化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2235-2253.DOI: 10.16085/j.issn.1000-6613.2023-2104
• 化石能源的清洁高效转化利用 • 上一篇
王嘉锐(), 刘大伟(), 邓耀, 徐瑾, 马晓迅, 徐龙()
收稿日期:
2023-11-30
修回日期:
2024-03-05
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
刘大伟,徐龙
作者简介:
王嘉锐(1999—),男,硕士研究生,研究方向为化学链重整。E-mail:18392596723@163.com。
基金资助:
WANG Jiarui(), LIU Dawei(), DENG Yao, XU Jin, MA Xiaoxun, XU Long()
Received:
2023-11-30
Revised:
2024-03-05
Online:
2024-05-15
Published:
2024-06-15
Contact:
LIU Dawei, XU Long
摘要:
甲烷化学链重整(CLRM)反应利用固体载氧体材料作为中间体,将传统甲烷重整反应分成还原和氧化两个反应,载氧体在这个过程中不断地被氧化还原,形成链式循环反应,实现了合成气或氢气的连续生产。相比传统重整反应而言,CLRM反应无须高成本的空分装置即可得到高纯度的产物。CLRM反应研究的关键在于载氧体的设计与选择,本文总结了近年来金属基载氧体(Ni、Fe、Cu、Co、Mn、Ce基)、复合型载氧体(包括钙钛矿和六铝酸盐)的最新研究进展,重点讨论了这些载氧体的组成、结构对反应性能的影响以及材料的设计与优化策略。进一步地,对载氧体的合成方法也做了总结和论述。此外,在甲烷化学链重整的工业化方面,探讨了反应器工艺流程设计的相关内容并提出了潜在问题。最后,对CLRM反应载氧体的研究现状提出了一些存在的挑战和未来的展望。
中图分类号:
王嘉锐, 刘大伟, 邓耀, 徐瑾, 马晓迅, 徐龙. 载氧体在甲烷化学链重整反应中的研究进展[J]. 化工进展, 2024, 43(5): 2235-2253.
WANG Jiarui, LIU Dawei, DENG Yao, XU Jin, MA Xiaoxun, XU Long. Research progress of oxygen carriers in chemical looping reforming reaction of methane[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2235-2253.
金属 | 主要氧化物形式 | 氧转移能力排序 | 熔点/℃ |
---|---|---|---|
Ni | NiO | ― | NiO:1987;Ni:1453 |
Fe | FeO、Fe2O3和Fe3O4 | FeO>Fe3O4>Fe2O3 | FeO:1370;Fe3O4:1565;Fe2O3:1594 |
Cu | CuO和Cu2O | CuO>Cu2O | CuO:1446;Cu2O:1232 |
Co | CoO和Co3O4 | Co3O4>CoO | Co3O4:895;CoO:1935 |
Mn | MnO、Mn3O4、Mn2O3和MnO2 | MnO>MnO2>Mn3O4>Mn2O3 | MnO:1650;MnO2:535;Mn3O4:1567;Mn2O3:1080 |
Ce | CeO2和Ce2O3 | CeO2>Ce2O3 | CeO2:1950;Ce2O3:2177 |
表1 Ni、Fe、Cu、Co、Mn、Ce基载氧体的主要氧化物及其氧转移能力和熔点[6]
金属 | 主要氧化物形式 | 氧转移能力排序 | 熔点/℃ |
---|---|---|---|
Ni | NiO | ― | NiO:1987;Ni:1453 |
Fe | FeO、Fe2O3和Fe3O4 | FeO>Fe3O4>Fe2O3 | FeO:1370;Fe3O4:1565;Fe2O3:1594 |
Cu | CuO和Cu2O | CuO>Cu2O | CuO:1446;Cu2O:1232 |
Co | CoO和Co3O4 | Co3O4>CoO | Co3O4:895;CoO:1935 |
Mn | MnO、Mn3O4、Mn2O3和MnO2 | MnO>MnO2>Mn3O4>Mn2O3 | MnO:1650;MnO2:535;Mn3O4:1567;Mn2O3:1080 |
Ce | CeO2和Ce2O3 | CeO2>Ce2O3 | CeO2:1950;Ce2O3:2177 |
载氧体 | 合成方法 | 实验条件 | 用途 | 参考文献 |
---|---|---|---|---|
La0.9Sr0.1FeO3/YSZ | 球磨法 | 反应温度850℃ | 甲烷化学链干重整,固定床反应器 | [ |
Ce-Fe-Zr-O/MgO | 机械混合 | 反应温度800℃,原料气为5%(体积分数)CH4/N2 | 甲烷化学链蒸汽重整,固定床反应器 | [ |
5NiO-RM | 浸渍法 | 反应温度900℃,CO选择性可达94.1% | 甲烷化学链蒸汽重整,固定床反应器 | [ |
Cu-Al2O3 | 浸渍法 | 反应温度950℃,CH4转化率为96% | 甲烷自热化学链重整,流化床反应器 | [ |
CeZr0.5GdO4 | 溶胶凝胶法 | 反应温度800~850℃,CH4转化率和(H2+CO)的摩尔比的均值在90%左右 | 甲烷化学链部分氧化重整,固定床反应器 | [ |
Mg0.1(Cu0.3Ni0.3Mn0.4)0.9Fe2O4 | 共沉淀法 | 反应温度500~750℃ | 甲烷化学链蒸汽重整,固定床反应器 | [ |
Mg改性的Fe2O3/Al2O3 | 共沉淀法 | 反应温度900℃,在15次循环后,CO选择性和CH4转化率分别保持在96%和82% | 甲烷化学链蒸汽重整,流化床反应器 | [ |
核壳型Fe2O3/MgO | 水热沉淀法 | 反应温度800℃ | 甲烷化学链干重整,流化床反应器 | [ |
Ce9Co1O δ -10CS | 溶液燃烧法 | 反应温度700℃ | 甲烷化学链干重整,固定床反应器 | [ |
表2 化学链反应中载氧体的常见合成方法
载氧体 | 合成方法 | 实验条件 | 用途 | 参考文献 |
---|---|---|---|---|
La0.9Sr0.1FeO3/YSZ | 球磨法 | 反应温度850℃ | 甲烷化学链干重整,固定床反应器 | [ |
Ce-Fe-Zr-O/MgO | 机械混合 | 反应温度800℃,原料气为5%(体积分数)CH4/N2 | 甲烷化学链蒸汽重整,固定床反应器 | [ |
5NiO-RM | 浸渍法 | 反应温度900℃,CO选择性可达94.1% | 甲烷化学链蒸汽重整,固定床反应器 | [ |
Cu-Al2O3 | 浸渍法 | 反应温度950℃,CH4转化率为96% | 甲烷自热化学链重整,流化床反应器 | [ |
CeZr0.5GdO4 | 溶胶凝胶法 | 反应温度800~850℃,CH4转化率和(H2+CO)的摩尔比的均值在90%左右 | 甲烷化学链部分氧化重整,固定床反应器 | [ |
Mg0.1(Cu0.3Ni0.3Mn0.4)0.9Fe2O4 | 共沉淀法 | 反应温度500~750℃ | 甲烷化学链蒸汽重整,固定床反应器 | [ |
Mg改性的Fe2O3/Al2O3 | 共沉淀法 | 反应温度900℃,在15次循环后,CO选择性和CH4转化率分别保持在96%和82% | 甲烷化学链蒸汽重整,流化床反应器 | [ |
核壳型Fe2O3/MgO | 水热沉淀法 | 反应温度800℃ | 甲烷化学链干重整,流化床反应器 | [ |
Ce9Co1O δ -10CS | 溶液燃烧法 | 反应温度700℃ | 甲烷化学链干重整,固定床反应器 | [ |
合成方法 | 优点 | 缺点 | 参考文献 |
---|---|---|---|
球磨法 | 简单的机械混合,适合大规模生产,过程简单易于控制,目标产物的产率高 | 物理方法的混合导致材料的均匀性较差,产物易出现团聚现象等 | [ |
共沉淀法 | 将原料配成混合溶液,加入氨水搅拌沉淀得到样品。该方法所需实验设备简单,载氧体颗粒小且活性高,容易在实验室制备得到 | 该方法的缺点在于组分之间容易出现偏析,造成分布不均 | [ |
水热沉淀法 | 将固体原料在水溶液中混合并在高压釜上加热,随后过滤分离高压釜得到的沉淀并干燥。该方法的组分间混合均匀,得到的样品颗粒小且活性好 | 步骤较为烦琐,需较多的热量输入 | [ |
浸渍法 | 浸渍法常用于活性物质在载体上的负载过程。它的优点是制备工艺简单,操作方便 | 两相的直接混合过程导致其负载的活性组分的量较少且分布不均 | [ |
溶液燃烧法 | 通常在含有金属硝酸盐和燃料的水溶液中发生一系列自持续的还原-氧化反应,将初始反应溶液预热至150∼200℃,水分被蒸干且反应物被燃料迅速点燃,从而形成纳米级的粉末材料。它的优点是反应时间短,生成大量气态产物,抑制了颗粒的生长,有利于合成具有高比表面积的纳米晶体 | 缺乏对粉末形态的控制会产生粉末团聚等问题,此外不完全燃烧也会产生残留有机杂质(来源于燃料,如柠檬酸和甘氨酸等) | [ |
溶胶凝胶法 | 溶胶凝胶法需要将原料的水溶液加入胶凝剂中,经水解缩合形成溶胶,最后通过缩聚陈化反应得到凝胶。该方法成本低且操作简单,所得到的样品纯度高且热处理温度较低等 | 由于所用到的胶凝剂如金属醇盐等成本高且有毒害,难以大规模商业化应用 | [ |
表3 化学链反应中载氧体常用的合成方法的优缺点
合成方法 | 优点 | 缺点 | 参考文献 |
---|---|---|---|
球磨法 | 简单的机械混合,适合大规模生产,过程简单易于控制,目标产物的产率高 | 物理方法的混合导致材料的均匀性较差,产物易出现团聚现象等 | [ |
共沉淀法 | 将原料配成混合溶液,加入氨水搅拌沉淀得到样品。该方法所需实验设备简单,载氧体颗粒小且活性高,容易在实验室制备得到 | 该方法的缺点在于组分之间容易出现偏析,造成分布不均 | [ |
水热沉淀法 | 将固体原料在水溶液中混合并在高压釜上加热,随后过滤分离高压釜得到的沉淀并干燥。该方法的组分间混合均匀,得到的样品颗粒小且活性好 | 步骤较为烦琐,需较多的热量输入 | [ |
浸渍法 | 浸渍法常用于活性物质在载体上的负载过程。它的优点是制备工艺简单,操作方便 | 两相的直接混合过程导致其负载的活性组分的量较少且分布不均 | [ |
溶液燃烧法 | 通常在含有金属硝酸盐和燃料的水溶液中发生一系列自持续的还原-氧化反应,将初始反应溶液预热至150∼200℃,水分被蒸干且反应物被燃料迅速点燃,从而形成纳米级的粉末材料。它的优点是反应时间短,生成大量气态产物,抑制了颗粒的生长,有利于合成具有高比表面积的纳米晶体 | 缺乏对粉末形态的控制会产生粉末团聚等问题,此外不完全燃烧也会产生残留有机杂质(来源于燃料,如柠檬酸和甘氨酸等) | [ |
溶胶凝胶法 | 溶胶凝胶法需要将原料的水溶液加入胶凝剂中,经水解缩合形成溶胶,最后通过缩聚陈化反应得到凝胶。该方法成本低且操作简单,所得到的样品纯度高且热处理温度较低等 | 由于所用到的胶凝剂如金属醇盐等成本高且有毒害,难以大规模商业化应用 | [ |
反应器类型 | 气固接触模式 | 优点 | 缺点 |
---|---|---|---|
流化床 | 固体颗粒在气体中悬浮 | 连续的气固流动,传热和传质效率高,热点形成和固体团聚的风险低 | 颗粒磨损率高,流态化的高气速带来能量消耗和损失,且需要热量和反应条件的综合考虑进行设计 |
移动床 | 将固体从顶部连续加入床层,积累后在底部卸出,进行循环使用 | 连续的气固流动,可调节的固体停留时间,可实现的反应物的热力学转化极限 | 由于固体流动、固体团聚、床层温度变化等因素,需要限制气速以匹配固体流动的速率 |
固定床 | 直接填充床层的模式,固体静止不动和气体反应 | 易于生产、操作和放大,运营成本低,颗粒磨损率低 | 传质和传热存在限制、床层易出现热点导致固体团聚,固体材料再生困难 |
表4 流化床、移动床和固定床的特性[120]
反应器类型 | 气固接触模式 | 优点 | 缺点 |
---|---|---|---|
流化床 | 固体颗粒在气体中悬浮 | 连续的气固流动,传热和传质效率高,热点形成和固体团聚的风险低 | 颗粒磨损率高,流态化的高气速带来能量消耗和损失,且需要热量和反应条件的综合考虑进行设计 |
移动床 | 将固体从顶部连续加入床层,积累后在底部卸出,进行循环使用 | 连续的气固流动,可调节的固体停留时间,可实现的反应物的热力学转化极限 | 由于固体流动、固体团聚、床层温度变化等因素,需要限制气速以匹配固体流动的速率 |
固定床 | 直接填充床层的模式,固体静止不动和气体反应 | 易于生产、操作和放大,运营成本低,颗粒磨损率低 | 传质和传热存在限制、床层易出现热点导致固体团聚,固体材料再生困难 |
1 | SUN Zhenkun, LU Dennis Y, SYMONDS Robert T, et al. Chemical looping reforming of CH4 in the presence of CO2 using ilmenite ore and NiO-modified ilmenite ore oxygen carriers[J]. Chemical Engineering Journal, 2020, 401: 123481. |
2 | SHAH Vedant, CHENG Zhuo, BASER Deven S, et al. Highly selective production of syngas from chemical looping reforming of methane with CO2 utilization on MgO-supported calcium ferrite redox materials[J]. Applied Energy, 2021, 282: 116111. |
3 | 苏小平, 王力, 杨武, 等. 甲烷化学链重整制合成气的研究进展[J]. 地下水, 2017, 39(4): 198-202. |
SU Xiaoping, WANG Li, YANG Wu, et al. Research progress of methane chemical chain reforming to synthesis gas[J]. Ground Water, 2017, 39(4): 198-202. | |
4 | HE Jiameng, YANG Qian, SONG Zhengping, et al. Improving the carbon resistance of iron-based oxygen carrier for hydrogen production via chemical looping steam methane reforming: A review[J]. Fuel, 2023, 351: 128864. |
5 | 吴兴亮, 吕凌辉, 马清祥, 等. 甲烷二氧化碳重整镍基催化剂的研究进展[J]. 洁净煤技术, 2021, 27(3): 129-137. |
WU Xingliang, Linghui LYU, MA Qingxiang, et al. Research progress of nickel-based catalysts for carbon dioxide reforming of methane[J]. Clean Coal Technology, 2021, 27(3): 129-137. | |
6 | LI Danyang, XU Ruidong, GU Zhenhua, et al. Chemical-looping conversion of methane: A review[J]. Energy Technology, 2020, 8(8): 1900925. |
7 | 胡弼文, 刘庆, 蔡雨阳, 等. 非常规天然气相关理论技术及前景[C] // 第33届全国天然气学术年会, 南宁, 2023: 778-787. |
Hu B, Liu Q, Cai Y, et al. Theory, technology and prospect of unconventional natural gas [C] // The 33rd National Natural Gas Academic Annual Conference, Nanning, 2023: 778-787. | |
8 | LI Di, ROHANI Vandad, FABRY Frédéric, et al. Direct conversion of CO2 and CH4 into liquid chemicals by plasma-catalysis[J]. Applied Catalysis B: Environmental, 2020, 261: 118228. |
9 | ZHU Zengzan, GUO Wenyi, ZHANG Ying, et al. Research progress on methane conversion coupling photocatalysis and thermocatalysis[J]. Carbon Energy, 2021, 3(4): 519-540. |
10 | SASTRE Daniel, SERRANO David P, PIZARRO Patricia, et al. Chemical insights on the activity of La1- x Sr x FeO3 perovskites for chemical looping reforming of methane coupled with CO2-splitting[J]. Journal of CO2 Utilization, 2019, 31: 16-26. |
11 | ABDULLAH Bawadi, GHANI Nur Azeanni ABD, Dai-Viet N VO. Recent advances in dry reforming of methane over Ni-based catalysts[J]. Journal of Cleaner Production, 2017, 162: 170-185. |
12 | LIU Changjun, YE Jingyun, JIANG Jiaojun, et al. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane[J]. ChemCatChem, 2011, 3(3): 529-541. |
13 | HUA Xiuning, WANG Wei. Chemical looping combustion: A new low-dioxin energy conversion technology[J]. Journal of Environmental Sciences (China), 2015, 32: 135-145. |
14 | Sanaz DANESHMAND-JAHROMI, SEDGHKERDAR Mohammad Hashem, MAHINPEY Nader. A review of chemical looping combustion technology: Fundamentals, and development of natural, industrial waste, and synthetic oxygen carriers[J]. Fuel, 2023, 341: 127626. |
15 | JACOBSON Mark Z. Review of solutions to global warming, air pollution, and energy security[J]. Energy & Environmental Science, 2009, 2(2): 148-173. |
16 | CEBRUCEAN Dumitru, CEBRUCEAN Viorica, IONEL Ioana. CO2 capture and storage from fossil fuel power plants[J]. Energy Procedia, 2014, 63: 18-26. |
17 | BUELENS Lukas C, GALVITA Vladimir V, POELMAN Hilde, et al. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle[J]. Science, 2016, 354(6311): 449-452. |
18 | ZHU Lin, HE Yangdong, LI Luling, et al. Tech-economic assessment of second-generation CCS: Chemical looping combustion[J]. Energy, 2018, 144: 915-927. |
19 | ADANEZ Juan, ABAD Alberto, Francisco GARCIA-LABIANO, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2): 215-282. |
20 | HU Jiawei, GALVITA Vladimir, POELMAN Hilde, et al. Advanced chemical looping materials for CO2 utilization: A review[J]. Materials, 2018, 11(7): 1187. |
21 | BHAVSAR Saurabh, NAJERA Michelle, SOLUNKE Rahul, et al. Chemical looping: To combustion and beyond[J]. Catalysis Today, 2014, 228: 96-105. |
22 | DENG Guixian, LI Kongzhai, ZHANG Guifang, et al. Enhanced performance of red mud-based oxygen carriers by CuO for chemical looping combustion of methane[J]. Applied Energy, 2019, 253: 113534. |
23 | SIRIWARDANE Ranjani, TIAN Hanjing, SIMONYI Thomas, et al. Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion[J]. Fuel, 2013, 108: 319-333. |
24 | GALVITA Vladimir V, POELMAN Hilde, DETAVERNIER Christophe, et al. Catalyst-assisted chemical looping for CO2 conversion to CO[J]. Applied Catalysis B: Environmental, 2015, 164: 184-191. |
25 | MOGHTADERI Behdad. Review of the recent chemical looping process developments for novel energy and fuel applications[J]. Energy & Fuels, 2012, 26(1): 15-40. |
26 | PLOU J, DURÁN P, HERGUIDO J, et al. Purified hydrogen from synthetic biogas by joint methane dry reforming and steam-iron process: Behaviour of metallic oxides and coke formation[J]. Fuel, 2014, 118: 100-106. |
27 | ZHU Xing, LI Kongzhai, WEI Yonggang, et al. Chemical-looping steam methane reforming over a CeO2-Fe2O3 oxygen carrier: Evolution of its structure and reducibility[J]. Energy & Fuels, 2014, 28(2): 754-760. |
28 | HOLLADAY J D, HU J, KING D L, et al. An overview of hydrogen production technologies[J]. Catalysis Today, 2009, 139(4): 244-260. |
29 | GALVITA Vladimir, SUNDMACHER Kai. Hydrogen production from methane by steam reforming in a periodically operated two-layer catalytic reactor[J]. Applied Catalysis A: General, 2005, 289(2): 121-127. |
30 | HE Fang, WEI Yonggang, LI Haibin, et al. Synthesis gas generation by chemical-looping reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn oxides[J]. Energy & Fuels, 2009, 23(4): 2095-2102. |
31 | LI Danyang, LI Kongzhai, XU Ruidong, et al. Enhanced CH4 and CO oxidation over Ce1– x Fe x O2– δ hybrid catalysts by tuning the lattice distortion and the state of surface iron species[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19227-19241. |
32 | DE VOS Yoran, JACOBS Marijke, VAN DER VOORT Pascal, et al. Development of stable oxygen carrier materials for chemical looping processes—A review[J]. Catalysts, 2020, 10(8): 926. |
33 | WENZEL Marcus, DHARANIPRAGADA NVR Aditya, GALVITA Vladimir V, et al. CO production from CO2 via reverse water-gas shift reaction performed in a chemical looping mode: Kinetics on modified iron oxide[J]. Journal of CO2 Utilization, 2016, 17: 60-68. |
34 | SONG Tao, SHEN Laihong. Review of reactor for chemical looping combustion of solid fuels[J]. International Journal of Greenhouse Gas Control, 2018, 76: 92-110. |
35 | HOSSAIN Mohammad M, DE LASA Hugo I. Chemical-looping combustion (CLC) for inherent CO2 separations—A review[J]. Chemical Engineering Science, 2008, 63(18): 4433-4451. |
36 | FAN Liang-Shih, ZENG Liang, WANG William, et al. Chemical looping processes for CO2 capture and carbonaceous fuel conversion—Prospect and opportunity[J]. Energy & Environmental Science, 2012, 5(6): 7254-7280. |
37 | ZHOU Zhihao, SUN Zhenkun, DUAN L. Chemical looping: A flexible platform technology for CH4 conversion coupled with CO2 utilization[J]. Current Opinion in Green and Sustainable Chemistry, 2023, 39: 100721. |
38 | HU Jiawei, GALVITA V, POELMAN H, et al. Pressure-induced deactivation of core-shell nanomaterials for catalyst-assisted chemical looping[J]. Applied Catalysis B: Environmental, 2019, 247: 86-99. |
39 | HAFIZI A, RAHIMPOUR M R, HASSANAJILI S. Calcium promoted Fe/Al2O3 oxygen carrier for hydrogen production via cyclic chemical looping steam methane reforming process[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16159-16168. |
40 | HUANG Weichen, KUO Yulin, SU Yuming, et al. A facile method for sodium-modified Fe2O3/Al2O3 oxygen carrier by an air atmospheric pressure plasma jet for chemical looping combustion process[J]. Chemical Engineering Journal, 2017, 316: 15-23. |
41 | YIN Xianglei, WANG Shen, SUN Rong, et al. A Ce-Fe oxygen carrier with a core-shell structure for chemical looping steam methane reforming[J]. Industrial & Engineering Chemistry Research, 2020, 59: 9775-9786. |
42 | Zhou Z, Li L, Liu X, et al. Accelerated syngas generation from chemical looping CH4 reforming by using reduced ilmenite ore as catalyst[J]. Fuel Processing Technology, 2022, 232: 107270. |
43 | HAFIZI A, RAHIMPOUR M R, HASSANAJILI S. Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier[J]. Applied Energy, 2016, 165: 685-694. |
44 | YUAN Kai, WANG Yuhao, LI Kongzhai, et al. LaFe0.8Co0.15Cu0.05O3 supported on silicalite-1 as a durable oxygen carrier for chemical looping reforming of CH4 coupled with CO2 reduction[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 39004-39013. |
45 | ZHU Yanyan, SUN Xueyan, Liu Weiwei, et al. Microstructure and reactivity evolution of LaFeAl oxygen carrier for syngas production via chemical looping CH4/CO2 reforming[J]. International Journal of Hydrogen Energy, 2017, 42(52): 30509-30524. |
46 | ZHAO Xiao, ZHOU Hui, SIKARWAR Vineet Singh, et al. Biomass-based chemical looping technologies: The good, the bad and the future[J]. Energy & Environmental Science, 2017, 10(9): 1885-1910. |
47 | AHMAD SALAM Farooqi, MOHAMMAD Yusuf, ASMAWATI Mohd Zabidi Noor, et al. A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts[J]. International Journal of Hydrogen Energy, 2021, 46(60): 31024-31040. |
48 | Hou K, Hughes R. The kinetics of methane steam reforming over a Ni/α-Al2O catalyst[J]. Chemical Engineering Journal, 2001, 82(1): 311-328. |
49 | KAWI Sibudjing, KATHIRASER Yasotha, NI Jun, et al. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane[J]. ChemSusChem, 2015, 8(21): 3556-3575. |
50 | GAO Xingyuan, LI Jinyu, ZHENG Mudi, et al. Recent progress in anti-coking Ni catalysts for thermo-catalytic conversion of greenhouse gases[J]. Process Safety and Environmental Protection, 2021, 156: 598-616. |
51 | GAYÁN P, DE DIEGO L F, GARCÍA-LABIANO F, et al. Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2008, 87(12): 2641-2650. |
52 | Ma S, Cheng F, Meng J, et al. Ni-enhanced red mud oxygen carrier for chemical looping steam methane reforming[J]. Fuel Processing Technology, 2022, 230: 107204. |
53 | MESHKSAR M, DANESHMAND-JAHROMI S, RAHIMPOUR M R. Synthesis and characterization of cerium promoted Ni/SBA-16 oxygen carrier in cyclic chemical looping steam methane reforming[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 76: 73-82. |
54 | FENG Y, WANG N, GUO X. Influence mechanism of supports on the reactivity of Ni-based oxygen carriers for chemical looping reforming: A DFT study[J]. Fuel, 2018, 229: 88-94. |
55 | LIU Rui, ZHANG Xianhua, LIU Tao, et al. Dynamic oxygen migration and reaction over ceria-supported nickel oxides in chemical looping partial oxidation of methane[J]. Applied Catalysis B: Environmental, 2023, 328: 122478. |
56 | 孙艳茹. 铁基载氧体颗粒结构设计及其化学链甲烷干重整性能研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2021. |
SUN Yanru. Particle structure design of iron-based oxygen carrier toward to chemical looping dry reforming[D].Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2021. | |
57 | GUAN Yu, LIU Yinhe, LIN Xiaolong, et al. Research progress and perspectives of solid fuels chemical looping reaction with Fe-based oxygen carriers[J]. Energy & Fuels, 2022, 36(23): 13956-13984. |
58 | MORE Amey, BHAVSAR Saurabh, VESER Prof Götz. Iron-nickel alloys for carbon dioxide activation by chemical looping dry reforming of methane[J]. Energy Technology, 2016, 4(10): 1147-1157. |
59 | ZHANG Huixin, YU Xiyang, SU Xue, et al. Dopant-Enhanced harmonization of α-Fe2O3 oxygen migration and surface catalytic reactions during chemical looping reforming of methane[J]. Chemical Engineering Journal, 2024, 481: 148446. |
60 | DE VOS Yoran, JACOBS Marijke, VAN DRIESSCHE Isabel, et al. Processing and characterization of Fe-based oxygen carriers for chemical looping for hydrogen production[J]. International Journal of Greenhouse Gas Control, 2018, 70: 12-21. |
61 | LI Yang, LIU Mingkai, ZHANG Jinrui, et al. Mid-temperature chemical looping methane reforming for hydrogen production via iron-based oxygen carrier particles[J]. Fuel Processing Technology, 2024, 253: 108026. |
62 | 王志美. 制备参数对铜基载氧体性能影响的实验研究[D]. 沈阳: 东北大学, 2013. |
WANG Zhimei. The experiment study of synthesis parameters on the Cu-based oxygen carriers[D].Shenyang: Northeastern University, 2013. | |
63 | NEAL Luke, SHAFIEFARHOOD Arya, LI Fanxing. Effect of core and shell compositions on MeO x @La y Sr1- y FeO3 core-shell redox catalysts for chemical looping reforming of methane[J]. Applied Energy, 2015, 157: 391-398. |
64 | CABELLO A, MENDIARA T, ABAD A, et al. Production of hydrogen by chemical looping reforming of methane and biogas using a reactive and durable Cu-based oxygen carrier[J]. Fuel, 2022, 322: 124250. |
65 | NADGOUDA Sourabh G, GUO Mengqing, TONG Andrew, et al. High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process[J]. Applied Energy, 2019, 235: 1415-1426. |
66 | JIN Hongguang, OKAMOTO Toshihiro, ISHIDA Masaru. Development of a novel chemical-looping combustion: Synthesis of a looping material with a double metal oxide of CoO-NiO[J]. Energy & Fuels, 1998, 12(6): 1272-1277. |
67 | ALALWAN Hayder A, CWIERTNY David M, GRASSIAN Vicki H. Co3O4 nanoparticles as oxygen carriers for chemical looping combustion: A materials characterization approach to understanding oxygen carrier performance[J]. Chemical Engineering Journal, 2017, 319: 279-287. |
68 | 曾良鹏, 黄樊, 祝星, 等. 铈基与钴基Co3O4-CeO2氧载体上甲烷化学链转化特性: 产物选择性控制[J]. 高等学校化学学报, 2017, 38(1): 115-125. |
ZENG Liangpeng, HUANG Fan, ZHU Xing, et al. Chemical looping conversion of methane over CeO2-based and Co3O4-based Co3O4-CeO2 oxygen carriers: Controlling of product selectivity[J]. Chemical Journal of Chinese Universities, 2017, 38(1): 115-125. | |
69 | Tian H, Simonyi T, Poston J, et al. Effect of hydrogen sulfide on chemical looping combustion of coal-derived synthesis gas over bentonite-supported metal-oxide oxygen carriers[J]. Industrial & Engineering Chemistry Research, 2009, 48(18): 8418-8430. |
70 | ADÁNEZ J, DE DIEGO L F, GARCÍA LABIANO F, et al. Selection of oxygen carriers for chemical-looping combustion[J]. Energy & Fuels, 2004, 18(2): 371-377. |
71 | ZHAO Yunlei, JIN Bo, YAO Wenxing, et al. Thermodynamic simulation and experimental investigation of manganese oxide (MnO x ) for integrated CO2 capture and conversion via chemical looping route[J]. Fuel, 2023, 344: 127997. |
72 | CAMPBELL Charles T, PEDEN Charles H F. Oxygen vacancies and catalysis on ceria surfaces[J]. Science, 2005, 309(5735): 713-714. |
73 | Zheng Y, Zhu X, Wang H, et al. Characteristic of macroporous CeO2-ZrO2 oxygen carrier for chemical-looping steam methane reforming[J]. Journal of Rare Earths, 2014, 32(9): 842-848. |
74 | LI Ruiming, ZHANG Juping, SHI Jian, et al. Regulation of metal-support interface of Ni/CeO2 catalyst and the performance of low temperature chemical looping dry reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1458-1470. |
75 | ZHENG Yane, LI Kongzhai, WANG Hua, et al. Enhanced activity of CeO2-ZrO2 solid solutions for chemical-looping reforming of methane via tuning the macroporous structure[J]. Energy & Fuels, 2016, 30(1): 638-647. |
76 | ZHANG Weixiang, ZHANG Lina, PEI S, et al. Rational design and reduction kinetics of efficient Ce-Co oxygen carriers for chemical looping reforming of methane[J]. Fuel, 2023, 345: 128208. |
77 | MICCIO F, LANDI E, NATALI Murri A, et al. Fluidized bed reforming of methane by chemical looping with cerium oxide oxygen carriers[J]. Chemical Engineering Research and Design, 2023, 191: 568-577. |
78 | ZHAO Kun, HE Fang, HUANG Zhen, et al. CaO/MgO modified perovskite type oxides for chemical-looping steam reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 680-688. |
79 | SHI R, WATERHOUSE G I N, ZHANG T. Recent progress in photocatalytic CO2 reduction over perovskite oxides[J]. Solar RRL, 2017, 1(11): 1700126. |
80 | FARHANG Yaghoub, Ehsan TAHERI-NASSAJ, REZAEI Mehran. Improvement of CO oxidation and CH4 combustion by Pd and Pt partial substitution on LaMn0.5Cu0.5O3 perovskite[J]. Langmuir, 2023, 39(44): 15465-15473. |
81 | Hou X, Ren J, Li F, et al. Research progress of perovskite materials as catalysts[J]. IOP Conference Series: Earth and Environmental Science, 2019, 295(3): 032020. |
82 | RONG Yaoguang, HU Yue, MEI Anyi, et al. Challenges for commercializing perovskite solar cells[J]. Science, 2018, 361(6408): eaat8235. |
83 | DING Haoran, XU Yongqing, LUO Cong, et al. A novel composite perovskite-based material for chemical-looping steam methane reforming to hydrogen and syngas[J]. Energy Conversion and Management, 2018, 171: 12-19. |
84 | CHANG Wenxi, GAO Yuming, HE Jiahui, et al. Asymmetric coordination activated lattice oxygen in perovskite ferrites for selective anaerobic oxidation of methane[J]. Journal of Materials Chemistry A, 2023, 11(9): 4651-4660. |
85 | XIA Xue, CHANG Wenxi, CHENG Shuwen, et al. Oxygen activity tuning via FeO6 octahedral tilting in perovskite ferrites for chemical looping dry reforming of methane[J]. ACS Catalysis, 2022, 12(12): 7326-7335. |
86 | LEE Minbeom, Hyun Suk LIM, KIM Yikyeom, et al. Enhancement of highly-concentrated hydrogen productivity in chemical looping steam methane reforming using Fe-substituted LaCoO3 [J]. Energy Conversion and Management, 2020, 207: 112507. |
87 | CAO Dingshan, LUO Cong, WU Fan, et al. Screening loaded perovskite oxygen carriers for chemical looping steam methane reforming[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107315. |
88 | YIN Xianglei, WANG Shen, WANG Baoyi, et al. Perovskite-type LaMn1- x B x O3+ δ (B=Fe, CO and Ni) as oxygen carriers for chemical looping steam methane reforming[J]. Chemical Engineering Journal, 2021, 422: 128751. |
89 | GALINSKY N, MISHRA A, ZHANG J, et al. Ca1- x A x MnO3 (A=Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)[J]. Applied Energy, 2015, 157: 358-367. |
90 | 沈阳, 赵坤, 何方, 等. 三维有序大孔钙钛矿型氧化物LaFe0.7Co0.3O3的合成及甲烷化学链水蒸气重整性能[J]. 燃料化学学报, 2016, 44(10): 1168-1176. |
SHEN Yang, ZHAO Kun, HE Fang, et al. Synthesis of three-dimensionally ordered macroporous LaFe0.7Co0.3O3 perovskites and their performance for chemical-looping steam reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1168-1176. | |
91 | Li M, Zhao K, Zhao Z, et al. Enhanced hydrogen-rich syngas generation in chemical looping methane reforming using an interstitial doped La1.6Sr0.4FeCoO6 [J]. International Journal of Hydrogen Energy, 2019, 44(21): 10250-10264. |
92 | YANG Liuqing, ZHAO Zirui, CUI Chen, et al. Effect of nickel and cobalt doping on the redox performance of SrFeO3- δ toward chemical looping dry reforming of methane[J]. Energy & Fuels, 2023, 37(16): 12045-12057. |
93 | TIAN M, WANG X D, ZHANG T. Hexaaluminates: A review of the structure, synthesis and catalytic performance[J]. Catalysis Science & Technology, 2016, 6(7): 1984-2004. |
94 | YANG Qian, CHEN Lihua, JIN Nannan, et al. Boosted carbon resistance of ceria-hexaaluminate by in situ formed CeFe x Al1– x O3 as oxygen pool for chemical looping dry reforming of methane[J]. Applied Catalysis B: Environmental, 2023, 330: 122636. |
95 | 靳南南, 张立, 朱燕燕, 等. 甲烷化学链重整制合成气用氧载体的研究进展[J]. 天然气化工(C1化学与化工), 2019, 44(3): 106-116. |
JIN Nannan, ZHANG Li, ZHU Yanyan, et al. Research progress in oxygen carriers for syngas production via chemical looping reforming of methane[J]. Natural Gas Chemical Industry, 2019, 44(3): 106-116. | |
96 | ZHU Yanyan, WANG Xiaodong, WANG Aiqin, et al. Identification of the chemical state of Fe in barium hexaaluminate using Rietveld refinement and 57Fe Mössbauer spectroscopy[J]. Journal of Catalysis, 2011, 283(2): 149-160. |
97 | ZHU Yanyan, LIU Ruilin, SUN Xueyan, et al. Metal modified hexaaluminates for syngas generation and CO2 utilization via chemical looping[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10218-10231. |
98 | Zhu Y, Jin N, Liu R, et al. Bimetallic BaFe2MAl9O19 (M = Mn, Ni, and Co) hexaaluminates as oxygen carriers for chemical looping dry reforming of methane[J]. Applied Energy, 2020, 258: 114070. |
99 | 刘永卓. 化学链燃烧过程钙基载氧体的研究[D]. 青岛: 青岛科技大学, 2010. |
LIU Yongzhuo. Study on the Ca-based oxygen carriers for the chemical looping combustion[D].Qingdao: Qingdao University of Science & Technology, 2010. | |
100 | DANIEL Sastre, ÁLVAREZ Galván Consuelo, PATRICIA Pizarro, et al. Enhanced performance of CH4 dry reforming over La0.9Sr0.1FeO3/YSZ under chemical looping conditions[J]. Fuel, 2022, 309: 122122. |
101 | LONG Yanhui, LI Kongzhai, GU Z, et al. Ce-Fe-Zr-O/MgO coated monolithic oxygen carriers for chemical looping reforming of methane to co-produce syngas and H2 [J]. Chemical Engineering Journal, 2020, 388: 124190. |
102 | HESSAMODIN Nourbakhsh, YASIN Khani, AKBAR Zamaniyan, et al. Hydrogen and syngas production through dynamic chemical looping reforming-decomposition of methane[J]. International Journal of Hydrogen Energy, 2022, 47(17): 9835-9852. |
103 | NAZARI Mousa, SOLTANIEH Mohammad, HEYDARINASAB Amir, et al. Synthesis of a new self-supported Mg y (Cu x Ni0.6- x Mn0.4)1- y Fe2O4 oxygen carrier for chemical looping steam methane reforming process[J]. International Journal of Hydrogen Energy, 2021, 46(37): 19397-19420. |
104 | HU Jun, LI Haobo, CHEN Shiyi, et al. Enhanced Fe2O3/Al2O3 oxygen carriers for chemical looping steam reforming of methane with different Mg ratios[J]. Industrial & Engineering Chemistry Research, 2022, 61(2): 1022-1031. |
105 | SUN Yanru, LI Jun, LI Hongzhong. Core-shell-like Fe2O3/MgO oxygen carriers matched with fluidized bed reactor for chemical looping reforming[J]. Chemical Engineering Journal, 2022, 431: 134173. |
106 | KUO Yulin, HSU Weu-Mau, CHIU Ping-Chin, et al. Assessment of redox behavior of nickel ferrite as oxygen carriers for chemical looping process[J]. Ceramics International, 2013, 39(5): 5459-5465. |
107 | BOUKHA Z, JIMÉNEZ-GONZÁLEZ C, RIVAS B, et al. Synthesis, characterisation and performance evaluation of spinel-derived Ni/Al2O3 catalysts for various methane reforming reactions[J]. Applied Catalysis B-environmental, 2014, 158: 190-201. |
108 | MINHAS Rashid, KHOJA Asif Hussain, NAEEM Nida, et al. Thermal steam methane reforming over bimetal-loaded hemp-derived activated carbon-based catalyst for hydrogen production[J]. Research on Chemical Intermediates, 2023, 49(7): 3181-3203. |
109 | Mukasyan A S, Epstein P, Dinka P. Solution combustion synthesis of nanomaterials[J]. Proceedings of the Combustion Institute, 2007, 31(2): 1789-1795. |
110 | 刘黎明. 煤基化学链燃烧技术的氧载体研究[D]. 武汉: 华中科技大学, 2007. |
LIU Liming. Study on oxygen carriers for chemical looping combustion of coal[D].Wuhan: Huazhong University of Science and Technology, 2007. | |
111 | YIKYEOM Kim, SEOK Kim Hyeon, DOHYUNG Kang, et al. Enhanced redox performance of LaFeO3 perovskite through in situ exsolution of iridium nanoparticles for chemical looping steam methane reforming[J]. Chemical Engineering Journal, 2023, 468: 143662. |
112 | SAYYED Sheraj Z, VAIDYA Prakash D. Chemical looping-steam reforming of biogas and methane over lanthanum-based perovskite for improved production of syngas and hydrogen[J]. Energy & Fuels, 2023, 37(23): 19082-19091. |
113 | TANG Mingchen, XU Long, FAN Maohong. Progress in oxygen carrier development of methane-based chemical-looping reforming: A review[J]. Applied Energy, 2015, 151: 143-156. |
114 | Jochen STRÖHLE, ORTH Matthias, EPPLE Bernd. Design and operation of a 1MWth chemical looping plant[J]. Applied Energy, 2014, 113: 1490-1495. |
115 | MARX Falko, DIERINGER Paul, Jochen STRÖHLE, et al. Design of a 1MWth pilot plant for chemical looping gasification of biogenic residues[J]. Energies, 2021, 14(9): 2581. |
116 | HOSSEINI Seyyed Yaghoob, KHOSRAVI-NIKOU Mohammad Reza, SHARIATI Ahmad. Production of hydrogen and syngas using chemical looping technology via cerium-iron mixed oxides[J]. Chemical Engineering and Processing-Process Intensification, 2019, 139: 23-33. |
117 | WANG Yajing, ZHENG Yane, WANG Yuhao, et al. Syngas production modified by oxygen vacancies over CeO2-ZrO2-CuO oxygen carrier via chemical looping reforming of methane[J]. Applied Surface Science, 2019, 481: 151-160. |
118 | PARK Cody, HSIEH Tien-Lin, POTTIMURTHY Yaswanth, et al. Design and operations of a 15kWth subpilot unit for the methane-to-syngas chemical looping process with CO2 utilization[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 6886-6899. |
119 | ZENG Liang, LUO Siwei, SRIDHAR Deepak, et al. Chemical looping processes: Particle characterization, ionic diffusion-reaction mechanism and reactor engineering[J]. Reviews in Chemical Engineering, 2012, 28(1): 1-42. |
120 | JOSHI Anuj, SHAH Vedant, MOHAPATRA Pinak, et al. Chemical looping—A perspective on the next-gen technology for efficient fossil fuel utilization[J]. Advances in Applied Energy, 2021, 3: 100044. |
121 | ORTIZ M, DE DIEGO L F, ABAD A, et al. Hydrogen production by auto-thermal chemical-looping reforming in a pressurized fluidized bed reactor using Ni-based oxygen carriers[J]. International Journal of Hydrogen Energy, 2010, 35(1): 151-160. |
122 | LYNGFELT Anders, MOLDENHAUER Patrick, BIERMANN Max, et al. Operational experiences of chemical-looping combustion with 18 manganese ores in a 300W unit[J]. International Journal of Greenhouse Gas Control, 2023, 127: 103937. |
123 | Tobias PRÖLL, KOLBITSCH Philipp, Johannes BOLHÀR-NORDENKAMPF, et al. A novel dual circulating fluidized bed system for chemical looping processes[J]. AIChE Journal, 2009, 55(12): 3255-3266. |
124 | ZACHARIAS Robert, VISENTIN Simone, BOCK Sebastian, et al. High-pressure hydrogen production with inherent sequestration of a pure carbon dioxide stream via fixed bed chemical looping[J]. International Journal of Hydrogen Energy, 2019, 44(16): 7943-7957. |
125 | BOCK Sebastian, ZACHARIAS Robert, HACKER Viktor. Co-production of pure hydrogen, carbon dioxide and nitrogen in a 10kW fixed-bed chemical looping system[J]. Sustainable Energy & Fuels, 2020, 4(3): 1417-1426. |
126 | HUA Xiuning, ZHU Jie, WU Xiaoshuang, et al. Packed bed chemical looping platform: Design and operation of 30kWth pilot unit[J]. Procedia Environmental Sciences, 2016, 31: 81-90. |
127 | Magnus RYDÉN, LYNGFELT Anders. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1271-1283. |
128 | GARCÍA-DÍEZ E, GARCÍA-LABIANO F, DE DIEGO L F, et al. Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities[J]. Applied Energy, 2016, 169: 491-498. |
129 | HE Zirui, DE WILDE Juray. Numerical simulation of commercial scale autothermal chemical looping reforming and bi-reforming for syngas production[J]. Chemical Engineering Journal, 2021, 417: 128088. |
130 | KHAN Mohammed N, SHAMIM Tariq. Thermodynamic screening of suitable oxygen carriers for a three reactor chemical looping reforming system[J]. International Journal of Hydrogen Energy, 2017, 42(24): 15745-15760. |
131 | KHAN Mohammed N, SHAMIM Tariq. Investigation of hydrogen generation in a three reactor chemical looping reforming process[J]. Applied Energy, 2016, 162: 1186-1194. |
132 | MA Shiwei, LI Meng, WANG Genbao, et al. Effects of Zr doping on Fe2O3/CeO2 oxygen carrier in chemical looping hydrogen generation[J]. Chemical Engineering Journal, 2018, 346: 712-725. |
133 | CHAVDA Akash, MEHTA Pranav, HARICHANDAN Atal. Numerical analysis of multiphase flow in chemical looping reforming process for hydrogen production and CO2 capture[J]. Experimental and Computational Multiphase Flow, 2022, 4(4): 360-376. |
134 | ZHENG Teng, LI Mengjun, MEI Daofeng, et al. Effect of H2S presence on chemical looping reforming (CLR) of biogas with a firebrick supported NiO oxygen carrier[J]. Fuel Processing Technology, 2022, 226: 107088. |
135 | STOPPACHER B, BOCK S, MALLI K, et al. The influence of hydrogen sulfide contaminations on hydrogen production in chemical looping processes[J]. Fuel, 2022, 307: 121677. |
[1] | 王彦红, 蒋雷, 薛帅, 李洪伟, 贾玉婷. 预冷通道中超临界甲烷换热特性分析[J]. 化工进展, 2024, 43(4): 1690-1699. |
[2] | 郭潇东, 毛玉娇, 刘相洋, 邱丽, 于峰, 闫晓亮. Ni/Sm2O3-CeO2/Al2O3催化剂氧空位对二氧化碳低温甲烷化的影响[J]. 化工进展, 2024, 43(4): 1840-1850. |
[3] | 王旭栋, 刘敦禹, 许开龙, 刘秋祺, 范昀培, 金晶. CeO2载氧体对煤化学链燃烧中汞迁移影响机制[J]. 化工进展, 2024, 43(4): 2191-2200. |
[4] | 张鹏飞, 陈伟鹏, 肖卓楠, 吕青岗, 张顺风, 张子峰. 红砖掺杂改性白云鄂博铁精矿载氧体性能[J]. 化工进展, 2024, 43(4): 2226-2234. |
[5] | 孙崇正, 李玉星, 许洁, 韩辉, 宋光春, 卢晓. 浮式氢能储运过程中FLH2通道管外降膜流动的海上适应性强化机理[J]. 化工进展, 2024, 43(1): 338-352. |
[6] | 成昊霖, 年瑶, 韩优. CH4和CO2共转化反应机理研究进展[J]. 化工进展, 2024, 43(1): 60-75. |
[7] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[8] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[9] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[10] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[11] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[12] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[13] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[14] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[15] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |