化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1109-1117.DOI: 10.16085/j.issn.1000-6613.2023-0469
• 化工过程与装备 • 上一篇
杨晨阳1(), 朱怀工2, 蔡旺锋1, 张敏卿1, 王燕1(), 张英3, 陈建兵3
收稿日期:
2023-03-27
修回日期:
2023-05-05
出版日期:
2024-03-10
发布日期:
2024-04-11
通讯作者:
王燕
作者简介:
杨晨阳(1999—),男,硕士研究生,研究方向为计算流体力学。E-mail:2021207495@tju.edu.cn。
YANG Chenyang1(), ZHU Huaigong2, CAI Wangfeng1, ZHANG Minqing1, WANG Yan1(), ZHANG Ying3, CHEN Jianbing3
Received:
2023-03-27
Revised:
2023-05-05
Online:
2024-03-10
Published:
2024-04-11
Contact:
WANG Yan
摘要:
在“碳中和”“碳达峰”的战略目标下,过程强化是实现绿色生产的关键技术之一。循环精馏作为一种基于过程强化理论的新型精馏技术,通过采用特定塔内构件和控制方案而改变传统精馏塔内气相和液相的流动方式,实现气液两相分别呈周期性独立运动SPM的操作模式。循环精馏技术理论上可实现塔内液相返混为零,使分离推动力最大化,具有处理能力大、能耗低及分离性能好等优点。相较传统精馏操作,循环精馏技术可使单板效率提高到140%~300%,能耗降低20%~30%。本文针对循环精馏技术的研究背景、工作原理、工业应用、两种专用塔板(Maleta塔板和COPS塔板)以及循环精馏技术在隔板塔和反应精馏等过程强化技术中的应用进行了综合论述。论文对循环精馏技术的控制方法和内构件研究中存在的问题进行了总结,并对循环精馏技术的发展方向和前景进行了展望。
中图分类号:
杨晨阳, 朱怀工, 蔡旺锋, 张敏卿, 王燕, 张英, 陈建兵. 循环精馏技术研究进展[J]. 化工进展, 2024, 43(3): 1109-1117.
YANG Chenyang, ZHU Huaigong, CAI Wangfeng, ZHANG Minqing, WANG Yan, ZHANG Ying, CHEN Jianbing. Research progress of cyclic distillation technology[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1109-1117.
1 | PETLYUK F B. Distillation theory and its application to optimal design of separation units[M]. Cambridge, UK: Cambridge University Press, 2004. |
2 | 王素贤, 何银凤, 高亚丽, 等. 四组分隔板塔用于三氯氢硅分离的模拟研究[J]. 化学工业与工程, 2018, 35(5): 72-79. |
WANG Suxian, HE Yinfeng, GAO Yali, et al. Simulation of four-product dividing wall columns for the separation of trichlorosilane[J]. Chemical Industry and Engineering, 2018, 35(5): 72-79. | |
3 | 付强, 王建刚, 张吉波. 特殊精馏的应用及进展[J]. 山东化工, 2017, 46(24): 67-68. |
FU Qiang, WANG Jiangang, ZHANG Jibo. The application and development of special distillation[J]. Shandong Chemical Industry, 2017, 46(24): 67-68. | |
4 | 江润玲, 邵明水, 王乾. 超重力精馏分离技术研究进展[J]. 山东化工, 2022, 51(21): 122-123. |
JIANG Runling, SHAO Mingshui, WANG Qian. Research progress of high gravity distillation separation technology[J]. Shandong Chemical Industry, 2022, 51(21): 122-123. | |
5 | KISS A A. Distillation technology—Still young and full of breakthrough opportunities[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(4): 479-498. |
6 | Hyuk Soo SON, SHAHZAD M W, GHAFFOUR N, et al. Pilot studies on synergetic impacts of energy utilization in hybrid desalination system: Multi-effect distillation and adsorption cycle (MED-AD)[J]. Desalination, 2020, 477: 114266. |
7 | LU Kangjia, CHEN Yuanmiaoliang, CHUNG Tai-Shung. Design of omniphobic interfaces for membrane distillation—A review[J]. Water Research, 2019, 162: 64-77. |
8 | REAY D A, RAMSHAW C, HARVEY A. Process intensification: Engineering for efficiency, sustainability and flexibility[M]. 2nd ed. Oxford: Butterworth-Heinemann, 2013. |
9 | VAN GERVEN T, STANKIEWICZ A. Structure, energy, synergy, time—The fundamentals of process intensification[J]. Industrial & Engineering Chemistry Research, 2009, 48(5): 2465-2474. |
10 | JIANG Zheyu, AGRAWAL R. Process intensification in multicomponent distillation: A review of recent advancements[J]. Chemical Engineering Research and Design, 2019, 147: 122-145. |
11 | LI Chunli, DUAN Cong, FANG Jing, et al. Process intensification and energy saving of reactive distillation for production of ester compounds[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1307-1323. |
12 | HAN Wentao, HAN Zhenwei, GAO Xuechao, et al. Inter-integration reactive distillation with vapor permeation for ethyl levulinate production: Equipment development and experimental validating[J]. AIChE Journal, 2022, 68(2): e17441. |
13 | ZHU Jiaxing, HAO Lin, WEI Hongyuan. Sustainable concept design including economic, environment and inherent safety criteria: Process intensification-reactive pressure swing distillation[J]. Journal of Cleaner Production, 2021, 314: 127852. |
14 | CONTRERAS-ZARAZÚA G, JASSO-VILLEGAS M E, RAMÍREZ-MÁRQUEZ C, et al. Design and intensification of distillation processes for furfural and co-products purification considering economic, environmental, safety and control issues[J]. Chemical Engineering and Processing-Process Intensification, 2021, 159: 108218. |
15 | WANG Yubin, LIU Xiao, GE Jing, et al. Distillation performance in a novel minichannel membrane distillation device[J]. Chemical Engineering Journal, 2023, 462: 142335. |
16 | 林子昕, 田伟, 安维中. 热泵辅助变压精馏分离碳酸二甲酯/甲醇工艺及系统模拟优化[J]. 化工进展, 2022, 41(11): 5722-5730. |
LIN Zixin, TIAN Wei, AN Weizhong. Separation of dimethyl carbonate/methanol via heat pump assisted pressure swing distillation process and system simulation optimization[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5722-5730. | |
17 | 王晓达, 陈宇, 王清莲, 等. 醚化反应精馏研究进展[J]. 化工进展, 2021, 40(4): 1797-1811. |
WANG Xiaoda, CHEN Yu, WANG Qinglian, et al. Review on etherification by reactive distillation[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1797-1811. | |
18 | MALETA V N, KISS A A, TARAN V M, et al. Understanding process intensification in cyclic distillation systems[J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(7): 655-664. |
19 | BÎLDEA C S, PĂTRUŢ C, JØRGENSEN S B, et al. Cyclic distillation technology—A mini-review[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(5): 1215-1223. |
20 | ZHAO Hongkang, LI Qunsheng, YU Gangqiang, et al. Performance analysis and quantitative design of a flow-guiding sieve tray by computational fluid dynamics[J]. AIChE Journal, 2019, 65(5): e16563. |
21 | SHENASTAGHI F K, ROSHDI S, KASIRI N, et al. CFD simulation and experimental validation of bubble cap tray hydrodynamics[J]. Separation and Purification Technology, 2018, 192: 110-122. |
22 | ABBASNIA S, NASRI Z, SHAFIEYOUN V, et al. Nye tray vs sieve tray: A comparison based on computational fluid dynamics and tray efficiency[J]. The Canadian Journal of Chemical Engineering, 2021, 99(S1): S681-S692. |
23 | LEE Heecheon, SEO Chaeyeong, LEE Minyong, et al. CFD-aided design of internally heat-integrated pressure-swing distillation for ternary azeotropic separation constrained by pinch pressure[J]. Applied Thermal Engineering, 2021, 195: 117198. |
24 | 胡雨奇, 李晓冉, 李春利. 隔壁塔中新型气相分配器的多相流模拟及控制机制[J]. 中国炼油与石油化工, 2020, 22(3): 109. |
HU Yuqi, LI Xiaoran, LI Chunli. Multiphase flow simulation of new vapor distributor in dividing wall column and control mechanism[J]. China Petroleum Processing & Petrochemical Technology, 2020, 22(3): 109. | |
25 | OLUJIĆ Ž, JÖDECKE M, SHILKIN A, et al. Equipment improvement trends in distillation[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(6): 1089-1104. |
26 | STICHLMAIR J, KLEIN H, REHFELDT S. Distillation: Principles and practice[M]. New York: John Wiley & Sons, 2021. |
27 | KISS A, A, BÎLDEA C S. Revive your columns with cyclic distillation[J]. Chemical Engineering Progress, 2015, 111(12): 21-27. |
28 | PĂTRUŢ C, BÎLDEA C S, LIŢĂ I, et al. Cyclic distillation—Design, control and applications[J]. Separation and Purification Technology, 2014, 125: 326-336. |
29 | KISS A A, FLORES LANDAETA S J, ZONDERVAN E. Cyclic distillation—Towards energy efficient binary distillation[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2012: 697-701. |
30 | KISS A A, MALETA V. Cyclic distillation technology—A new challenger in fluid separations[J]. Chemical Engineering Transactions, 2018, 69: 823-828. |
31 | KISS A A, MALETA V N, SHEVCHENKO A, et al. Cyclic distillation—A novel enhanced technology for processing hydrocarbons and their derivatives[J]. Hydrocarbon Processing, 2021, 1: 33-38. |
32 | 赵培, 张艳梅, 熊丹柳, 等. 浅述流体力学因素对精馏塔塔板效率的影响[J]. 化肥设计, 2010, 48(1): 10-12. |
ZHAO Pei, ZHANG Yanmei, XIONG Danliu, et al. Briefly describing influence of hydrodynamic factor on efficiency of fractionating tower tray[J]. Chemical Fertilizer Design, 2010, 48(1): 10-12. | |
33 | GASKA R A, CANNON M R. Controlled cycling distillation in sieve and screen plate towers[J]. Industrial & Engineering Chemistry, 1961, 53(8): 630-631. |
34 | MCWHIRTER J R, CANNON M R. Controlled cycling distillation in a packed-plate column[J]. Industrial & Engineering Chemistry, 1961, 53(8): 632-634. |
35 | SCHRODT V N, SOMMERFELD J T, MARTIN O R, et al. Plant-scale study of controlled cyclic distillation[J]. Chemical Engineering Science, 1967, 22(5): 759-767. |
36 | FURZER I A. Steady state flow distributions in a plate column fitted with a manifold[J]. Chemical Engineering Science, 1980, 35(6): 1291-1298. |
37 | SZONYI L, FURZER I A. Periodic cycling of distillation columns using a new tray design[J]. AIChE Journal, 1985, 31(10): 1707-1713. |
38 | FURZER I A. Mass transfer in a periodically cycled plate column fitted with a manifold[J]. Chemical Engineering Science, 1980, 35(6): 1299-1305. |
39 | DUFFY G J, FURZER I A. Periodic cycling of plate columns: Analytical solution [J]. Chemical Engineering Science, 1978, 33(7): 897-904. |
40 | GEL’PERIN N I, POLOTSKII L M, POTAPOV T G. Opfration of a bubble-cap fractionating column in a cyclic regime[J]. Chemical and Petroleum Engineering, 1975, 11(8): 707-709. |
41 | PĂTRUŢ C, BÎLDEA C S, KISS A A. Catalytic cyclic distillation—A novel process intensification approach in reactive separations[J]. Chemical Engineering and Processing: Process Intensification, 2014, 81: 1-12. |
42 | MALETA B, MALETA O. Mass-exchange contact device: US8158073[P]. 2012-04-17. |
43 | MALETA B, MALETA O. Mass-exchange contact device: US12/225575[P]. 2009-06-11. |
44 | TOFTEGÅRD B, CLAUSEN C H, JØRGENSEN S B, et al. New realization of periodic cycled separation[J]. Industrial & Engineering Chemistry Research, 2016, 55(6): 1720-1730. |
45 | NIELSEN A A R, ÁLVAREZ E C, CARLSEN N, et al. Analysis and evaluation of periodic separations using cops trays[J]. Chemical Engineering Transactions (CET Journal), 2018, 69: 733-738. |
46 | MALETA B V, SHEVCHENKO A, BEDRYK O, et al. Pilot-scale studies of process intensification by cyclic distillation[J]. AIChE Journal, 2015, 61(8): 2581-2591. |
47 | MALETA V N, BEDRYK O, SHEVCHENKO A, et al. Pilot-scale experimental studies on ethanol purification by cyclic stripping[J]. AIChE Journal, 2019, 65(9): e16673. |
48 | BULII Y, KUTS A, YURYK I, et al. Improving the efficiency of mass-exchange between liquid and steam in rectification columns of cyclic action[J]. Ukrainian Food Journal, 2021, 10(2): 346-360. |
49 | BEDRYK O, SHEVCHENKO A, MISHCHENKO O S, et al. Industrial experience in using cyclic distillation columns for food grade alcohol purification[J]. Chemical Engineering Research and Design, 2023, 192: 102-109. |
50 | KISS A A. Novel catalytic reactive distillation processes for a sustainable chemical industry[J]. Topics in Catalysis, 2019, 62(17): 1132-1148. |
51 | WANKAT P C. Continuous cyclic distillation for binary solvent exchange: The batch stack[J]. Industrial & Engineering Chemistry Research, 2018, 57(47): 16077-16083. |
52 | RASMUSSEN J B, MANSOURI S S, ZHANG Xiangping, et al. Analysing separation and reaction stage performance in a reactive cyclic distillation process[J]. Chemical Engineering and Processing-Process Intensification, 2021, 167: 108515. |
53 | MATSUBARA M, WATANABE N, KURIMOTO H. Binary periodic distillation scheme with enhanced energy conservation—Ⅰ: Principle and computer simulation [J]. Chemical Engineering Science, 1985, 40(5): 715-721. |
54 | PĂTRUŢ C, UDREA E C, BILDEA C S. Application of cyclic operation to acetic/water separation[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2019: 1351-1356. |
55 | PĂTRUŢ C, UDREA E C, BILDEA C S. Separation of water-acetic acid mixtures by cyclic distillation[J]. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 2018, 80(4): 49-66. |
56 | NIESBACH A, FUHRMEISTER R, KELLER T, et al. Esterification of acrylic acid and n-butanol in a pilot-scale reactive distillation column—Experimental investigation, model validation, and process analysis[J]. Industrial & Engineering Chemistry Research, 2012, 51(50): 16444-16456. |
57 | RASMUSSEN J B, STEVNSBORG M, MANSOURI S S, et al. Quantitative metrics for evaluating reactive cyclic distillation performance[J]. Chemical Engineering and Processing-Process Intensification, 2022, 174: 108843. |
[1] | 苏梦军, 刘剑, 辛靖, 陈禹霏, 张海洪, 韩龙年, 朱元宝, 李洪宝. 气液混合强化在固定床加氢过程中的应用进展[J]. 化工进展, 2024, 43(1): 100-110. |
[2] | 翟霖晓, 崔怡洲, 李成祥, 石孝刚, 高金森, 蓝兴英. 微气泡发生器的研究与应用进展[J]. 化工进展, 2024, 43(1): 111-123. |
[3] | 田时泓, 郭磊, 李娜, 宇文超, 许磊, 郭胜惠, 巨少华. 微波加热强化闪蒸工艺的科学基础及发展趋势[J]. 化工进展, 2024, 43(1): 135-144. |
[4] | 王立华, 蔡苏杭, 江文涛, 罗倩, 罗勇, 陈建峰. 微纳尺度气液传质强化油品催化加氢反应[J]. 化工进展, 2024, 43(1): 19-33. |
[5] | 张梁, 马骥, 贺高红, 姜晓滨, 肖武. 膜调控的头孢呋辛钠溶析-冷却耦合结晶成核介稳区测定及分析[J]. 化工进展, 2024, 43(1): 260-268. |
[6] | 刘锋, 褚阳, 李会峰, 李明丰, 朱玫, 张润强. 汽油中大分子硫醇催化转化反应过程强化[J]. 化工进展, 2024, 43(1): 279-284. |
[7] | 王雄, 杨振宁, 李越, 申威峰. 基于化工机理与工业数据孪生建模的甲醇精馏过程优化[J]. 化工进展, 2024, 43(1): 310-319. |
[8] | 袁谅, 从海峰, 李鑫钢. 微通道内气液流动与传质特性的研究进展[J]. 化工进展, 2024, 43(1): 34-48. |
[9] | 冯瑶光, 陈奎, 赵佳伟, 王娜, 王霆, 黄欣, 周丽娜, 郝红勋. 溶液结晶过程强化[J]. 化工进展, 2024, 43(1): 87-99. |
[10] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[11] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[12] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[13] | 张帆, 陶少辉, 陈玉石, 项曙光. 基于改进恒热传输模型的精馏模拟初始化[J]. 化工进展, 2023, 42(9): 4550-4558. |
[14] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[15] | 陈伟良, 高鑫, 李洪, 李鑫钢. 泡沫碳化硅波纹规整填料骨架结构对其传质性能的影响机理[J]. 化工进展, 2023, 42(5): 2289-2297. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 450
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 541
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |