化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2254-2278.DOI: 10.16085/j.issn.1000-6613.2023-2195
• 化石能源的清洁高效转化利用 • 上一篇
收稿日期:
2023-12-14
修回日期:
2024-03-08
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
朱治平
作者简介:
张海霞(1981—),女,副研究员,研究方向为碳基原料高效清洁利用。E-mail:zhanghaixia_cas@163.com。
基金资助:
ZHANG Haixia1,2,3(), ZHU Zhiping1,3(), ZHANG Siyuan1,3
Received:
2023-12-14
Revised:
2024-03-08
Online:
2024-05-15
Published:
2024-06-15
Contact:
ZHU Zhiping
摘要:
系统回顾了循环流化床高碱煤气化技术的研发及应用历程,重点概况了在高碱煤基础理化特性、气化反应特性及碱金属的迁移特性、防结渣技术研究及循环流化床高碱煤气化工程应用四个方面的进展与成果。梳理了高碱煤的煤质特征、碱金属的赋存形态和含量、前处理方法对碱金属含量测定的影响,以及高碱煤的燃烧和成灰特性。总结了煤种、反应进程、气化温度、氧碳摩尔比、反应气氛等对高碱煤气化性能指标和气化灰结渣特性的影响。阐述了配煤、添加剂及更换床料等方法对预防高碱煤气化结渣的作用和反应机理,采用刚玉做床料实现了循环流化床高碱煤气化中试装置稳定运行。评述了循环流化床高碱煤气化技术的自主创新以及在工业燃气、合成气领域的成功应用。最后,从建立高碱煤气化用煤数据库、开发纯用高碱煤的气化技术、开发高效脱碱及原位耦合利用革新技术、探索高碱煤与其他物料协同利用技术并制备高性能材料四个方面展望了未来高碱煤气化技术的发展方向。
中图分类号:
张海霞, 朱治平, 张思源. 循环流化床高碱煤气化技术研发及应用进展[J]. 化工进展, 2024, 43(5): 2254-2278.
ZHANG Haixia, ZHU Zhiping, ZHANG Siyuan. Research and application progress of circulating fluidized bed gasification with high-alkaline coal[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2254-2278.
煤种 | 工业分析(质量分数)/% | 元素分析(质量分数)/% | 低位热值(LHVar) /MJ·kg-1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ad | Vd | FCd | Cd | Hd | Nd | Od | Sd | Cld | |||
ML | 9.55 | 30.08 | 60.38 | 71.73 | 3.54 | 0.72 | 13.29 | 1.17 | 0.704 | 22.92 | |
TCML | 3.69 | 31.54 | 64.77 | 75.34 | 3.53 | 0.61 | 16.31 | 0.53 | 0.065 | 23.70 | |
TCWCW | 11.50 | 30.39 | 58.11 | 68.96 | 3.28 | 0.77 | 14.31 | 1.19 | 0.093 | 21.84 | |
SHWCW | 5.96 | 40.37 | 53.66 | 64.50 | 2.02 | 0.82 | 26.23 | 0.47 | 0.123 | 17.63 | |
SEH | 16.48 | 34.23 | 49.29 | 57.92 | 2.65 | 0.65 | 22.17 | 0.12 | 1.279 | 17.93 | |
YH | 8.40 | 27.64 | 63.96 | 72.91 | 3.73 | 0.50 | 13.99 | 0.46 | 0.054 | 24.28 | |
YN | 5.29 | 44.61 | 50.11 | 70.61 | 4.68 | 1.28 | 17.82 | 0.33 | 0.019 | 20.30 | |
BK | 43.53 | 25.64 | 30.83 | 41.94 | 3.00 | 1.32 | 9.42 | 0.78 | 0.022 | 14.98 |
表1 高碱煤的工业分析和元素分析结果[13,42-43]
煤种 | 工业分析(质量分数)/% | 元素分析(质量分数)/% | 低位热值(LHVar) /MJ·kg-1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ad | Vd | FCd | Cd | Hd | Nd | Od | Sd | Cld | |||
ML | 9.55 | 30.08 | 60.38 | 71.73 | 3.54 | 0.72 | 13.29 | 1.17 | 0.704 | 22.92 | |
TCML | 3.69 | 31.54 | 64.77 | 75.34 | 3.53 | 0.61 | 16.31 | 0.53 | 0.065 | 23.70 | |
TCWCW | 11.50 | 30.39 | 58.11 | 68.96 | 3.28 | 0.77 | 14.31 | 1.19 | 0.093 | 21.84 | |
SHWCW | 5.96 | 40.37 | 53.66 | 64.50 | 2.02 | 0.82 | 26.23 | 0.47 | 0.123 | 17.63 | |
SEH | 16.48 | 34.23 | 49.29 | 57.92 | 2.65 | 0.65 | 22.17 | 0.12 | 1.279 | 17.93 | |
YH | 8.40 | 27.64 | 63.96 | 72.91 | 3.73 | 0.50 | 13.99 | 0.46 | 0.054 | 24.28 | |
YN | 5.29 | 44.61 | 50.11 | 70.61 | 4.68 | 1.28 | 17.82 | 0.33 | 0.019 | 20.30 | |
BK | 43.53 | 25.64 | 30.83 | 41.94 | 3.00 | 1.32 | 9.42 | 0.78 | 0.022 | 14.98 |
煤种 | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | TiO2 | SO3 | P2O5 | K2O | Na2O |
---|---|---|---|---|---|---|---|---|---|---|
ML | 23.28 | 9.26 | 18.26 | 10.95 | 2.72 | 0.54 | 18.58 | 0.54 | 0.86 | 7.86 |
TCML | 3.73 | 6.16 | 5.37 | 33.45 | 5.42 | 0.41 | 29.34 | 0.00 | 0.45 | 7.28 |
TCWCW | 20.81 | 10.54 | 29.70 | 11.36 | 4.51 | 0.60 | 14.91 | 0.04 | 0.89 | 2.71 |
SHWCW | 17.24 | 11.90 | 5.76 | 28.74 | 5.34 | 0.60 | 19.58 | 0.05 | 0.38 | 3.92 |
SEH | 41.98 | 17.59 | 6.78 | 19.39 | 2.49 | 1.08 | 1.82 | 0.18 | 0.66 | 4.38 |
YH | 35.22 | 10.89 | 7.06 | 22.28 | 5.39 | 0.74 | 12.12 | 0.14 | 1.14 | 3.56 |
YN | 42.73 | 16.95 | 5.15 | 10.11 | 4.20 | 1.02 | 9.88 | 0.29 | 1.21 | 8.46 |
BK | 58.65 | 28.53 | 4.57 | 1.35 | 1.13 | 0.98 | 0.82 | 0.11 | 3.27 | 0.57 |
表2 高碱煤的灰成分分析结果(质量分数,%)[13,42-43]
煤种 | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | TiO2 | SO3 | P2O5 | K2O | Na2O |
---|---|---|---|---|---|---|---|---|---|---|
ML | 23.28 | 9.26 | 18.26 | 10.95 | 2.72 | 0.54 | 18.58 | 0.54 | 0.86 | 7.86 |
TCML | 3.73 | 6.16 | 5.37 | 33.45 | 5.42 | 0.41 | 29.34 | 0.00 | 0.45 | 7.28 |
TCWCW | 20.81 | 10.54 | 29.70 | 11.36 | 4.51 | 0.60 | 14.91 | 0.04 | 0.89 | 2.71 |
SHWCW | 17.24 | 11.90 | 5.76 | 28.74 | 5.34 | 0.60 | 19.58 | 0.05 | 0.38 | 3.92 |
SEH | 41.98 | 17.59 | 6.78 | 19.39 | 2.49 | 1.08 | 1.82 | 0.18 | 0.66 | 4.38 |
YH | 35.22 | 10.89 | 7.06 | 22.28 | 5.39 | 0.74 | 12.12 | 0.14 | 1.14 | 3.56 |
YN | 42.73 | 16.95 | 5.15 | 10.11 | 4.20 | 1.02 | 9.88 | 0.29 | 1.21 | 8.46 |
BK | 58.65 | 28.53 | 4.57 | 1.35 | 1.13 | 0.98 | 0.82 | 0.11 | 3.27 | 0.57 |
煤种 | 灰熔融特征温度(弱还原性)/℃ | |||
---|---|---|---|---|
变形温度 (DT) | 软化温度 (ST) | 半球温度 (HT) | 流动温度(FT) | |
ML | 1030 | 1060 | 1080 | 1100 |
TCML | 1360 | 1370 | 1370 | 1380 |
TCWCW | 1110 | 1130 | 1150 | 1170 |
SHWCW | 1320 | 1320 | 1330 | 1340 |
SEH | 1120 | 1130 | 1140 | 1150 |
YH | 1170 | 1170 | 1180 | 1190 |
YN | 1080 | 1100 | 1100 | 1120 |
BK | 1470 | >1500 | — | — |
表3 高碱煤的灰熔融特征温度[13,42-43]
煤种 | 灰熔融特征温度(弱还原性)/℃ | |||
---|---|---|---|---|
变形温度 (DT) | 软化温度 (ST) | 半球温度 (HT) | 流动温度(FT) | |
ML | 1030 | 1060 | 1080 | 1100 |
TCML | 1360 | 1370 | 1370 | 1380 |
TCWCW | 1110 | 1130 | 1150 | 1170 |
SHWCW | 1320 | 1320 | 1330 | 1340 |
SEH | 1120 | 1130 | 1140 | 1150 |
YH | 1170 | 1170 | 1180 | 1190 |
YN | 1080 | 1100 | 1100 | 1120 |
BK | 1470 | >1500 | — | — |
判断指标 | 计算方式 | 判断标准及程度 | ||
---|---|---|---|---|
轻度 | 中度 | 重度 | ||
ST/℃ | GB/T 1574—1995 | >1390 | 1260~1390 | <1260 |
RB/A | <0.206 | 0.206~0.400 | >0.4 | |
RS/A | <1.87 | 1.87~2.65 | >2.65 | |
RF/C | <0.30 | 0.3~3.0 | >3.0 |
表4 传统结渣判断指标[43-46]
判断指标 | 计算方式 | 判断标准及程度 | ||
---|---|---|---|---|
轻度 | 中度 | 重度 | ||
ST/℃ | GB/T 1574—1995 | >1390 | 1260~1390 | <1260 |
RB/A | <0.206 | 0.206~0.400 | >0.4 | |
RS/A | <1.87 | 1.87~2.65 | >2.65 | |
RF/C | <0.30 | 0.3~3.0 | >3.0 |
判断指标 | 煤种及判断结果 | |||
---|---|---|---|---|
TCML | YN | SEH | YH | |
ST/℃ | 1370 | 1100 | 1130 | 1170 |
RB/A | 5.05 | 0.48 | 0.56 | 0.84 |
RS/A | 0.61 | 2.52 | 2.39 | 3.23 |
RF/C | 0.16 | 0.51 | 0.35 | 0.32 |
表5 结渣判断结果[43]
判断指标 | 煤种及判断结果 | |||
---|---|---|---|---|
TCML | YN | SEH | YH | |
ST/℃ | 1370 | 1100 | 1130 | 1170 |
RB/A | 5.05 | 0.48 | 0.56 | 0.84 |
RS/A | 0.61 | 2.52 | 2.39 | 3.23 |
RF/C | 0.16 | 0.51 | 0.35 | 0.32 |
煤种 | 着火温度Ti/℃ | 燃尽温度Tf/℃ |
---|---|---|
ML | 386.5 | 487.0 |
TCML | 398.7 | 452.3 |
TCWCW | 387.0 | 452.1 |
SHWCW | 380.0 | 441.4 |
SEH | 337.1 | 457.9 |
表6 五种准东煤的着火温度和燃尽温度[19]
煤种 | 着火温度Ti/℃ | 燃尽温度Tf/℃ |
---|---|---|
ML | 386.5 | 487.0 |
TCML | 398.7 | 452.3 |
TCWCW | 387.0 | 452.1 |
SHWCW | 380.0 | 441.4 |
SEH | 337.1 | 457.9 |
煤种 | 气化起始温度Ti/℃ | 气化终止温度Tf/℃ | 气化反应速率峰值温度Tmax/℃ | 灰分收率/% |
---|---|---|---|---|
ML | 841.1 | 925.6 | 900.8 | 7.03 |
TCML | 804.0 | 903.5 | 873.6 | 0.80 |
TCWCW | 797.1 | 921.5 | 866.8 | 6.75 |
SHWCW | 792.2 | 916.5 | 886.7 | 4.50 |
SEH | 724.7 | 844.1 | 789.3 | 9.08 |
表7 5种准东高碱煤的气化特征温度及灰分收率[42]
煤种 | 气化起始温度Ti/℃ | 气化终止温度Tf/℃ | 气化反应速率峰值温度Tmax/℃ | 灰分收率/% |
---|---|---|---|---|
ML | 841.1 | 925.6 | 900.8 | 7.03 |
TCML | 804.0 | 903.5 | 873.6 | 0.80 |
TCWCW | 797.1 | 921.5 | 866.8 | 6.75 |
SHWCW | 792.2 | 916.5 | 886.7 | 4.50 |
SEH | 724.7 | 844.1 | 789.3 | 9.08 |
低温共熔体分子式 | 共熔温度/℃ |
---|---|
Na2O·2SiO2+SiO2+Na2O·3CaO·6SiO2 | 725 |
Na2O·2SiO2+SiO2 | 790 |
Na2O·2SiO2+Na2O·SiO2+2Na2O·CaO·3SiO2 | 821 |
Na2O·SiO2+Na2O·2SiO2 | 840 |
Na2SO4+NaCl | 721 |
CaSO4+Na2SO4 | 918 |
SiO2+Al2O3+K2O | 695 |
CaO+Fe2O3 | 597 |
CaSO4+CaS | 850 |
CaSO4+Na2SO4+K2SO4 | 845~933 |
FeS+FeO | 940 |
SiO2+Na2O+K2O | 540 |
Fe2O3+SiO2 | 577 |
表8 气化残留物中可能存在的部分低温共熔体分子式及共熔温度[42]
低温共熔体分子式 | 共熔温度/℃ |
---|---|
Na2O·2SiO2+SiO2+Na2O·3CaO·6SiO2 | 725 |
Na2O·2SiO2+SiO2 | 790 |
Na2O·2SiO2+Na2O·SiO2+2Na2O·CaO·3SiO2 | 821 |
Na2O·SiO2+Na2O·2SiO2 | 840 |
Na2SO4+NaCl | 721 |
CaSO4+Na2SO4 | 918 |
SiO2+Al2O3+K2O | 695 |
CaO+Fe2O3 | 597 |
CaSO4+CaS | 850 |
CaSO4+Na2SO4+K2SO4 | 845~933 |
FeS+FeO | 940 |
SiO2+Na2O+K2O | 540 |
Fe2O3+SiO2 | 577 |
图26 不同气化灰样品XRD谱图[31]a—SiO2;b—CaO;c—MgO;d—Ca2Al2SiO7;e—NaAlSi3O8;f—CaAl2Si2O8;g—CaCO3;h—Ca3Al2Si3O12;i—Fe2O3;j—Al2O3;k—NaAlSiO4; l—Mg2SiO4;m—CaSO4;n—Ca(Fe,Mg)Si2O6;o—Na2SO4;p—Ca3SiO5;q—Ca3Mg(SiO4)2;r—(Na,Ca)Al(Si,Al)3O8
主要产物 | 化学反应 | ΔG/kJ·mol-1 | ΔH/kJ·mol-1 |
---|---|---|---|
CaO | CaCO3 | -8.05 | 165.19 |
2CaSO4 + C | -64.67 | 560.30 | |
NaAlSiO4 | Na2SO4 + Al2O3 + 2SiO2 | 25.69 | 192.09 |
Na2O + Al2O3 + 2SiO2 | -355.54 | -328.02 | |
Na2O + 2AlOOH + 2SiO2 | -1038.36 | -1305.73 | |
Na2SO4 + 2AlOOH + 2SiO2 | -657.12 | -785.62 | |
NaAlSi3O8 | Na2SO4 + Al2O3 + 6SiO2 | -13.33 | 160.87 |
Na2O + Al2O3 + 6SiO2 | -394.57 | -359.25 | |
Na2O + 2AlOOH + 6SiO2 | -1077.38 | -1336.96 | |
Na2SO4 + 2AlOOH + 6SiO2 | -696.15 | -816.84 | |
CaAl2Si2O8 | CaO + Al2O3 + 2SiO2 | -130.68 | -107.27 |
CaCO3 + Al2O3 + 2SiO2 | -138.73 | 57.92 | |
CaSO4 + Al2O3 + 2SiO2 | 50.72 | 273.74 | |
Ca2Al2SiO7 | 2CaO + Al2O3 + SiO2 | -162.54 | -131.07 |
2CaCO3 + Al2O3 + SiO2 | -178.64 | 199.31 | |
2CaSO4 + Al2O3 + SiO2 | 200.25 | 630.94 | |
Ca3Al2Si3O12 | 3CaO + Al2O3 + 3SiO2 | -272.25 | -337.06 |
3CaCO3 + Al2O3 + 3SiO2 | -296.40 | 158.52 | |
3CaSO4 + Al2O3 + 3SiO2 | 271.93 | 805.97 | |
3CaO + 2AlOOH + 3SiO2 | -955.06 | -1314.77 | |
3CaCO3 + 2AlOOH + 3SiO2 | -979.21 | -819.19 | |
3CaSO4 + 2AlOOH + 3SiO2 | -410.89 | -171.75 | |
Mg2SiO4 | 2MgO + SiO2 | -60.38 | -67.06 |
Ca3SiO5 | 3CaO + SiO2 | -125.99 | -69.83 |
3CaCO3 + SiO2 | -150.14 | 425.74 | |
3CaSO4 + SiO2 | 418.1835 | 1073.19 | |
2AlOOH | -682.81 | -977.71 |
表9 煤灰组分与添加剂之间的主要反应[43]
主要产物 | 化学反应 | ΔG/kJ·mol-1 | ΔH/kJ·mol-1 |
---|---|---|---|
CaO | CaCO3 | -8.05 | 165.19 |
2CaSO4 + C | -64.67 | 560.30 | |
NaAlSiO4 | Na2SO4 + Al2O3 + 2SiO2 | 25.69 | 192.09 |
Na2O + Al2O3 + 2SiO2 | -355.54 | -328.02 | |
Na2O + 2AlOOH + 2SiO2 | -1038.36 | -1305.73 | |
Na2SO4 + 2AlOOH + 2SiO2 | -657.12 | -785.62 | |
NaAlSi3O8 | Na2SO4 + Al2O3 + 6SiO2 | -13.33 | 160.87 |
Na2O + Al2O3 + 6SiO2 | -394.57 | -359.25 | |
Na2O + 2AlOOH + 6SiO2 | -1077.38 | -1336.96 | |
Na2SO4 + 2AlOOH + 6SiO2 | -696.15 | -816.84 | |
CaAl2Si2O8 | CaO + Al2O3 + 2SiO2 | -130.68 | -107.27 |
CaCO3 + Al2O3 + 2SiO2 | -138.73 | 57.92 | |
CaSO4 + Al2O3 + 2SiO2 | 50.72 | 273.74 | |
Ca2Al2SiO7 | 2CaO + Al2O3 + SiO2 | -162.54 | -131.07 |
2CaCO3 + Al2O3 + SiO2 | -178.64 | 199.31 | |
2CaSO4 + Al2O3 + SiO2 | 200.25 | 630.94 | |
Ca3Al2Si3O12 | 3CaO + Al2O3 + 3SiO2 | -272.25 | -337.06 |
3CaCO3 + Al2O3 + 3SiO2 | -296.40 | 158.52 | |
3CaSO4 + Al2O3 + 3SiO2 | 271.93 | 805.97 | |
3CaO + 2AlOOH + 3SiO2 | -955.06 | -1314.77 | |
3CaCO3 + 2AlOOH + 3SiO2 | -979.21 | -819.19 | |
3CaSO4 + 2AlOOH + 3SiO2 | -410.89 | -171.75 | |
Mg2SiO4 | 2MgO + SiO2 | -60.38 | -67.06 |
Ca3SiO5 | 3CaO + SiO2 | -125.99 | -69.83 |
3CaCO3 + SiO2 | -150.14 | 425.74 | |
3CaSO4 + SiO2 | 418.1835 | 1073.19 | |
2AlOOH | -682.81 | -977.71 |
19 | 张晓羽, 张海霞, 那永洁. 准东煤成灰过程中钠的迁移特性及形态变化[J]. 洁净煤技术, 2015, 21(2): 45-50, 55. |
ZHANG Xiaoyu, ZHANG Haixia, NA Yongjie. Migration characteristics and morphological changes of sodium during ashing process of Zhundong coal[J]. Clean Coal Technology, 2015, 21(2): 45-50, 55. | |
20 | LIU Dianbin, LI Wei, LI Shiyuan, et al. Transformation characteristics of sodium, chlorine and sulfur of Zhundong coal during O2/CO2 combustion in circulating fluidized bed[J]. Energy, 2019, 185: 254-261. |
21 | SONG Weijian, SONG Guoliang, QI Xiaobin, et al. Speciation and distribution of sodium during Zhundong coal gasification in a circulating fluidized bed[J]. Energy & Fuels, 2017, 31(2): 1889-1895. |
22 | SONG Weijian, SONG Guoliang, QI Xiaobin, et al. Transformation characteristics of sodium in Zhundong coal under circulating fluidized bed gasification[J]. Fuel, 2016, 182: 660-667. |
23 | 郭学文, 张海霞, 朱治平. 准东高钠煤流化床气化特性及钠的迁移规律研究[J]. 工程热物理学报, 2017, 38(2): 440-446. |
GUO Xuewen, ZHANG Haixia, ZHU Zhiping. Fluidized bed gasification performance and sodium transformation of Zhundong high sodium coal[J]. Journal of Engineering Thermophysics, 2017, 38(2): 440-446. | |
24 | 宋国良, 齐晓宾, 宋维健, 等. 新疆准东高碱煤流态化气化过程中碱金属的迁移特性[J]. 过程工程学报, 2015, 15(4): 541-547. |
SONG Guoliang, QI Xiaobin, SONG Weijian, et al. Migration characteristics of alkali metals in Zhundong high-alkali coal from Xinjiang during fluidized gasification process[J]. The Chinese Journal of Process Engineering, 2015, 15(4): 541-547. | |
25 | 董倩, 张海霞, 朱治平. 前处理方法对准东煤中钠含量测定的影响[J]. 洁净煤技术, 2015, 21(2): 81-84, 88. |
DONG Qian, ZHANG Haixia, ZHU Zhiping. Influence of pretreatment on Na content analysis of Zhundong coal[J]. Clean Coal Technology, 2015, 21(2): 81-84, 88. | |
26 | 宋维健, 宋国良, 齐晓宾, 等. 不同预处理方法对准东高碱煤中碱金属含量测定的影响[J]. 燃料化学学报, 2016, 44(2): 162-167. |
SONG Weijian, SONG Guoliang, QI Xiaobin, et al. Effect of pretreatment methods on the determination of alkali metal content in high alkali metal Zhundong coal[J]. Journal of Fuel Chemistry and Technology, 2016, 44(2): 162-167. | |
27 | FAN Yanqi, ZHANG Haixia, ZHU Zhiping, et al. Effect of ash components and atmospheres on slagging characteristics of high-AAEM lignite gasification[J]. E3S Web of Conferences, 2020, 194: 01035. |
28 | ZHANG Haixia, XIAN Shengxian, FAN Yanqi, et al. A perspective on sodium-induced agglomeration of Zhundong coal gasification: Experiments and calculations[J]. Journal of the Energy Institute, 2021, 94: 39-48. |
29 | SONG Guoliang, QI Xiaobin, SONG Weijian, et al. Slagging characteristics of Zhundong coal during circulating fluidized bed gasification[J]. Energy & Fuels, 2016, 30(5): 3967-3974. |
30 | FAN Yanqi, ZHANG Haixia, Qinggang LYU, et al. Investigation of slagging characteristics and anti-slagging applications for Indonesian coal gasification[J]. Fuel, 2020, 267: 117285. |
31 | FAN Yanqi, Qinggang LYU, ZHU Zhiping, et al. The impact of additives upon the slagging and fouling during Zhundong coal gasification[J]. Journal of the Energy Institute, 2020, 93(4): 1651-1665. |
32 | FAN Yanqi, XIAN Shengxian, Qinggang LYU, et al. Investigation on the slagging characteristics of high-AAEM lignite under different atmospheres[J]. Journal of the Energy Institute, 2021, 95: 154-165. |
33 | SONG Guoliang, QI Xiaobin, SONG Weijian, et al. Slagging behaviors of high alkali Zhundong coal during circulating fluidized bed gasification[J]. Fuel, 2016, 186: 140-149. |
34 | QI Xiaobin, SONG Guoliang, SONG Weijian, et al. Effects of wall temperature on slagging and ash deposition of Zhundong coal during circulating fluidized bed gasification[J]. Applied Thermal Engineering, 2016, 106: 1127-1135. |
35 | 齐晓宾, 宋国良, 宋维健, 等. 准东高碱煤气化过程中碱金属迁移与结渣特性实验研究[J]. 燃料化学学报, 2015, 43(8): 906-913. |
QI Xiaobin, SONG Guoliang, SONG Weijian, et al. Alkali metal migration and slagging characteristic during Zhundong high-alkali coal gasification[J]. Journal of Fuel Chemistry and Technology, 2015, 43(8): 906-913. | |
36 | 宋国良,杨雪婷,杨少波 .高碱煤燃烧过程中碱金属沾污特性的预测模型研究[J]. 煤炭科学技术, 2020, 48(2): 230-235. |
SONG Guoliang, YANG Xueting, YANG Shaobo. Study on prediction model of alkali metal contamination characteristics during high alkali coal combustion[J]. Coal Science and Technology, 2020, 48(2): 230-235. | |
37 | 杨少波, 宋国良, 宋维健, 等. 不同反应气氛下准东高钠煤中钠的迁移转化与积灰特性[J]. 燃料化学学报, 2016, 44(9): 1051-1058. |
YANG Shaobo, SONG Guoliang, SONG Weijian, et al. Transformation and deposition characteristics of sodium in Zhundong high sodium coal under different reaction atmospheres[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1051-1058. | |
38 | ZHANG Haixia, XIAN Shengxian, ZHU Zhiping, et al. Release behaviors of sulfur-containing pollutants during combustion and gasification of coals by TG-MS[J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(1): 377-386. |
39 | 张玉魁, 张海霞, 朱治平. 准东煤流化床气化飞灰的理化特性研究[J]. 燃料化学学报, 2016, 44(3): 305-313. |
ZHANG Yukui, ZHANG Haixia, ZHU Zhiping. Physical and chemical properties of fly ash from fluidized bed gasification of Zhundong coal[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 305-313. | |
40 | ZHANG Haixia, YU Kuangshi, ZHU Zhiping. Steam gasification reactivity of a high-sodium coal fly ash obtained from a pilot scale CFB gasifier[J]. International Journal of Coal Science & Technology, 2018, 5(2): 244-252. |
41 | YANG Shaobo, SONG Guoliang, NA Yongjie, et al. Transformation characteristics of Na and K in high alkali residual carbon during circulating fluidized bed combustion[J]. Journal of the Energy Institute, 2019, 92(1): 62-73. |
42 | 张晓羽. 准东煤燃烧气化过程中钠的迁移规律研究[D]. 北京: 中国科学院大学, 2015. |
ZHANG Xiaoyu. Study on the transformation of sodium during the combustion and gasification of Zhundong coal[D]. Beijing: University of Chinese Academy of Sciences, 2015. | |
43 | 范延琪. 高碱低阶煤气化过程防结渣机理研究[D]. 北京: 中国科学院大学, 2021. |
FAN Yanqi. Study on anti-slagging mechanism of high-alkali low-rank coal during gasification process[D]. Beijing: University of Chinese Academy of Sciences, 2021. | |
44 | ZHU Chuan, TU Hua, BAI Yang, et al. Evaluation of slagging and fouling characteristics during Zhundong coal co-firing with a Si/Al dominated low rank coal[J]. Fuel, 2019, 254: 115730. |
45 | KAR S, ROSENDAHL L, BAXTER L. Towards a CFD-based mechanistic deposit formation model for straw-fired boilers[J]. Fuel, 2006, 85(5/6): 833-848. |
46 | 吕俊复, 史航, 吴玉新, 等. 烟气气氛对准东煤灰熔融特性影响的显微观察[J]. 煤炭学报, 2021, 46(1): 263-273. |
Junfu LYU, SHI Hang, WU Yuxin, et al. Influence of flue gas atmosphere on Zhundong coal ash melting characteristics through microscopic observation[J]. Journal of China Coal Society, 2021, 46(1): 263-273. | |
47 | 张喜来, 王志超, 周广钦, 等. 电站锅炉高碱煤燃用技术发展现状及展望 [J]. 热力发电, 2023, 52(7): 133-141. |
1 | 张守玉, 陈川, 施大钟, 等. 高钠煤燃烧利用现状[J]. 中国电机工程学报, 2013, 33(5): 1-12. |
ZHANG Shouyu, CHEN Chuan, SHI Dazhong, et al. Situation of combustion utilization of high sodium coal[J]. Proceedings of the CSEE, 2013, 33(5): 1-12. | |
2 | SI Junping, LIU Xiaowei, XU Minghou, et al. Effect of Kaolin additive on PM2.5 reduction during pulverized coal combustion: Importance of sodium and its occurrence in coal[J]. Applied Energy, 2014, 114: 434-444. |
3 | QUYN Dimple Mody, WU Hongwei, HAYASHI Jun-ichiro, et al. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅳ. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel, 2003, 82(5): 587-593. |
4 | ILYUSHECHKIN Alexander Y, ROBERTS Daniel. Slagging behaviour of Australian brown coals and implications for their use in gasification technologies[J]. Fuel Processing Technology, 2016, 147: 47-56. |
5 | KOSMINSKI A, ROSS D P, AGNEW J B. Reactions between sodium and silica during gasification of a low-rank coal[J]. Fuel Processing Technology, 2006, 87(12): 1037-1049. |
6 | 靳雍华, 程智海, 娄中发. 锅炉高效燃烧新疆高碱煤方法综述[J]. 上海电力大学学报, 2023, 39(5): 467-471. |
JIN Yonghua, CHENG Zhihai, LOU Zhongfa. Summary of efficient combustion methods for Xinjiang high alkali coal in boilers[J]. Journal of Shanghai University of Electric Power, 2023, 39(5): 467-471. | |
7 | 李腾, 赵京, 魏小林. 高碱煤热利用过程中碱金属释放特性的研究进展[J]. 华中科技大学学报, 2023, 51(1): 92-100. |
LI Teng, ZHAO Jing, WEI Xiaolin. Research progress of alkali metals release characteristics during thermal utilization of high-alkali coals[J]. Journal of Huazhong University of Science and Technology, 2023, 51(1): 92-100. | |
8 | WANG Xuebin, XU Zhaoxia, WEI Bo, et al. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium: A study from ash evaporating to condensing[J]. Applied Thermal Engineering, 2015, 80: 150-159. |
9 | LI Guangyu, WANG Chang’an, YAN Yu, et al. Release and transformation of sodium during combustion of Zhundong coals[J]. Journal of the Energy Institute, 2016, 89(1): 48-56. |
10 | 王礼鹏, 赵永椿, 张军营, 等. 准东煤沾污结渣特性研究[J]. 工程热物理学报, 2015, 36(6): 1381-1385. |
47 | ZHANG Xilai, WANG Zhichao, ZHOU Guangqin, et al. Present situation and prospect of high alkali coal combustion technology in power plant boiler [J]. Thermal Power Generation, 2023, 52(7): 133-141. |
48 | 刘家利. 准东煤灰熔融性与灰成分相关性分析 [J]. 洁净煤技术, 2015, 21(5): 99-102. |
LIU Jiali. Correlation analysis of ash softening temperature and ash composition of Zhundong coal[J]. Clean Coal Technology, 2015, 21(5): 99-102. | |
49 | 张海, 黄斌, 房凡, 等. 我国高碱煤燃烧特性研究和工程应用进展 [J]. 热力发电, 2024, 53(1): 1-12. |
ZHANG Hai, HUANG Bin, FANG Fan, et al. Progress on research and engineering application of the combustion technologies for high-alkali coals in China [J]. Thermal Power Generation, 2024, 53(1): 1-12. | |
50 | 杨燕梅, 杨欣华, 刘青, 等. 灰化温度对准东煤灰组分分析的影响 [J]. 煤炭学报, 2016, 41(10): 2441-2447. |
YANG Yanmei, YANG Xinhua, LIU Qing, et al. Effect of ashing temperature on analysis of Zhundong coal ash [J]. Journal of China Coal Society, 2016, 41(10): 2441-2447. | |
51 | 刘成昌, 赵林, 孙峰, 等. 灰化方法对高碱燃料成灰特性影响的实验研究 [J]. 工程热物理学报, 2022, 43(5): 1416-1421. |
LIU Chengchang, ZHAO Lin, SUN Feng, et al. Experimental study on the effects of ashing method on the ash characteristics of high-alkali fuel [J]. Journal of Engineering Thermophysics, 2022, 43(5): 1416-1421. | |
52 | 谭雪梅, 史鉴, 胡南, 等. 高碱金属燃料灰结渣特性表征方法[J]. 洁净煤技术, 2023, 29(S2): 460-465. |
TAN Xuemei, SHI Jian, HU Nan, et al. Characterization of slagging about high alkali metal fuel ash[J]. Clean Coal Technology, 2023, 29(S2): 460-465. | |
53 | 宋维健. 高碱煤热化学转化过程中碱金属迁移转化特性研究[D]. 北京: 中国科学院大学, 2017. |
SONG Weijian. Study on the migration and transformation of alkali mental during the thermal conversion of high alkali mental coal[D]. Beijing: University of Chinese Academy of Sciences, 2017. | |
54 | 白向飞, 王越, 丁华, 等. 准东煤中钠的赋存状态[J]. 煤炭学报, 2015, 40(12): 2909-2915. |
BAI Xiangfei, WANG Yue, DING Hua, et al. Modes of occurrence of sodium in Zhundong coal[J]. Journal of China Coal Society, 2015, 40(12): 2909-2915. | |
55 | 马瑞, 魏博, 范卫东, 等. 准东煤燃烧过程中钠迁移转化机制研究进展[J]. 洁净煤技术, 2023, 29(10): 27-53. |
MA Rui, WEI Bo, FAN Weidong, et al. Research progress of sodium migration and transformation during combustion of Zhundong coals in China[J]. Clean Coal Technology, 2023, 29(10): 27-53. | |
56 | 徐达, 樊俊杰, 洪贤康, 等. 赋存形态对高碱煤热解过程中Na/K迁移的影响[J]. 电站系统工程, 2023, 39(2): 1-4. |
XU Da, FAN Junjie, HONG Xiankang, et al. Effect of occurrence forms on Na/K migration during pyrolysis of high alkali coal[J]. Power System Engineering, 2023, 39(2): 1-4. | |
57 | 江锋浩, 张守玉, 黄小河, 等. 高碱煤燃烧过程中结渣机理研究进展[J]. 煤炭转化, 2018, 41(2): 1-8. |
JIANG Fenghao, ZHANG Shouyu, HUANG Xiaohe, et al. Research progress on slagging mechanism during high alkali coal combustion process[J]. Coal Conversion, 2018, 41(2): 1-8. | |
58 | 徐仁伟. 焦炭及其杂质对硫酸钙热解过程影响的研究[D]. 上海: 华东理工大学, 2011. |
XU Renwei. Study on the influence of coke and its impurities on pyrolysis process of calcium sulfate[D]. Shanghai: East China university of Science and Technology, 2011. | |
59 | LI X, LI C. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part ⅤⅢ Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006, 85(10/11): 1518-1525. |
60 | WANG Zhihua, LIU Yingzu, WHIDDON Ronald, et al. Measurement of atomic sodium release during pyrolysis and combustion of sodium-enriched Zhundong coal pellet[J]. Combustion and Flame, 2017, 176: 429-438. |
61 | VALMARI Tuomas, KAUPPINEN Esko I, KURKELA Juha, et al. Fly ash formation and deposition during fluidized bed combustion of willow[J]. Journal of Aerosol Science, 1998, 29(4): 445-459. |
62 | WU Xiaojiang, ZHANG Xiang, YAN Kai, et al. Ash deposition and slagging behavior of Chinese Xinjiang high-alkali coal in 3MWth pilot-scale combustion test[J]. Fuel, 2016, 181: 1191-1202. |
63 | Reza MANZOORI A, AGARWAL Pradeep K. The fate of organically bound inorganic elements and sodium chloride during fluidized bed combustion of high sodium, high sulphur low rank coals[J]. Fuel, 1992, 71(5): 513-522. |
64 | SONG Guoliang, SONG Weijian, QI Xiaobin, et al. Transformation characteristics of sodium of Zhundong coal combustion/gasification in circulating fluidized bed[J]. Energy & Fuels, 2016, 30(4): 3473-3478. |
65 | YE D P, AGNEW J B, ZHANG D K. Gasification of a South Australian low-rank coal with carbon dioxide and steam: Kinetics and reactivity studies[J]. Fuel, 1998, 77(11): 1209-1219. |
66 | 陈大元, 刘家利, 方顺利, 等. 准东煤锅炉掺烧时煤灰成分控制研究[J]. 热力发电, 2020, 49(1): 26-33. |
CHEN Dayuan, LIU Jiali, FANG Shunli, et al. Control of coal ash composition during co-combustion of Zhundong coal boiler[J]. Thermal Power Generation, 2020, 49(1): 26-33. | |
67 | 吾买尔江·卡瓦, 林雄超, 杨远平, 等. 新疆高碱煤四喷嘴气化炉结渣特性研究[J]. 洁净煤技术, 2019, 25(3): 62-67. |
KAWA Omarjiang, LIN Xiongchao, YANG Yuanping, et al. Study on the slagging characteristics of Xinjiang high-alkali coal in four-nozzle gasifier[J]. Clean Coal Technology, 2019, 25(3): 62-67. | |
68 | 郭帅, 宋维健. 配煤比例对准东煤燃烧沾污及结渣特性的影响[J]. 洁净煤技术, 2023, 29 (S2): 454-459. |
GUO Shuai, SONG Weijian. Effect of blending ratio on the fouling and slagging characteristics during combustion of Zhundong coal[J]. Clean Coal Technology, 2023, 29 (S2): 454-459. | |
69 | RUSHDI A, SHARMA A, GUPTA R. An experimental study of the effect of coal blending on ash deposition[J]. Fuel, 2004, 83(4/5): 495-506. |
70 | ROBERTS Lee J, MASON Patrick E, JONES Jenny M, et al. The impact of aluminosilicate-based additives upon the sintering and melting behaviour of biomass ash[J]. Biomass and Bioenergy, 2019, 127: 105284. |
71 | Stella KYI, CHADWICK Bruce L. Screening of potential mineral additives for use as fouling preventatives in Victorian brown coal combustion[J]. Fuel, 1999, 78(7): 845-855. |
72 | HUANG Zhenyu, LI Yan, LU Dan, et al. Improvement of the coal ash slagging tendency by coal washing and additive blending with mullite generation[J]. Energy & Fuels, 2013, 27(4): 2049-2056. |
73 | DAI Baiqian, WU Xiaojiang, DE GIROLAMO Anthony, et al. Inhibition of lignite ash slagging and fouling upon the use of a silica-based additive in an industrial pulverised coal-fired boiler. Part 1. Changes on the properties of ash deposits along the furnace[J]. Fuel, 2015, 139: 720-732. |
74 | SHADMAN F, PUNJAK W A. Thermochemistry of alkali interactions with refractory adsorbents[J]. Thermochimica Acta, 1988, 131: 141-152. |
75 | 齐晓宾. 高碱低阶煤热化学转化过程中的结渣沾污特性研究[D]. 北京: 中国科学院大学, 2018. |
QI Xiaobin. Study on slagging and fouling characteristics of high-alkali low-rank coal during thermochemical conversion process[D]. Beijing: University of Chinese Academy of Sciences, 2018. | |
76 | 许天瑶, 傅培舫, 刘洋, 等. 准东煤掺烧煤矸石的捕钠机制[J]. 洁净煤技术, 2022, 28(7): 157-166. |
XU Tianyao, FU Peifang, LIU Yang, et al. Sodium capture mechanism of Zhundong coal blended with coal gangue[J]. Clean Coal Technology, 2022, 28(7): 157-166. | |
77 | 高满达. 准东煤燃烧中钠行为及富磷添加剂对燃烧与灰熔融特性影响[D]. 北京: 华北电力大学, 2019. |
GAO Manda. Sodium behavior in Zhundong coal combustion and the effect of phosphorus-rich additives on combustion and ash fusion characteristics[D]. Beijing: North China Electric Power University, 2019. | |
78 | 舒秀琦. 准东煤气化特性及其循环流化床气化过程的床料团聚和飞灰沉积特性[D]. 重庆: 重庆大学, 2021. |
SHU Xiuqi. Gasification Characteristics of Zhundong coal and its bed particle agglomeration and ash deposition characteristics in circulating fluidized bed[D]. Chongqing: Chongqing University, 2021. | |
10 | WANG Lipeng, ZHAO Yongchun, ZNANG JunYing, et al. Research on the slagging and fouling characteristics of Zhundong coal[J]. Journal of Engineering Thermophysics, 2015, 36(6): 1381-1385. |
11 | 王文慧, 贾宝玉, 姚洪, 等. 准东煤热解过程中钠的迁移规律研究[J]. 工程热物理学报, 2015, 36(12): 2733-2737. |
WANG Wenhui, JIA Baoyu, YAO Hong, et al. An investigation of sodium transformation in Zhundong coal during pyrolysis[J]. Journal of Engineering Thermophysics, 2015, 36(12): 2733-2737. | |
12 | LI Rongbin, CHEN Qun, ZHANG Haixia. Detailed investigation on sodium (Na) species release and transformation mechanism during pyrolysis and char gasification of high-Na Zhundong coal[J]. Energy & Fuels, 2017, 31(6): 5902-5912. |
13 | 张海霞, 刘伟伟, 于旷世, 等. 循环流化床工业气化炉高钠煤配煤气化[J]. 煤炭学报, 2017, 42(4): 1021-1027. |
ZHANG Haixia, LIU Weiwei, YU Kuangshi, et al. High sodium blended coal gasification in an industrial circulating fluidized bed[J]. Journal of China Coal Society, 2017, 42(4): 1021-1027. | |
14 | DONG Qian, ZHANG Haixia, ZHU Zhiping. Evolution of structure properties during Zhundong coal pyrolysis[J]. Procedia Engineering, 2015, 102: 4-13. |
15 | GUO Xuewen, ZHANG Haixia, ZHU Zhiping. The effect of O2/C ratio on gasification performance and sodium transformation of Zhundong coal[J]. Fuel Processing Technology, 2019, 193: 31-38. |
16 | ZHANG Haixia, GUO Xuewen, ZHU Zhiping. Effect of temperature on gasification performance and sodium transformation of Zhundong coal[J]. Fuel, 2017, 189: 301-311. |
17 | ZHANG Yukui, ZHANG Haixia. Gasification characteristics and sodium transformation behavior of high-sodium Zhundong coal[J]. Energy & Fuels, 2017, 31(6): 6435-6444. |
18 | 董倩, 张海霞, 朱治平. 3种煤焦的CO2气化反应特性及动力学模型[J]. 煤炭学报, 2015, 40(9): 2193-2199. |
DONG Qian, ZHANG Haixia, ZHU Zhiping. CO2 gasification characteristics and dynamic models of three coal chars[J]. Journal of China Coal Society, 2015, 40(9): 2193-2199. | |
79 | 张家宝. 准东煤与生物质混燃特性及循环流化床中床料团聚和灰沉积特性研究[D]. 重庆: 重庆大学, 2022. |
ZHANG Jiabao. Co-combustion characteristics of Zhundong coal and biomass and its bed particle agglomeration and ash deposition characteristics in circulating fluidized bed[D]. Chongqing: Chongqing University, 2022. |
[1] | 高增林, 张乾, 高晨明, 杨凯, 高志华, 黄伟. 水煤浆煤气化粗渣水流分级提炭分质[J]. 化工进展, 2024, 43(3): 1576-1583. |
[2] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[3] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[4] | 范昀培, 金晶, 刘敦禹, 王静杰, 刘秋祺, 许开龙. CaSO4载氧体在煤气化化学链燃烧中的脱汞[J]. 化工进展, 2023, 42(3): 1638-1648. |
[5] | 龙彩梅, 武帅山, 王建成, 米杰, 冯宇. 基于分子筛结构特性的高温煤气脱硫剂应用现状[J]. 化工进展, 2023, 42(11): 5943-5955. |
[6] | 焦路畅, 卫月星, 张禹洵, 秦育红, 崔丽萍, 燕可洲, 郭舒岗, 申浩楠, 贺冲. 煤气化细渣负载CoO活化PMS高效降解双酚A[J]. 化工进展, 2023, 42(11): 5993-6004. |
[7] | 付佳, 谌伦建, 徐冰, 华绍烽, 李从强, 杨明坤, 邢宝林, 仪桂云. 模拟煤炭气化废水中苯酚的微生物降解[J]. 化工进展, 2023, 42(1): 526-537. |
[8] | 付春龙, 王松江, 李国智. 煤气化细渣燃烧技术研究进展[J]. 化工进展, 2022, 41(S1): 516-523. |
[9] | 房科靖, 熊祖鸿, 鲁敏, 黎涛, 陈勇. 垃圾衍生燃料的制备、热转化特性及应用研究进展[J]. 化工进展, 2022, 41(S1): 132-140. |
[10] | 张乾, 高增林, 王栋, 彭泽宇, 郝泽光, 黄伟. 煤岩显微组分分离富集物热化学反应特性[J]. 化工进展, 2022, 41(S1): 160-167. |
[11] | 郭凡辉, 武建军, 张海军, 郭旸, 刘虎, 张一昕. 煤气化细渣陶瓷膜真空脱水试验与数值模拟[J]. 化工进展, 2022, 41(8): 4047-4056. |
[12] | 张凝凝, 丁华, 高燕, 白向飞, 张昀朋, 孙南翔. 新疆淖毛湖煤中钠在CO2气化过程的迁移行为[J]. 化工进展, 2022, 41(5): 2348-2355. |
[13] | 吕飞勇, 初茉, 易浩然, 郝焱, 杨彦博, 石旭, 孙星博. 磁性灰粒在不同粒级气化灰渣中的分布特性[J]. 化工进展, 2022, 41(5): 2372-2378. |
[14] | 王思怡, 李月慧, 葛玉洁, 王焕然, 赵璐璐, 李先春. NTP-DBD气化城市污泥及其模型化合物: 气氛对产物分布及特性的影响[J]. 化工进展, 2022, 41(4): 2150-2160. |
[15] | 储根云, 范英杰, 张大伟, 高明林, 梅树美, 杨庆春. 煤制乙二醇关键单元技术与低碳集成工艺的研究进展[J]. 化工进展, 2022, 41(3): 1654-1666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |