & gas field[J]. Petroleum Tubular Goods & Instruments, 2017, 3(5): 1-4. | |
21 | 董经天. 非金属管道在大庆油田工程防腐中的应用探讨[J]. 全面腐蚀控制, 2019, 33(2): 41-43. |
DONG Jingtian. Application of nonmetal pipeline in engineering corrosion prevention of Daqing oilfield[J]. Total Corrosion Control, 2019, 33(2): 41-43. | |
22 | 齐丽薇. 非金属管道在油田中的应用现状与对策[J]. 化学工程与装备, 2021(3): 132-133. |
QI Liwei. Application status and countermeasures of non-metallic pipelines in oilfield[J]. Chemical Engineering & Equipment, 2021(3): 132-133. | |
23 | 王冬林, 曹峰, 李昱坤, 等. 高压玻璃钢管在油田应用的现状及展望[J]. 新技术新工艺, 2014(12): 133-136. |
WANG Donglin, CAO Feng, LI Yukun, et al. Application status and prospect of high pressure glass steel pipes in oil fields[J]. New Technology & New Process, 2014(12): 133-136. | |
24 | 曹广军, 常亚娜, 韩杰. 钢骨架塑料复合管的性能和应用[J]. 氯碱工业, 2010, 46(10): 36-38. |
CAO Guangjun, CHANG Yana, HAN Jie. Performances and application of steel-reinforced plastic composite pipes[J]. Chlor-Alkali Industry, 2010, 46(10): 36-38. | |
25 | 刘佳. 非金属管道应用评价[J]. 油气田地面工程, 2011, 30(6): 99-100. |
LIU Jia. Application evaluation of nonmetallic pipeline[J]. Oil-Gasfield Surface Engineering, 2011, 30(6): 99-100. | |
26 | 罗贞礼. 柔性复合管在油气田中的开发应用探讨[J]. 新材料产业, 2011(6): 55-57. |
LUO Zhenli. Discussion on development and application of flexible composite pipe in oil and gas fields[J]. Advanced Materials Industry, 2011(6): 55-57. | |
27 | 王涛. 柔性复合管在油田集输中的应用探析[J]. 中国石油石化, 2017(1): 80-81. |
WANG Tao. Application of flexible composite pipe in oil field gathering and transportation[J]. China Petrochem, 2017(1): 80-81. | |
28 | 尹承禹, 丁夷飞. 柔性复合管在油田中的应用[J]. 云南化工, 2020, 47(11): 15-16. |
YIN Chengyu, DING Yifei. Application of flexible composite pipe in oil field[J]. Yunnan Chemical Technology, 2020, 47(11): 15-16. | |
29 | 罗士平, 刘长福, 张奎文, 等. 非金属管在油田集输中的应用[J]. 石油规划设计, 2000, 11(3): 22-23. |
LUO Shiping, LIU Changfu, ZHANG Kuiwen, et al. Application of non-metallic pipe in oil field gathering and transportation[J]. Petroleum Planning & Engineering, 2000, 11(3): 22-23. | |
30 | 许艳艳, 葛鹏莉, 肖雯雯, 等. 塔河油田非金属管失效分析与评价体系的建立[J]. 石油与天然气化工, 2020, 49(4): 78-82. |
XU Yanyan, GE Pengli, XIAO Wenwen, et al. Establishment of failure analysis and evaluation system for non-metallic pipes in Tahe oilfield[J]. Chemical Engineering of Oil & Gas, 2020, 49(4): 78-82. | |
31 | RODRÍGUEZ E S, ALVAREZ V A, MONTEMARTINI P E. Failure analysis of a GFRP pipe for oil transport[J]. Engineering Failure Analysis, 2013, 28: 16-24. |
32 | 刘海超, 金磊, 杜晓杰, 等. 油田非金属管道失效原因及标准化建议[J]. 全面腐蚀控制, 2021, 35(4): 1-5. |
LIU Haichao, JIN Lei, DU Xiaojie, et al. Reasons for failure of non-metallic pipelines in oil fields and suggestions[J]. Total Corrosion Control, 2021, 35(4): 1-5. | |
33 | 谭校山, 张国平, 孙建华. 对城市地下管线探测中几个问题的看法[J]. 城市勘测, 2008, 101(5): 122-124. |
TAN Xiaoshan, ZHANG Guoping, SUN Jianhua. Some comments on the guideline of urban underground pipeline projects[J]. Urban Geotechnical Investigation & Surveying, 2008, 101(5): 122-124. | |
34 | 解智强, 何江龙, 王贵武, 等. 基于地磁原理的非金属地下管线探测技术的研究与应用[J]. 地矿测绘, 2010, 26(3): 13-16. |
XIE Zhiqiang, HE Jianglong, WANG Guiwu, et al. Research and application in the nonmetal underground pipeline detection technology based on the geomagnetic principle in Kunming city[J]. Surveying and Mapping of Geology and Mineral Resources, 2010, 26(3): 13-16. | |
35 | 何景, 孙群, 陆伟华. 非金属管线探测方法的研究[J]. 城市建设理论研究(电子版), 2018(31): 70. |
HE Jing, SUN Qun, LU Weihua. Study on detection method of nonmetallic pipeline[J]. Theoretical Research in Urban Construction, 2018(31): 70. | |
36 | 孙宝财, 荆炀, 张正棠. 埋地非金属管道探测技术及对比[J]. 化工机械, 2022, 49(3): 375-378. |
SUN Baocai, JING Yang, ZHANG Zhengtang. Technologies for detecting and positioning nonmetal pipelines and their comparision[J]. Chemical Engineering & Machinery, 2022, 49(3): 375-378. | |
37 | 刘辉, 陈波, 谢明华, 等. 埋地非金属管道定位仪的设计[J]. 计算机测量与控制, 2021, 29(5): 251-255. |
LIU Hui, CHEN Bo, XIE Minghua, et al. Design of positioning instrument for buried non-metal pipeline[J]. Computer Measurement & Control, 2021, 29(5): 251-255. | |
38 | 裴世建. 诱导偶极电磁感应法探测地下非金属管道技术的应用与探讨[J]. 工程地球物理学报, 2021, 18(5): 573-578. |
PEI Shijian. Application and discussion of induced dipole electromagnetic induction method in detecting underground nonmetallic[J]. Chinese Journal of Engineering Geophysics, 2021, 18(5): 573-578. | |
39 | 王文明, 郭建强, 张桂瑞, 等. 埋地非金属管线的智能预测与定位可视化研究[J]. 油气田地面工程, 2021, 40(10): 46-51. |
WANG Wenming, GUO Jianqiang, ZHANG Guirui, et al. Research on intelligent prediction and positioning visualization of buried non-metallic pipelines[J]. Oil-Gas Field Surface Engineering, 2021, 40(10): 46-51. | |
40 | FU Yutong, YAO Xuefeng. A review on manufacturing defects and their detection of fiber reinforced resin matrix composites[J]. Composites Part C: Open Access, 2022, 8: 100276. |
41 | LIANG Xiaoqiang, HU Da, LI Yongsuo, et al. Application of GPR underground pipeline detection technology in urban complex geological environments[J]. Geofluids, 2022, 2022: 7465919. |
42 | 孙万敏, 秦赟. 国内外石油天然气行业非金属管道失效检测技术研究[J]. 河南科技, 2018(10): 71-73. |
SUN Wanmin, QIN Yun. Investigation on failure detection technology of non-metallic pipelines in oil and gas industry at home and abroad[J]. Henan Science and Technology, 2018(10): 71-73. | |
43 | AHMED O, WANG Xin, M-V TRAN, et al. Advancements in fiber-reinforced polymer composite materials damage detection methods: Towards achieving energy-efficient SHM systems[J]. Composites Part B: Engineering, 2021, 223: 109136. |
44 | FERREIRA C G, LOPES R T, DOS SANTOS T M P, et al. Non-destructive inspection of laminated pipe joints in polymeric composite material reinforced by fiberglass[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161154. |
45 | 王卫华, 金博, 邓宝刚, 等. 超声相控阵检测技术与常规超声波检测技术[J]. 设备管理与维修, 2022(18): 89-90. |
WANG Weihua, JIN Bo, DENG Baogang, et al. Ultrasonic phased array detection technology and conventional ultrasonic detection technology[J]. Plant Maintenance Engineering, 2022(18): 89-90. | |
46 | 彭善碧, 赵菂雯, 卢泓方, 等. 国外石油天然气行业非金属管道检测技术[J]. 中国安全生产科学技术, 2022, 18(12): 49-57. |
PENG Shanbi, ZHAO Diwen, LU Hongfang, et al. Detection technologies of non-metallic pipelines in oil and gas industry at abroad[J]. Journal of Safety Science and Technology, 2022, 18(12): 49-57. | |
47 | 李陈. 燃气聚乙烯管道定期检验应用超声相控阵技术的建议[J]. 城市燃气, 2020(2): 19-20. |
LI Chen. The advices on the periodic inspection of polyethylene gas pipeline applied ultrasonic phased array[J]. Urban Gas, 2020(2): 19-20. | |
48 | DE ALMEIDA P D, PEREIRA G R. Phased array inspection of glass fiber reinforced polymers pipeline joints[J]. Journal of Materials Research and Technology, 2019, 8(5): 4736-4740. |
49 | 董方旭, 凡丽梅, 赵付宝, 等. 空气耦合超声检测技术在复合材料检测中的应用[J]. 无损探伤, 2022, 46(1): 10-13. |
DONG Fangxu, FAN Limei, ZHAO Fubao, et al. Application of air coupled ultrasonic testing technology in composite testing[J]. Nondestructive Inspection, 2022, 46(1): 10-13. | |
50 | 凡丽梅, 董方旭, 段剑, 等. 快速无损检测技术在复合材料构件中应用与发展[J]. 南昌航空大学学报(自然科学版), 2021, 35(4): 32-38. |
FAN Limei, DONG Fangxu, DUAN Jian, et al. Application and development of faster non-deatructive testing technology in composite materials[J]. Journal of Nanchang Hangkong University (Natural Sciences), 2021, 35(4): 32-38. | |
51 | 袁久鑫, 秦训鹏. 激光超声无损检测技术研究进展[J]. 表面工程与再制造, 2019, 19(1): 30-34. |
YUAN Jiuxin, QIN Xunpeng. Research progress of laser ultrasonic nondestructive testing technology[J]. Surface Engineering & Remanufacturing, 2019, 19(1): 30-34. | |
52 | 李圣贤, 朱永凯, 王海涛, 等. 复合材料分层缺陷的激光超声检测[J]. 无损检测, 2019, 41(5): 1-5. |
LI Shengxian, ZHU Yongkai, WANG Haitao, et al. Laser ultrasonic testing of delamination in composite materials[J]. Nondestructive Testing Technologying, 2019, 41(5): 1-5. | |
53 | 洪晓斌, 冯进亨, 林沛嵩, 等. 非金属管道损伤的非线性超声导波延时检测定位方法[J]. 光学精密工程, 2016, 24(7): 1685-1693. |
HONG Xiaobin, FENG Jinheng, LIN Peisong, et al. Damage detection of nonmetallic pipe by using nonlinear ultrasonic guided wave with signal delay[J]. Optics and Precision Engineering, 2016, 24(7): 1685-1693. | |
54 | CRAWFORD SUSAN L, DOCTOR STEVEN R, CINSON ANTHONY D, et al. Preliminary assessment of NDE methods on inspection of HDPE butt fusion piping joints for lack of fusion[C]//Proceedings of ASME 2009 Pressure Vessels and Piping Conference. 2010: 219-224. |
55 | CHUMA E L, IANO Y, BARCELOS S, et al. Surface crack detection in pipelines using CSRR microwave based sensor[J]. Progress in Electromagnetics Research C, 2020, 105: 11-21. |
56 | GAO Yuki, RAVAN M, AMINEH R K. Fast, robust, and low-cost microwave imaging of multiple non-metallic pipes[J]. Electronics, 2021, 10(15): 1762. |
57 | AMINEH R K, RAVAN M, SHARMA R. Nondestructive testing of nonmetallic pipes using wideband microwave measurements[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(5): 1763-1772. |
58 | LAVIADA J, WU Baolong, GHASR M T, et al. Nondestructive evaluation of microwave-penetrable pipes by synthetic aperture imaging enhanced by full-wave field propagation model[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(4): 1112-1119. |
59 | RAHMAN M S UR, HARYONO A, ABOU-KHOUSA M A. Microwave non-destructive evaluation of glass reinforced epoxy and high density polyethylene pipes[J]. Journal of Nondestructive Evaluation, 2020, 39(1): 26. |
60 | ZHOU Xin, YANG Xiaoqing, SU Piqiang, et al. Detection and location of defects in non-metallic composites pipeline based on multi-resonant spoof surface plasmon polaritons[J]. IEEE Sensors Journal, 2022, 22(3): 2091-2098. |
61 | XIE Yi, YANG Xiaoqing, YUAN Jianping, et al. Non-destructive evaluation of pipes by microwave techniques and artificial neural networks[J]. Measurement Science and Technology, 2020, 31(12): 125402. |
62 | SOBKIEWICZ P, BIEŃKOWSKI P, BŁAŻEJEWSKI W. Microwave non-destructive testing for delamination detection in layered composite pipelines[J]. Sensors, 2021, 21(12): 4168. |
63 | CARRIGAN T D, FORREST B E, ANDEM H N, et al. Nondestructive testing of nonmetallic pipelines using microwave reflectometry on an in-line inspection robot[J]. IEEE Trans. Instrumentation and Measurement, 2019, 68(2): 586-594. |
64 | FARHAT M, AMER A M, CUNNINGHAM V B, et al. Numerical modeling for terahertz testing of non-metallic pipes[J]. AIP Advances, 2020, 10(9): 095112. |
65 | 鲁中歧, 崔俊国, 王魁涛, 等. 油气管道腐蚀预测方法研究[J]. 管道技术与设备, 2021(5): 47-52. |
LU Zhongqi, CUI Junguo, WANG Kuitao, et al. Research on corrosion prediction method of oil and gas pipeline[J]. Pipeline Technique and Equipment, 2021(5): 47-52. | |
66 | 李智, 郑佩根, 张胜军, 等. 《在用聚乙烯燃气埋地管道定期检验规则》的编制说明[J]. 科技创新与应用, 2018(28): 57-58. |
LI Zhi, ZHENG Peigen, ZHANG Shengjun, et al. Compilation description of regular inspection rules for in-service polyethylene gas buried pipelines[J]. Technology Innovation and Application, 2018(28): 57-58. | |
67 | 闫旭, 孙志鹏, 翟永军, 等. 公用燃气压力管道定期检验与风险评估实例[J]. 化工装备技术, 2023, 44(1): 75-78. |
YAN Xu, SUN Zhipeng, ZHAI Yongjun, et al. Examples of regular inspection and risk assessment of public gas pressure pipeline[J]. Chemical Equipment Technology, 2023, 44(1): 75-78. | |
68 | 袁亮, 麻慧博, 沈晓燕, 等. 新疆油田非金属管道风险评价[J]. 数学的实践与认识, 2016, 46(10): 112-119. |
YUAN Liang, MA Huibo, SHEN Xiaoyan, et al. Risk assessment of nonmetallic pipeline in Xinjiang oilfield[J]. Mathematics in Practice and Theory, 2016, 46(10): 112-119. | |
69 | 国蓉, 吴君. 模糊小波神经网络在现役油田玻璃钢管的运行风险评价[J]. 西安工业大学学报, 2012, 32(12): 980-986. |
GUO Rong, WU Jun. Risk assessment of in-service FRP pipe security in oilfield based on fuzzy wavelet neural network[J]. Journal of Xi’an Technological University, 2012, 32(12): 980-986. | |
70 | BAI Yiping, WU Jiansong, REN Qingru, et al. A BN-based risk assessment model of natural gas pipelines integrating knowledge graph and DEMATEL[J]. Process Safety and Environmental Protection, 2023, 171: 640-654. |
71 | 赵德银, 杨静, 李文升, 等. 流动沙丘地区油气集输用柔性复合管安全评价方法[J]. 油气储运, 2021, 40(8): 880-887. |
ZHAO Deyin, YANG Jing, LI Wensheng, et al. Safety evaluation method for flexible composite gathering and transmission pipelines of oil and gas in shifting dune areas[J]. Oil & Gas Storage and Transportation, 2021, 40(8): 880-887. | |
72 | 毛天祥. 复合材料的现状与发展: 第十一届全国复合材料学术会议论文集[M]. 合肥: 中国科学技术大学出版社, 2000: 645-649. |
MAO Tianxiang. Present situation and development of composite materials: Proceedings of the 11th National Conference on Composite Materials[M]. Hefei: University of Science and Technology of China Press, 2000: 645-649. | |
73 | MISTRY J, GIBSON A G, WU Y S. Failure of composite cylinders under combined external pressure and axial loading[J]. Composite Structures, 1992, 22(4):193-200. |
74 | 张元盛, 刘涛, 龙岩, 等. 拉伸作用下复合材料柔性管失效预测[J]. 石油机械, 2023, 51(1): 61-69. |
ZHANG Yuansheng, LIU Tao, LONG Yan, et al. Failure prediction of composite flexible pipes under tension[J]. China Petroleum Machinery, 2023, 51(1): 61-69. | |
75 | 王桂英. 高压玻璃钢管成型工艺及失效预测研究[D]. 哈尔滨: 东北林业大学, 2013. |
WANG Guiying. Molding process and failure prediction research for high pressure FRP pipe[D]. Harbin: Northeast Forestry University, 2013. | |
76 | RAFIEE R, MAZHARI B. Evaluating long-term performance of glass fiber reinforced plastic pipes subjected to internal pressure[J]. Construction and Building Materials, 2016, 122: 694-701. |
77 | 高博, 杨志勋, 吴尚华, 等. 考虑间隙影响的海洋非黏结柔性管道内压失效预测分析研究[J]. 中国造船, 2018, 59(3): 60-71. |
GAO Bo, YANG Zhixun, WU Shanghua, et al. Study on prediction methods of burst failure for marine unbounded flexible pipes considering clearance between pressure armors[J]. Shipbuilding of China, 2018, 59(3): 60-71. | |
78 | 张亚, 王阳阳, 李昌良, 等. 内压作用下玻纤增强柔性管损伤失效预测[J]. 工程力学, 2023, 40(9): 238-246. |
ZHANG Ya, WANG Yangyang, LI Changliang, et al. Failure pridiction of glass fiber-reinforced flexible pipes under internal pressure[J]. Engineering Mechanics, 2023, 40(9): 238-246. | |
79 | YOON Sung Ho, Jin Oh OH. Prediction of long term performance for GRP pipes under sustained internal pressure[J]. Composite Structures, 2015, 134: 185-189. |
80 | RAFIEE R, MAZHARI B. Simulation of the long-term hydrostatic tests on glass fiber reinforced plastic pipes[J]. Composite Structures, 2016, 136: 56-63. |
81 | RAFIEE R. Stochastic fatigue analysis of glass fiber reinforced polymer pipes[J]. Composite Structures, 2017, 167: 96-102. |
82 | YI A J, MAJID M A, NOR A M, et al. Failure prediction of ±55° glass/epoxy composite pipes using system identification modelling[J]. Journal of Physics: Conference Series, 2017, 908: 012012. |
83 | ANG J Y, ABDUL MAJID M S, MOHD NOR A, et al. First-ply failure prediction of glass/epoxy composite pipes using an artificial neural network model[J]. Composite Structures, 2018, 200: 579-588. |
84 | AL-ATHEL K S, ALHASAN M M, ALOMARI A S, et al. Damage characterization of embedded defects in composites using a hybrid thermography, computational, and artificial neural networks approach[J]. Heliyon, 2022, 8(8): e10063. |
85 | 吴君. 油田用非金属管适用性评价技术研究[D]. 西安: 西安工业大学, 2013. |
WU Jun. Research on fitness-for-service assessment of oilfield non-metallic pipeline[D]. Xi’an: Xi’an Technological University, 2013. | |
86 | 聂亚楠, 沈浩, 谷坤鹏, 等. 玻璃钢复合材料耐海水腐蚀性能及抗Cl-渗透寿命预测[J]. 中国腐蚀与防护学报, 2016, 36(4): 357-362. |
NIE Yanan, SHEN Hao, GU Kunpeng, et al. Seawater corrosion resistance and service life prediction of glass fiber reinforced plastic composites[J]. Journal of Chinese Society for Corrosion and Protection, 2016, 36(4): 357-362. | |
87 | 齐国权, 李循迹, 戚东涛, 等. 一种非金属管寿命预测方法: CN 201410721347[P]. 2015-03-25. |
QI Guoquan, LI Xunji, QI Dongtao, et al. A method for life prediction of nonmetallic pipes: CN 201410721347[P]. 2015-03-25. | |
88 | PODUŠKA J, HUTAŘ P, KUČERA J, et al. Residual stress in polyethylene pipes[J]. Polymer Testing, 2016, 54: 288-295. |
89 | FISCHER J, FREUDENTHALER P J, BRADLER P R, et al. Novel test system and test procedure for fatigue crack growth testing with cracked round bar (CRB) specimens[J]. Polymer Testing, 2019, 78: 105998. |
90 | 王志刚, 钟文轩, 杨波, 等. 聚乙烯管材寿命预测方法研究进展[J]. 塑料工业, 2019, 47(S1): 12-15. |
WANG Zhigang, ZHONG Wenxuan, YANG Bo, et al. Research progress on life prediction methods of polyethylene pipes[J]. China Plastics Industry, 2019, 47(S1): 12-15. | |
91 | 杨圳, 王桂棠, 翟伟, 等. 聚乙烯管材的寿命预测方法[J]. 塑料, 2021, 50(4): 129-134. |
YANG Zhen, WANG Guitang, ZHAI Wei, et al. Lifetime prediction method for polyethylene pipe[J]. Plastics, 2021, 50(4): 129-134. | |
92 | LIAO Dandan, HUANG Biao, LIU Jie, et al. Failure analysis of glass fiber reinforced composite pipe for high pressure sewage transport[J]. Engineering Failure Analysis, 2023, 144: 106938. |
93 | ZHANG Xuemin, LI Houbu, QI Dongtao, et al. Failure analysis of anticorrosion plastic alloy composite pipe used for oilfield gathering and transportation[J]. Engineering Failure Analysis, 2013, 32: 35-43. |
94 | 崔先超, 刘文斌, 郑玉申. 玻璃钢管制造过程中的质量控制[J]. 设备管理与维修, 2022(13): 120-123. |
CUI Xianchao, LIU Wenbin, ZHENG Yushen. Quality control in the manufacturing process of glass steel pipe[J]. Plant Maintenance Engineering, 2022(13): 120-123. | |
95 | DING H, ZHANG A B, LI H B, et al. Analysis of bulge failure of steel wire-reinforced thermoplastic composite pipe[J]. Engineering Failure Analysis, 2023, 148: 107232. |
96 | QI Guoquan, YAN Hongxia, QI Dongtao, et al. Analysis of cracks in polyvinylidene fluoride lined reinforced thermoplastic pipe used in acidic gas fields[J]. Engineering Failure Analysis, 2019, 99: 26-33. |
97 | 安广辉. 非金属管道标准介绍及在工业项目中的应用[J]. 化工设备与管道, 2019, 56(5): 64-71. |
AN Guanghui. Introduction of non-metallic piping standard and its application in industries[J]. Process Equipment & Piping, 2019, 56(5): 64-71. | |
98 | KONG Lushi, LI Houbu, WEI Bin, et al. Torsion-induced failure of a reinforced thermoplastic pipe used in a gas lift system[J]. Engineering Failure Analysis, 2023, 144: 106980. |
99 | KONG Lushi, LI Houbu, QI Dongtao, et al. Failure analysis of a reinforced thermoplastic pipe used in an oil transportation system[J]. Engineering Failure Analysis, 2022, 138: 106403. |
100 | 刘华. 非金属管道及技术在油田中的应用现状及对策分析[J]. 当代化工研究, 2018(10): 51-52. |
LIU Hua. Application status of nonmetallic pipelines and technologies in oilfields and countermeasures analysis[J]. Modern Chemical Research, 2018(10): 51-52. | |
101 | BOBBA S, LEMAN Z, ZAINUDDIN E S, et al. Failures analysis of E-glass fibre reinforced pipes in oil and gas industry: A review[J]. IOP Conference Series: Materials Science and Engineering, 2017, 217: 012004. |
102 | 黄鑫, 霍富永, 杜鑫, 等. 非金属输油管道静电起电及防护研究[J]. 石油化工高等学校学报, 2019, 32(6): 1-7. |
HUANG Xin, HUO Fuyong, DU Xin, et al. Electrostatic electrification and electrostatic protection of nonmetallic oil pipeline[J]. Journal of Petrochemical Universities, 2019, 32(6): 1-7. | |
103 | MIAO Yuchen, CHEN Hailong, CUI Gang, et al. Preparation of new conductive organic coating for the fiber reinforced polymer composite oil pipe[J]. Surface and Coatings Technology, 2021, 412: 127017. |
104 | 夏蓉. 非金属管道在大庆油田应用的适应性及运维措施[J]. 油气田地面工程, 2019, 38(11): 12-14. |
XIA Rong. Adaptability and operation & maintenance measures of non-metallic pipeline in Daqing oilfield[J]. Oil-Gas Field Surface Engineering, 2019, 38(11): 12-14. | |
105 | 韩乐. 非金属管道的维护措施[J]. 油气田地面工程, 2008, 27(4): 72. |
HAN Le. Maintenance measures of non-metallic pipeline[J]. Oil-Gasfield Surface Engineering, 2008, 27(4): 72. | |
106 | 王勇, 周立国, 李明. 非金属油气管道无损检测与适用性评价技术现状[J]. 塑料工业, 2022, 50(S1): 1-4. |
WANG Yong, ZHOU Liguo, LI Ming. Latest development of nondestructive testing and fitness-for-service evaluation on non-metallic pipeline[J]. China Plastics Industry, 2022, 50(S1): 1-4. | |
107 | 何树全, 张宝良, 刘博昱, 等. 油田埋地非金属管道完整性管理技术探讨[J]. 油气田地面工程, 2019, 38(S1): 123-126. |
HE Shuquan, ZHANG Baoliang, LIU Boyu, et al. Discussion on the integrity management technology of oilfield buried non-metallic pipeline[J]. Oil-Gas Field Surface Engineering, 2019, 38(S1): 123-126. | |
108 | 张杨. 探究油田埋地非金属管道完整性管理技术[J]. 中国石油和化工标准与质量, 2022, 42(8): 191-193. |
ZHANG Yang. Explore the integrity management technology of buried nonmetallic pipelines in oil fields[J]. China Petroleum and Chemical Standard and Quality, 2022, 42(8): 191-193. |
[1] | 戚志程, 马润梅, 李双喜, 刘丽静, 闫欣欣. 高压法兰内开孔金属O形环密封性能及变形失效分析[J]. 化工进展, 2023, 42(S1): 166-174. |
[2] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[3] | 乔元, 仇畅, 钱锦远, 干瑞彬, 徐春明, 金志江. 笼式调节阀的冲蚀磨损与空蚀[J]. 化工进展, 2023, 42(10): 5111-5120. |
[4] | 赵宇航, 李依帆. 铠装硅酸钾胶黏剂在特殊工况下的绝缘失效分析[J]. 化工进展, 2020, 39(S2): 300-304. |
[5] | 王海清, 刘荫, 高智泉, 眭文祺. 石化装置改扩建对火炬系统负荷影响的量化分析[J]. 化工进展, 2020, 39(9): 3842-3848. |
[6] | 黄健. 城市安全生产风险评估体系构建及存在问题[J]. 化工进展, 2019, 38(s1): 288-292. |
[7] | 蒋凤易, 田蒙奎, 郝立通, 邵珠花, 杨颖, 罗祥丽. 酚醛树脂的改性及其浸渍石墨性能[J]. 化工进展, 2018, 37(06): 2316-2322. |
[8] | 章博, 赵日彬. 失效情景下气体探测器多目标布置优化[J]. 化工进展, 2018, 37(03): 867-874. |
[9] | 陈国华, 祁帅, 贾梅生, 胡昆. 化工容器碎片引发多米诺效应事故研究历程与展望[J]. 化工进展, 2017, 36(11): 4308-4317. |
[10] | 贾梅生, 陈国华. 火灾环境液化石油气卧罐动态可靠性分析[J]. 化工进展, 2017, 36(09): 3231-3236. |
[11] | 柳伟, 潘旭海. 基于风险分析的性能化安全设计方法研究[J]. 化工进展, 2016, 35(S2): 103-109. |
[12] | 石荣雪, 张适宜, 张胜寒. 基于大数据分析的电厂锅炉水冷壁失效研究[J]. 化工进展, 2016, 35(09): 2640-2646. |
[13] | 涂善东. 安全4.0:过程工业装置安全技术展望[J]. 化工进展, 2016, 35(06): 1646-1651. |
[14] | 周 华,李秀喜,钱 宇. 石油化工过程安全技术研究进展 [J]. 化工进展, 2008, 27(10): 1498-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |