化工进展 ›› 2024, Vol. 43 ›› Issue (1): 87-99.DOI: 10.16085/j.issn.1000-6613.2023-1146
冯瑶光1(), 陈奎1, 赵佳伟1, 王娜1, 王霆1, 黄欣1, 周丽娜1, 郝红勋1,2()
收稿日期:
2023-07-09
修回日期:
2023-08-17
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
郝红勋
作者简介:
冯瑶光(1997—),男,博士研究生,研究方向为工业结晶。E-mail:2019207028@tju.edu.cn。
基金资助:
FENG Yaoguang1(), CHEN Kui1, ZHAO Jiawei1, WANG Na1, WANG Ting1, HUANG Xin1, ZHOU Lina1, HAO Hongxun1,2()
Received:
2023-07-09
Revised:
2023-08-17
Online:
2024-01-20
Published:
2024-02-05
Contact:
HAO Hongxun
摘要:
溶液结晶是化学工业中最重要的产品分离、纯化和功能化技术之一,广泛应用于医药、食品、精细化工等领域。溶液结晶中晶体的成核和生长过程将决定最终晶体产品的晶型、晶习、粒度、纯度等关键质量指标。因此,对溶液结晶过程,尤其是晶体成核和生长过程进行强化既有利于提高过程效率,也有助于满足晶体产品不同的性能需求。本文围绕晶体成核和生长强化这一关键问题,从受限空间、物理场、添加剂和模板剂等方面系统综述了溶液结晶中的过程强化策略。探讨了各种过程强化策略的优点和局限性,并总结了溶液结晶过程强化策略的主要研究重点和发展前景。
中图分类号:
冯瑶光, 陈奎, 赵佳伟, 王娜, 王霆, 黄欣, 周丽娜, 郝红勋. 溶液结晶过程强化[J]. 化工进展, 2024, 43(1): 87-99.
FENG Yaoguang, CHEN Kui, ZHAO Jiawei, WANG Na, WANG Ting, HUANG Xin, ZHOU Lina, HAO Hongxun. Process intensification of solution crystallization[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 87-99.
溶液结晶物系 | 存在问题 | 强化方法 | 强化效果 | 文献来源 |
---|---|---|---|---|
甘氨酸 | 传统结晶的时间长达数小时 | 微乳液 | 结晶时间缩短至几分钟,实现对形状、尺寸和尺寸分布的控制 | [ |
颜料红146 | 传统结晶的晶体尺寸较大 | 微乳液 | 粒径小一个数量级且更均匀,满足喷墨印刷要求 | [ |
度鲁特韦钠 | 管式结晶的晶体尺寸过大和晶体聚集导致堵塞 | 微流体耦合超声 | 与市售产品相比,中值粒径和粒径分布分别减少了30%和60% | [ |
溶菌酶 | 晶体成核和生长速率较慢 | 微流体耦合超声 | 成核速率增加三倍,晶体尺寸更均匀 | [ |
表1 部分溶液结晶的限域空间强化策略及强化效果
溶液结晶物系 | 存在问题 | 强化方法 | 强化效果 | 文献来源 |
---|---|---|---|---|
甘氨酸 | 传统结晶的时间长达数小时 | 微乳液 | 结晶时间缩短至几分钟,实现对形状、尺寸和尺寸分布的控制 | [ |
颜料红146 | 传统结晶的晶体尺寸较大 | 微乳液 | 粒径小一个数量级且更均匀,满足喷墨印刷要求 | [ |
度鲁特韦钠 | 管式结晶的晶体尺寸过大和晶体聚集导致堵塞 | 微流体耦合超声 | 与市售产品相比,中值粒径和粒径分布分别减少了30%和60% | [ |
溶菌酶 | 晶体成核和生长速率较慢 | 微流体耦合超声 | 成核速率增加三倍,晶体尺寸更均匀 | [ |
溶液结晶物系 | 存在问题 | 强化方法 | 强化效果 | 文献来源 |
---|---|---|---|---|
溶菌酶 | 晶体成核和生长速率较慢,传统结晶的 晶体粒径分布较宽 | 超声场 | 在较低浓度下的成核诱导期缩短到1/10,晶体粒径分布更窄,形貌更均匀 | [ |
氨苄西林 | 传统结晶形成针状晶体,导致压片困难 | 超声场 | 形成片状晶体,成核诱导时间缩短到1/8,产率提高约4.75倍 | [ |
溶菌酶 | 晶体成核和生长速率较慢 | 电场 | 成核速率增加,结晶产率提高约2.6倍 | [ |
溶菌酶 | 晶体成核和生长速率较慢 | 激光 | 结晶时间缩短到1/20 | [ |
表2 部分溶液结晶的物理场强化策略及强化效果
溶液结晶物系 | 存在问题 | 强化方法 | 强化效果 | 文献来源 |
---|---|---|---|---|
溶菌酶 | 晶体成核和生长速率较慢,传统结晶的 晶体粒径分布较宽 | 超声场 | 在较低浓度下的成核诱导期缩短到1/10,晶体粒径分布更窄,形貌更均匀 | [ |
氨苄西林 | 传统结晶形成针状晶体,导致压片困难 | 超声场 | 形成片状晶体,成核诱导时间缩短到1/8,产率提高约4.75倍 | [ |
溶菌酶 | 晶体成核和生长速率较慢 | 电场 | 成核速率增加,结晶产率提高约2.6倍 | [ |
溶菌酶 | 晶体成核和生长速率较慢 | 激光 | 结晶时间缩短到1/20 | [ |
图11 有、无DNA添加下溶菌酶结晶的晶体图像[98](a)不加小牛DNA;(b)加入1.0mg/mL小牛DNA;(c)加入5.0mg/mL小牛DNA;(d)不加鲑鱼DNA;(e)加入10mg/mL鲑鱼DNA;(f)加入20mg/mL小牛DNA;(g)不加鲱鱼DNA;(h)加入10mg/mL鲱鱼DNA;(i)加入20mg/mL鲱鱼DNA
溶液结晶物系 | 存在问题 | 添加剂 | 强化效果 | 文献来源 |
---|---|---|---|---|
胰岛素 | 晶体成核和生长缓慢,结晶控制困难 | 氨基酸 | 晶体成核概率提高4~7倍 | [ |
溶菌酶 | 晶体成核和生长速率较慢 | 离子液体 | 成核速率提高1~3倍 | [ |
溶菌酶 | 晶体成核和生长速率较慢 | 动物DNA | 晶体成核概率提高2.8~33倍 | [ |
表3 部分溶液结晶的添加剂强化策略及强化效果
溶液结晶物系 | 存在问题 | 添加剂 | 强化效果 | 文献来源 |
---|---|---|---|---|
胰岛素 | 晶体成核和生长缓慢,结晶控制困难 | 氨基酸 | 晶体成核概率提高4~7倍 | [ |
溶菌酶 | 晶体成核和生长速率较慢 | 离子液体 | 成核速率提高1~3倍 | [ |
溶菌酶 | 晶体成核和生长速率较慢 | 动物DNA | 晶体成核概率提高2.8~33倍 | [ |
溶液结晶物系 | 存在问题 | 模板剂 | 强化效果 | 文献来源 |
---|---|---|---|---|
非诺贝特 | 结晶诱导期较长 | 甘露醇、二氧化硅、微晶纤维素、羧甲基纤维素、乳糖和聚己内酯 | 最佳条件下结晶诱导期从22h缩短至15min | [ |
非诺贝特 | 结晶诱导期较长 | 微晶纤维素 | 结晶诱导期从460min缩短至38min | [ |
香兰素 | 结晶诱导期较长 | 功能化二氧化硅 | 诱导期从4h缩短到20min | [ |
表4 部分溶液结晶的模板剂强化策略及强化效果
溶液结晶物系 | 存在问题 | 模板剂 | 强化效果 | 文献来源 |
---|---|---|---|---|
非诺贝特 | 结晶诱导期较长 | 甘露醇、二氧化硅、微晶纤维素、羧甲基纤维素、乳糖和聚己内酯 | 最佳条件下结晶诱导期从22h缩短至15min | [ |
非诺贝特 | 结晶诱导期较长 | 微晶纤维素 | 结晶诱导期从460min缩短至38min | [ |
香兰素 | 结晶诱导期较长 | 功能化二氧化硅 | 诱导期从4h缩短到20min | [ |
1 | 文婷, 王海蓉, 黄唯, 等. 结晶过程晶体粒度分布控制研究进展[J]. 化学工业与工程, 2021, 38(4): 44-55. |
WEN Ting, WANG Hairong, HUANG Wei, et al. Research progress on controlling of crystal size distribution (CSD) in crystallization process[J]. Chemical Industry and Engineering, 2021, 38(4): 44-55. | |
2 | 邢晓红, 欧阳金波, 周利民, 等. 限域空间内的结晶研究进展[J]. 化学工业与工程, 2022, 39(5): 39-48. |
XING Xiaohong, OUYANG Jinbo, ZHOU Limin, et al. Research progress of crystallization in confined space[J]. Chemical Industry and Engineering, 2022, 39(5): 39-48. | |
3 | LIU Fan, BAGI S D, SU Qinglin, et al. Targeting particle size specification in pharmaceutical crystallization: A review on recent process design and development strategies and particle size measurements[J]. Organic Process Research & Development, 2022, 26(12): 3190-3203. |
4 | ILA M, LOUHI-KULTANEN M. Purification of monoethylene glycol by melt crystallization[J]. Chemical Engineering Science, 2023, 272: 118601. |
5 | LI Junjie, DEEPAK F L. In situ kinetic observations on crystal nucleation and growth[J]. Chemical Reviews, 2022, 122(23): 16911-16982. |
6 | LI Xin, WANG Jingkang, WANG Ting, et al. Molecular mechanism of crystal nucleation from solution[J]. Science China Chemistry, 2021, 64(9): 1460-1481. |
7 | XIAO Yan, WANG Jingkang, HUANG Xin, et al. Determination methods for crystal nucleation kinetics in solutions[J]. Crystal Growth & Design, 2018, 18(1): 540-551. |
8 | LYNCH A, JIA Lijun, SVÄRD M, et al. Crystal growth of salicylamide in organic solvents[J]. Crystal Growth & Design, 2018, 18(12): 7305-7315. |
9 | MING Hui, ZHU Mingfu, LI Lu, et al. A review of solvent freeze-out technology for protein crystallization[J]. CrystEngComm, 2021, 23(14): 2723-2732. |
10 | ZHANG Chenyan, LIU Jie, WANG Mengying, et al. Protein crystallization irradiated by audible sound: The effect of varying sound frequency[J]. Crystal Growth & Design, 2019, 19(1): 258-267. |
11 | WANG Qianjin, ZHAO Gang, ZHANG Chenyan. Cyclodextrin and its derivatives enhance protein crystallization by grafted on crystallization plates[J]. Journal of Crystal Growth, 2020, 536: 125591. |
12 | YAN Erkai, ZHAO Fengzhu, ZHANG Chenyan, et al. Seeding protein crystallization with cross-linked protein crystals[J]. Crystal Growth & Design, 2018, 18(2): 1090-1100. |
13 | CHENG Xiaowei, HUANG Xin, TIAN Beiqian, et al. Behaviors and physical mechanism of ceftezole sodium de-agglomeration driven by ultrasound[J]. Ultrasonics Sonochemistry, 2021, 74: 105570. |
14 | SHANG Zeren, LI Mingchen, HOU Baohong, et al. Ultrasound assisted crystallization of cephalexin monohydrate: Nucleation mechanism and crystal habit control[J]. Chinese Journal of Chemical Engineering, 2022, 41: 430-440. |
15 | HU Xueyan, ZHAO Yiting, XIAO Wu, et al. Improved spherical particle preparation of ceftriaxone sodium via membrane-assisted spherical crystallization[J]. Industrial & Engineering Chemistry Research, 2023, 62(10): 4444-4454. |
16 | YIN Yongheng, GAO Zhenguo, BAO Ying, et al. Gelation phenomenon during antisolvent crystallization of cefotaxime sodium[J]. Industrial & Engineering Chemistry Research, 2014, 53(3): 1286-1292. |
17 | CHENG Xiaowei, LI Fei, LUO Liang, et al. On the selection of wetting liquid for spherical agglomeration of cefotaxime sodium[J]. Powder Technology, 2020, 363: 593-601. |
18 | 盛磊, 李培钰, 牛宇超, 等. 微尺度过程强化的结晶颗粒制备研究进展[J]. 化工学报, 2021, 72(1): 143-157. |
SHENG Lei, LI Peiyu, NIU Yuchao, et al. Progresses in the preparation of micro-scale process-enhanced crystalline particles[J]. CIESC Journal, 2021, 72(1): 143-157. | |
19 | WU Mengyuan, YUAN Zhijie, NIU Yuchao, et al. Interfacial induction and regulation for microscale crystallization process: A critical review[J]. Frontiers of Chemical Science and Engineering, 2022, 16(6): 838-853. |
20 | MELDRUM F C, O'SHAUGHNESSY C. Crystallization in confinement[J]. Advanced Materials, 2020, 32(31): 2001068. |
21 | SANDER J R G, ZEIGER B W, SUSLICK K S. Sonocrystallization and sonofragmentation[J]. Ultrasonics Sonochemistry, 2014, 21(6): 1908-1915. |
22 | FENG Yaoguang, HAO Hongxun, CHEN Yiqing, et al. Enhancement of crystallization process of the organic pharmaceutical molecules through high pressure[J]. Crystals, 2022, 12(3): 432. |
23 | WANG Lingyu, TANG Weiwei, DU Shichao, et al. Additive-induced selective crystallization of the elusive form- Ⅱ of γ-aminobutyric acid[J]. Chemical Engineering & Technology, 2020, 43(6): 1137-1143. |
24 | NAHI O, KULAK A N, BROAD A, et al. Solvent-mediated enhancement of additive-controlled crystallization[J]. Crystal Growth & Design, 2021, 21(12): 7104-7115. |
25 | SAVCHENKO M, SEBASTIAN V, LOPEZ-LOPEZ M T, et al. Magnetite mineralization inside cross-linked protein crystals[J]. Crystal Growth & Design, 2023, 23(6): 4032-4040. |
26 | KATSMAN A, POLISHCHUK I, POKROY B. On the mechanism of calcium carbonate polymorph selection via confinement[J]. Faraday Discussions, 2022, 235: 433-445. |
27 | BRASCHINSKY A, STEED J W. Molecular clusters in confined spaces[J]. Coordination Chemistry Reviews, 2022, 473: 214840. |
28 | PRILESZKY T A, FURST E M. Crystallization kinetics of partially crystalline emulsion droplets in a microfluidic device[J]. Langmuir, 2016, 32(20): 5141-5146. |
29 | CHEN Cen, COOK Oliver, NICHOLSON C E, et al. Leapfrogging Ostwald’s rule of stages: Crystallization of stable γ-glycine directly from microemulsions[J]. Crystal Growth & Design, 2011, 11(6): 2228-2237. |
30 | NICHOLSON C E, CHEN Cen, MENDIS B, et al. Stable polymorphs crystallized directly under thermodynamic control in three-dimensional nanoconfinement: A generic methodology[J]. Crystal Growth & Design, 2011, 11(2): 363-366. |
31 | LIU Qi, WANG Jingkang, WU Hao, et al. Manipulating of crystal morphology and polymorph by crystallization in microemulsions[J]. Industrial & Engineering Chemistry Research, 2020, 59(29): 13024-13032. |
32 | LEE Sooheyong, Haeng Sub WI, Wonhyuk JO, et al. Multiple pathways of crystal nucleation in an extremely supersaturated aqueous potassium dihydrogen phosphate (KDP) solution droplet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13618-13623. |
33 | TOLDY A I, BADRUDDOZA A Z M, ZHENG Lu, et al. Spherical crystallization of glycine from monodisperse microfluidic emulsions[J]. Crystal Growth & Design, 2012, 12(8): 3977-3982. |
34 | MENG Xianze, WANG Yongli, LI Xin, et al. Confined crystallization of pigment red 146 in emulsion droplets and its mechanism[J]. Nanomaterials, 2019, 9(3): 379. |
35 | YANG Mei, GAO Yuan, LIU Yun, et al. Integration of microfluidic systems with external fields for multiphase process intensification[J]. Chemical Engineering Science, 2021, 234: 116450. |
36 | SHI Huanhuan, XIAO Yan, FERGUSON S, et al. Progress of crystallization in microfluidic devices[J]. Lab on a Chip, 2017, 17(13): 2167-2185. |
37 | NISHIGAKI A, MARUYAMA M, NUMATA M, et al. Microflow system promotes acetaminophen crystal nucleation[J]. Engineering in Life Sciences, 2020, 20(9/10): 395-401. |
38 | FERNANDEZ RIVAS D, KUHN S. Synergy of microfluidics and ultrasound[J]. Topics in Current Chemistry, 2016, 374(5): 1-30. |
39 | LIU Fen, LUO Wei, QIU Junjie, et al. Continuous antisolvent crystallization of dolutegravir sodium using microfluidics[J]. Industrial & Engineering Chemistry Research, 2022, 61(19): 6693-6702. |
40 | FERREIRA J, OPSTEYN J, ROCHA F, et al. Ultrasonic protein crystallization: Promoting nucleation in microdroplets through pulsed sonication[J]. Chemical Engineering Research and Design, 2020, 162: 249-257. |
41 | GERARD C J J, FERRY G, VUILLARD L M, et al. A chemical library to screen protein and protein-ligand crystallization using a versatile microfluidic platform[J]. Crystal Growth & Design, 2018, 18(9): 5130-5137. |
42 | ZHU Deyong, ZHOU Xiaohu, ZHENG Bo. A double emulsion-based, plastic-glass hybrid microfluidic platform for protein crystallization[J]. Micromachines, 2015, 6(11): 1629-1644. |
43 | BHATTACHARYA S, KUNDU P, LIU J S, et al. Feedback-system-control integrated microfluidic system for fast screening of protein crystallization conditions[J]. Crystal Growth & Design, 2020, 20(7): 4325-4334. |
44 | COLIAIE P, KELKAR M S, LANGSTON M, et al. Advanced continuous-flow microfluidic device for parallel screening of crystal polymorphs, morphology, and kinetics at controlled supersaturation[J]. Lab on a Chip, 2021, 21(12): 2333-2342. |
45 | KHURSHID S, SARIDAKIS E, GOVADA L, et al. Porous nucleating agents for protein crystallization[J]. Nature Protocols, 2014, 9(7): 1621-1633. |
46 | SARIDAKIS E, CHAYEN N E. Imprinted polymers assisting protein crystallization[J]. Trends in Biotechnology, 2013, 31(9): 515-520. |
47 | KERTIS F, KHURSHID S, OKMAN O, et al. Heterogeneous nucleation of protein crystals using nanoporous gold nucleants[J]. Journal of Materials Chemistry, 2012, 22(41): 21928. |
48 | JIANG Qi, WARD M D. Crystallization under nanoscale confinement[J]. Chemical Society Reviews, 2014, 43(7): 2066-2079. |
49 | BRADY A B, WEBER J, YUAN Ke, et al. In situ observations of barium sulfate nucleation in nanopores[J]. Crystal Growth & Design, 2022, 22(12): 6941-6951. |
50 | KHODAPARAST S, MARCOS J, SHARRATT W N, et al. Surface-induced crystallization of sodium dodecyl sulfate (SDS) micellar solutions in confinement[J]. Langmuir, 2021, 37(1): 230-239. |
51 | DIAO Ying, HARADA T, MYERSON A S, et al. The role of nanopore shape in surface-induced crystallization[J]. Nature Materials, 2011, 10(11): 867-871. |
52 | PAGE A J, SEAR R P. Heterogeneous nucleation in and out of pores[J]. Physical Review Letters, 2006, 97(6): 065701. |
53 | NANEV C N, SARIDAKIS E, CHAYEN N E. Protein crystal nucleation in pores[J]. Scientific Reports, 2017, 7: 35821. |
54 | ANDUIX-CANTO C, LEVENSTEIN M A, KIM Yi-Yeoun, et al. Exploiting confinement to study the crystallization pathway of calcium sulfate[J]. Advanced Functional Materials, 2021, 31(50): 2107312. |
55 | BEINER M, RENGARAJAN, PANKAJ S, et al. Manipulating the crystalline state of pharmaceuticals by nanoconfinement[J]. Nano Letters, 2007, 7(5): 1381-1385. |
56 | ANDUIX-CANTO C, KIM Yi-Yeoun, WANG Yunwei, et al. Effect of nanoscale confinement on the crystallization of potassium ferrocyanide[J]. Crystal Growth & Design, 2016, 16(9): 5403-5411. |
57 | DWYER L M, MICHAELIS V K, O’MAHONY M, et al. Confined crystallization of fenofibrate in nanoporous silica[J]. CrystEngComm, 2015, 17(41): 7922-7929. |
58 | PRASAD R, DALVI S V. Sonocrystallization: Monitoring and controlling crystallization using ultrasound[J]. Chemical Engineering Science, 2020, 226: 115911. |
59 | JORDENS J, GIELEN B, XIOURAS C, et al. Sonocrystallisation: Observations, theories and guidelines[J]. Chemical Engineering and Processing: Process Intensification, 2019, 139: 130-154. |
60 | NALESSO S, BUSSEMAKER M J, SEAR R P, et al. A review on possible mechanisms of sonocrystallisation in solution[J]. Ultrasonics Sonochemistry, 2019, 57: 125-138. |
61 | SABNIS S S, SINGH S D, GOGATE P R. Improvements in azithromycin recrystallization using ultrasound for size reduction[J]. Ultrasonics Sonochemistry, 2022, 83: 105922. |
62 | MAO Yafei, LI Fei, WANG Ting, et al. Enhancement of lysozyme crystallization under ultrasound field[J]. Ultrasonics Sonochemistry, 2020, 63: 104975. |
63 | YU Fei, MAO Yafei, ZHAO Hongtu, et al. Enhancement of continuous crystallization of lysozyme through ultrasound[J]. Organic Process Research & Development, 2021, 25(11): 2508-2515. |
64 | WANG Jiayuan, LI Fei, LAKERVELD R. Process intensification for pharmaceutical crystallization[J]. Chemical Engineering and Processing: Process Intensification, 2018, 127: 111-126. |
65 | AWARI H D, SABNIS S S, GOGATE P R. Improved crystallization of ampicillin trihydrate based on the use of ultrasound[J]. Industrial & Engineering Chemistry Research, 2022, 61(6): 2538-2547. |
66 | HUSSAIN M N, JORDENS J, JOHN J J, et al. Enhancing pharmaceutical crystallization in a flow crystallizer with ultrasound: Anti-solvent crystallization[J]. Ultrasonics Sonochemistry, 2019, 59: 104743. |
67 | ALEXANDER L F, RADACSI N. Application of electric fields for controlling crystallization[J]. CrystEngComm, 2019, 21(34): 5014-5031. |
68 | YUAN Zhijie, WU Mengyuan, MENG Yingshuang, et al. Protein crystal regulation and harvest via electric field-based method[J]. Current Opinion in Chemical Engineering, 2022, 36: 100744. |
69 | KOIZUMI H, UDA S. Theoretical and practical studies on effects of external electrostatic electric field on nucleation and growth kinetics of protein crystals[J]. Progress in Crystal Growth and Characterization of Materials, 2022, 68(3): 100568. |
70 | PAREJA-RIVERA C, CUÉLLAR-CRUZ M, ESTURAU-ESCOFET N, et al. Recent advances in the understanding of the influence of electric and magnetic fields on protein crystal growth[J]. Crystal Growth & Design, 2017, 17(1): 135-145. |
71 | RUBIN E, OWEN C, STOJANOFF V. Crystallization under an external electric field: A case study of glucose isomerase[J]. Crystals, 2017, 7(7): 206. |
72 | LI Fei, LAKERVELD R. Electric-field-assisted protein crystallization in continuous flow[J]. Crystal Growth & Design, 2018, 18(5): 2964-2971. |
73 | LI W W, RADACSI N, KRAMER H J M, et al. Solid separation from a mixed suspension through electric-field-enhanced crystallization[J]. Angewandte Chemie International Edition, 2016, 55(52): 16088-16091. |
74 | AZMI N S M, ANUAR N, OTHMAN M F, et al. Electric-potential-assisted crystallisation of L-isoleucine: A study of nucleation kinetics and its associated parameters[J]. Crystals, 2021, 11(6): 620. |
75 | YIN Dachuan. Protein crystallization in a magnetic field[J]. Progress in Crystal Growth and Characterization of Materials, 2015, 61(1): 1-26. |
76 | SURADE S, OCHI T, NIETLISPACH D, et al. Investigations into protein crystallization in the presence of a strong magnetic field[J]. Crystal Growth & Design, 2010, 10(2): 691-699. |
77 | Sun RYU, In OH, CHO Sang, et al. Enhancing protein crystallization under a magnetic field[J]. Crystals, 2020, 10(9): 821. |
78 | 张翔飞, 周数, 谢灿, 等. 中等强度稳态磁场影响小分子结晶的初步探索[J]. 激光生物学报, 2022, 31(3): 243-249. |
ZHANG Xiangfei, ZHOU Shu, XIE Can, et al. A preliminary study of the effects of moderate intensity static magnetic fields on small molecule crystallization[J]. Acta Laser Biology Sinica, 2022, 31(3): 243-249. | |
79 | ZHAO Yihan, HOU Baohong, LIU Chunhao, et al. Mechanistic study on the effect of magnetic field on the crystallization of organic small molecules[J]. Industrial & Engineering Chemistry Research, 2021, 60(43): 15741-15751. |
80 | TAI C Y, WU Chikao, CHANG Mengchun. Effects of magnetic field on the crystallization of CaCO3 using permanent magnets[J]. Chemical Engineering Science, 2008, 63(23): 5606-5612. |
81 | ASAKUMA Y, MIURA M. Effect of microwave radiation on diffusion behavior of anti-solvent during crystallization[J]. Journal of Crystal Growth, 2014, 402: 32-36. |
82 | OGUNNIRAN O, BINNER E R, SKLAVOUNOS A H, et al. Enhancing evaporative mass transfer and steam stripping using microwave heating[J]. Chemical Engineering Science, 2017, 165: 147-153. |
83 | RADACSI N, HORST J H TER, STEFANIDIS G D. Microwave-assisted evaporative crystallization of niflumic acid for particle size reduction[J]. Crystal Growth & Design, 2013, 13(10): 4186-4189. |
84 | LI Liye, GUO Zhichao, HAN Wenxiang, et al. The effect of microwave on the primary nucleation of CaSO4 from aqueous solutions[J]. Powder Technology, 2017, 317: 189-196. |
85 | CONSTANCE E N, ZAAKAN A, ALSHARARI F, et al. Effect of microwave heating on the crystallization of glutathione tripeptide on silver nanoparticle films[J]. The Journal of Physical Chemistry C, 2017, 121(10): 5585-5593. |
86 | YUYAMA K, CHANG Kaidi, TU Jingru, et al. Rapid localized crystallization of lysozyme by laser trapping[J]. Physical Chemistry Chemical Physics, 2018, 20(9): 6034-6039. |
87 | LIAO Zhiyu, WYNNE K. A metastable amorphous intermediate is responsible for laser-induced nucleation of glycine[J]. Journal of the American Chemical Society, 2022, 144(15): 6727-6733. |
88 | KOREDE V, NAGALINGAM N, PENHA F M, et al. A review of laser-induced crystallization from solution[J]. Crystal Growth & Design, 2023, 23(5): 3873-3916. |
89 | YU Jiachen, YAN Jianfeng, JIANG Lan. Crystallization of polymorphic sulfathiazole controlled by femtosecond laser-induced cavitation bubbles[J]. Crystal Growth & Design, 2021, 21(6): 3202-3210. |
90 | XU Shijie, CAO Di, LIU Yixuan, et al. Role of additives in crystal nucleation from solutions: A review[J]. Crystal Growth & Design, 2022, 22(3): 2001-2022. |
91 | 王子豪, 马源昌, 李梓铭, 等. 添加剂在药物结晶中的应用研究进展[J]. 山东化工, 2022, 51(22): 78-80. |
WANG Zihao, MA Yuanchang, LI Ziming, et al. Research progress on the application of additives in drug crystallization[J]. Shandong Chemical Industry, 2022, 51(22): 78-80. | |
92 | 尚泽仁, 胡卫国, 汤伟伟, 等. 离子液体在药物晶体工程中的应用[J]. 化工进展, 2019, 38(5): 2389-2401. |
SHANG Zeren, HU Weiguo, TANG Weiwei, et al. Application of ionic liquids in pharmaceutical crystal engineering[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2389-2401. | |
93 | KASKIEWICZ P L, ROSBOTTOM I, HAMMOND R B, et al. Understanding and designing tailor-made additives for controlling nucleation: Case study of p-aminobenzoic acid crystallizing from ethanolic solutions[J]. Crystal Growth & Design, 2021, 21(4): 1946-1958. |
94 | WU Hao, WANG Jingkang, LIU Qi, et al. Influences and the mechanism of additives on intensifying nucleation and growth of p-methylacetanilide[J]. Crystal Growth & Design, 2020, 20(2): 973-983. |
95 | BODNÁR K, HUDSON S P, RASMUSON Å C. Promotion of mefenamic acid nucleation by a surfactant additive, docusate sodium[J]. Crystal Growth & Design, 2019, 19(2): 591-603. |
96 | LINK F J, HENG J Y Y. Enhancing the crystallisation of insulin using amino acids as soft-templates to control nucleation[J]. CrystEngComm, 2021, 23(22): 3951-3960. |
97 | YU Xiaoxi, TIAN Ningning, HUANG Fang, et al. Evaluating the role of ionic liquids (ILs) in the crystallization of lysozyme[J]. Journal of Molecular Liquids, 2019, 296: 112018. |
98 | ZHANG Bo, WANG Yao, Shiki THI, et al. Enhancement of lysozyme crystallization using DNA as a polymeric additive[J]. Crystals, 2019, 9(4): 186. |
99 | HAN Dandan, WANG Yan, YANG Yang, et al. Revealing the role of a surfactant in the nucleation and crystal growth of thiamine nitrate: Experiments and simulation studies[J]. CrystEngComm, 2019, 21(23): 3576-3585. |
100 | SU Nannan, WANG Yongli, XIAO Yan, et al. Mechanism of influence of organic impurity on crystallization of sodium sulfate[J]. Industrial & Engineering Chemistry Research, 2018, 57(5): 1705-1713. |
101 | POORNACHARY S K, HAN Guangjun, KWEK Jin Wang, et al. Crystallizing micronized particles of a poorly water-soluble active pharmaceutical ingredient: Nucleation enhancement by polymeric additives[J]. Crystal Growth & Design, 2016, 16(2): 749-758. |
102 | WU Hao, WANG Jingkang, HUANG Xin, et al. Enlarging crystal size of zoxamide by polymeric additives that modulate burst nucleation[J]. Journal of Molecular Liquids, 2022, 357: 119088. |
103 | CHENG Xiaowei, HUANG Xin, HAO Yunhui, et al. Unveiling the role of additives in modifying crystallization behaviors of 4-(hydroxymethyl) benzoic acid[J]. Industrial & Engineering Chemistry Research, 2022, 61(20): 7193-7203. |
104 | PARAMBIL J V, POORNACHARY S K, HINDER S J, et al. Establishing template-induced polymorphic domains for API crystallisation: The case of carbamazepine[J]. CrystEngComm, 2015, 17(33): 6384-6392. |
105 | FRANK D S, MATZGER A J. Influence of chemical functionality on the rate of polymer-induced heteronucleation[J]. Crystal Growth & Design, 2017, 17(8): 4056-4059. |
106 | PARAMBIL J V, POORNACHARY S K, HENG J Y Y, et al. Template-induced nucleation for controlling crystal polymorphism: From molecular mechanisms to applications in pharmaceutical processing[J]. CrystEngComm, 2019, 21(28): 4122-4135. |
107 | CARIDI A, KULKARNI S A, DI PROFIO G, et al. Template-induced nucleation of isonicotinamide polymorphs[J]. Crystal Growth & Design, 2014, 14(3): 1135-1141. |
108 | CHADWICK K, CHEN Jie, MYERSON A S, et al. Toward the rational design of crystalline surfaces for heteroepitaxy: Role of molecular functionality[J]. Crystal Growth & Design, 2012, 12(3): 1159-1166. |
109 | ARRIBAS BUENO R, CROWLEY C M, DAVERN P, et al. Heterogeneous crystallization of fenofibrate onto pharmaceutical excipients[J]. Crystal Growth & Design, 2018, 18(4): 2151-2164. |
110 | VERMA V, ZEGLINSKI J, HUDSON S, et al. Dependence of heterogeneous nucleation on hydrogen bonding lifetime and complementarity[J]. Crystal Growth & Design, 2018, 18(11): 7158-7172. |
111 | OUYANG Jinbo, XING Xiaohong, CHEN Jian, et al. Effects of solvent, supersaturation ratio and silica template on morphology and polymorph evolution of vanillin during swift cooling crystallization[J]. Particuology, 2022, 65: 93-104. |
112 | YAZDANPANAH N, TESTA C J, PERALA S R K, et al. Continuous heterogeneous crystallization on excipient surfaces[J]. Crystal Growth & Design, 2017, 17(6): 3321-3330. |
113 | LING Jing, CHADWICK K. Heterogeneous crystallization inside microporous polymer particles as a process intensification technology for the manufacture of drug formulations[J]. Organic Process Research & Development, 2017, 21(6): 827-834. |
114 | ERAL H B, LÓPEZ-MEJÍAS V, O’MAHONY M, et al. Biocompatible alginate microgel particles as heteronucleants and encapsulating vehicles for hydrophilic and hydrophobic drugs[J]. Crystal Growth & Design, 2014, 14(4): 2073-2082. |
[1] | 苏梦军, 刘剑, 辛靖, 陈禹霏, 张海洪, 韩龙年, 朱元宝, 李洪宝. 气液混合强化在固定床加氢过程中的应用进展[J]. 化工进展, 2024, 43(1): 100-110. |
[2] | 翟霖晓, 崔怡洲, 李成祥, 石孝刚, 高金森, 蓝兴英. 微气泡发生器的研究与应用进展[J]. 化工进展, 2024, 43(1): 111-123. |
[3] | 田时泓, 郭磊, 李娜, 宇文超, 许磊, 郭胜惠, 巨少华. 微波加热强化闪蒸工艺的科学基础及发展趋势[J]. 化工进展, 2024, 43(1): 135-144. |
[4] | 王立华, 蔡苏杭, 江文涛, 罗倩, 罗勇, 陈建峰. 微纳尺度气液传质强化油品催化加氢反应[J]. 化工进展, 2024, 43(1): 19-33. |
[5] | 张梁, 马骥, 贺高红, 姜晓滨, 肖武. 膜调控的头孢呋辛钠溶析-冷却耦合结晶成核介稳区测定及分析[J]. 化工进展, 2024, 43(1): 260-268. |
[6] | 刘锋, 褚阳, 李会峰, 李明丰, 朱玫, 张润强. 汽油中大分子硫醇催化转化反应过程强化[J]. 化工进展, 2024, 43(1): 279-284. |
[7] | 王一棪, 王达锐, 沈震浩, 何俊琳, 孙洪敏, 杨为民. 全结晶MCM-22分子筛催化剂的制备及其催化性能[J]. 化工进展, 2024, 43(1): 285-291. |
[8] | 袁谅, 从海峰, 李鑫钢. 微通道内气液流动与传质特性的研究进展[J]. 化工进展, 2024, 43(1): 34-48. |
[9] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[10] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[11] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[12] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[13] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[14] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[15] | 王达锐, 孙洪敏, 薛明伟, 王一棪, 刘威, 杨为民. 微波法高效合成全结晶ZSM-5分子筛催化剂及其催化性能[J]. 化工进展, 2023, 42(7): 3582-3588. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |