化工进展 ›› 2025, Vol. 44 ›› Issue (10): 5663-5672.DOI: 10.16085/j.issn.1000-6613.2025-0612
• 能源加工与技术 • 上一篇
黄婷1,2(
), 李丹1,2, 谢振强1,2, 姚海元1,2(
), 付强1,2, 李焱1,2, 杨博1,2, 秦蕊1,2
收稿日期:2025-04-25
修回日期:2025-07-07
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
姚海元
作者简介:黄婷(1991—),女,高级工程师,研究方向为天然气水合物流动保障技术。E-mail:huangting7@cnooc.com.cn。
基金资助:
HUANG Ting1,2(
), LI Dan1,2, XIE Zhenqiang1,2, YAO Haiyuan1,2(
), FU Qiang1,2, LI Yan1,2, YANG Bo1,2, QIN Rui1,2
Received:2025-04-25
Revised:2025-07-07
Online:2025-10-25
Published:2025-11-10
Contact:
YAO Haiyuan
摘要:
随着深水凝析气田的大规模勘探和开发,深水凝析气输送管道中水合物与蜡耦合沉积堵塞问题日益引发关注。探明蜡对水合物沉积堵塞和解堵的影响机制,有效控制水合物和蜡耦合沉积和堵塞过程,形成高效的解堵技术,能够有力推动水合物流动保障策略从完全抑制向风险管理转变。本文围绕近年来油气混输管流体系下水合物和蜡沉积堵塞及解堵的研究成果,阐述了蜡对水合物成核、生长、聚集、沉积堵塞和流体流变性的作用规律,解析了注热力学抑制剂和降压条件下水合物和蜡耦合防控和解堵效果,梳理了水合物分解动力学模型研究现状,分析了模型对蜡的传质传热作用表征情况。基于此建议下一步针对深水凝析气输送管道的特点,充分考虑水相和蜡的分布形式,耦合流动参数影响,表征沉积层抗剪强度,深入解析凝析气输送管道水合物和蜡沉积堵塞机制;揭示水合物和蜡耦合沉积堵塞解堵过程中的传质传热机理,建立并完善适用于深水凝析气输送管道的水合物与蜡耦合堵塞的解堵预测模型,为完善深水油气混输管道水合物流动保障技术体系提供理论基础,支持现场防控决策。
中图分类号:
黄婷, 李丹, 谢振强, 姚海元, 付强, 李焱, 杨博, 秦蕊. 凝析气管道水合物与蜡耦合沉积堵塞及解堵研究进展[J]. 化工进展, 2025, 44(10): 5663-5672.
HUANG Ting, LI Dan, XIE Zhenqiang, YAO Haiyuan, FU Qiang, LI Yan, YANG Bo, QIN Rui. Research progress on plugging and unplugging of coupled hydrate and wax deposition in condensate gas pipelines[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5663-5672.
| [1] | SLOAN E D, KOH C. Clathrate hydrates of natural gases[M]. Boca Raton: CRC Press, 2007. |
| [2] | 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 2版. 北京: 化学工业出版社, 2020. |
| CHEN Guangjin, SUN Changyu, MA Qinglan. Gas hydrate science and technology[M]. 2nd ed. Beijing: Chemical Industry Press, 2020. | |
| [3] | WANG Yijie, HUANG Qiyu, ZHANG Dongxu, et al. Influence of asphaltenes on hydrate formation and decomposition in water-in-waxy oil emulsions[J]. Energy & Fuels, 2022, 36(24): 14710-14722. |
| [4] | XU Hongfei, KHAN Faisal, JUNG Seungho, et al. Probabilistic model for hydrate and wax risk assessment in oil and gas pipelines[J]. Process Safety and Environmental Protection, 2023, 170: 11-18. |
| [5] | ZHANG Jie, LI Chuanxian, SHI Lei, et al. The formation and aggregation of hydrate in W/O emulsion containing different compositions: A review[J]. Chemical Engineering Journal, 2022, 445: 136800. |
| [6] | LIU Yang, ZHANG Yan, Xiaofang LYU, et al. Study of the rheology and flow risk of hydrate slurries containing combined anti-agglomerants: Effects of wax, water cut and continuous phase composition[J]. Chemical Engineering Science, 2025, 302: 120921. |
| [7] | MELCHUNA A, ZHANG Xianwei, Jeong-Hoon SA, et al. Flow risk index: A new metric for solid precipitation assessment in flow assurance management applied to gas hydrate transportability[J]. Energy & Fuels, 2020, 34(8): 9371-9378. |
| [8] | MAHABADIAN Mohammadreza Ameri, CHAPOY Antonin, BURGASS Rod, et al. Mutual effects of paraffin waxes and clathrate hydrates: A multiphase integrated thermodynamic model and experimental measurements[J]. Fluid Phase Equilibria, 2016, 427: 438-459. |
| [9] | 柳扬. 蜡与水合物共存W/O体系流动及沉积规律研究[D]. 北京: 中国石油大学(北京), 2019. |
| LIU Yang. Study on the flow and deposition mechanisms of W/O systems containing wax and hydrates[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
| [10] | GENG Xin, WANG Shixin, WANG Chunhui, et al. Effect of wax on hydrate formation and aggregation characteristics of water-in-oil emulsion[J]. Fuel, 2024, 373: 132267. |
| [11] | WANG Lin, CHEN Jiaxin, MA Tingxia, et al. Experimental study of methane hydrate formation and agglomeration in waxy oil-in-water emulsions[J]. Energy, 2024, 288: 129945. |
| [12] | 王唯. 含蜡油包水乳状液体系水合物生成及聚集机理研究[D]. 北京: 中国石油大学(北京), 2020. |
| WANG Wei. Study on hydrate formation and aggregation mechanism of water-in-oil emulsion system containing wax oil[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
| [13] | TONG Shikun, YAN Kele, ZHANG Jianbo, et al. Investigation of wax on hydrate formation in emulsions: Dual-scale experiments and mechanism[J]. Chemical Engineering Science, 2025, 305: 121118. |
| [14] | GUO Penghao, SONG Guangchun, NING Yuanxing, et al. Investigation on hydrate growth at oil-water interface: In the presence of wax[J]. Energy & Fuels, 2021, 35(15): 11884-11895. |
| [15] | WANG Wei, HUANG Qiyu, HU Sijia, et al. Influence of wax on cyclopentane clathrate hydrate cohesive forces and interfacial properties[J]. Energy & Fuels, 2020, 34(2): 1482-1491. |
| [16] | CHEN Yuchuan, SHI Bohui, LIU Yang, et al. In situ viscosity measurements of a cyclopentane hydrate slurry in waxy water-in-oil emulsions[J]. Energy & Fuels, 2019, 33(4): 2915-2925. |
| [17] | SHI Bohui, CHAI Shuai, DING Lin, et al. An investigation on gas hydrate formation and slurry viscosity in the presence of wax crystals[J]. AIChE Journal, 2018, 64(9): 3502-3518. |
| [18] | BROWN Erika P, TURNER Doug, GRASSO Giovanni, et al. Effect of wax/anti-agglomerant interactions on hydrate depositing systems[J]. Fuel, 2020, 264: 116573. |
| [19] | JING Jiaqiang, ZHUANG Lequan, KARIMOV Rinat, et al. Rheology properties of cyclopentane hydrate slurry in the presence of wax crystals[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2023, 45(3): 7629-7647. |
| [20] | 黄婷, 姚海元, 李清平, 等. 含蜡油水体系水合物生成特性实验[C]//2023年中国工程热物理学会多相流学术会议, 上海, 2023. |
| HUANG Ting, YAO Haiyuan, LING Qingping, et al. Experimental study on the formation characteristics of hydrates in waxy oil-water systems[C]// 2023’ Academic Conference on Multiphase Flow of the Chinese Society of Engineering Thermophysics, Shanghai, 2023. | |
| [21] | LIU Zhiming, GENG Xin, GAO Yan, et al. Effect of wax crystal on the kinetic and morphology of gas hydrate deposition in water-in-oil emulsions[J]. Fuel, 2022, 330: 125501. |
| [22] | LIU Yang, Xiaofang LYU, MA Qianli, et al. Investigation on synergistic deposition of wax and hydrates in waxy water-in-oil (W/O) flow systems[J]. Petroleum Science, 2022, 19(4): 1840-1852. |
| [23] | Burger E D, Perkins T K, Striegler J H. Studies of wax deposition in the trans Alaska pipeline[J]. Journal of Petroleum Technology, 1981, 33(6): 1075-1086. |
| [24] | SINGH Probjot, VENKATESAN Ramachandran, Scott FOGLER H, et al. Morphological evolution of thick wax deposits during aging[J]. AIChE Journal, 2001, 47(1): 6-18. |
| [25] | ZHOU Yuanxin, GONG Jing, WANG Pengyu. Modeling of wax deposition for water-in-oil dispersed flow[J]. Asia-Pacific Journal of Chemical Engineering, 2016, 11(1): 108-117. |
| [26] | LIU Yang, WU Chengxuan, Xiaofang LYU, et al. Hydrate growth and agglomeration in the presence of wax and anti-agglomerant: A morphology study and cohesive force measurement[J]. Fuel, 2023, 342: 127782. |
| [27] | JING Jiaqiang, YANG Hang, SUN Jie, et al. Potential kinetic effects of wax on clathrate hydrate formation: A review[J]. Geoenergy Science and Engineering, 2025, 249: 213765. |
| [28] | KUMAR Asheesh. Perspectives of flow assurance problems in oil and gas production: A mini-review[J]. Energy & Fuels, 2023, 37(12): 8142-8159. |
| [29] | TONG Shikun, REN Yuemeng, YAN Kele, et al. Investigation on coupling deposition and plugging of hydrate and wax in gas-liquid annular flow: Experiments and mechanism[J]. Fuel, 2024, 369: 131723. |
| [30] | ZHANG Jianbo, WANG Zhiyuan, LIU Shun, et al. Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety[J]. Applied Energy, 2019, 253: 113521. |
| [31] | ZHANG Jianbo, GONG Zhenggang, PAN Shaowei, et al. An improved model for predicting hydrate formation and deposition in horizontal annular flow[J]. Ocean Engineering, 2023, 286: 115603. |
| [32] | Xiaofang LYU, CHEN Feng, ZHANG Jie, et al. Numerical simulation study on multiphase flow pattern of hydrate slurry[J]. Petroleum Science, 2023, 20(6): 3897-3917. |
| [33] | PEI Jihao, SHEN Jiayi, WANG Zhiyuan, et al. Numerical simulation of hydrate flow in gas-dominated undulating pipes considering nucleation and deposition behaviors[J]. Chemical Engineering Science, 2025, 301: 120735. |
| [34] | DUBEY Sadhbhawana, GURJAR Prahlad, KUMAR Umesh, et al. Elucidating the impact of thermodynamic hydrate inhibitors and kinetic hydrate inhibitors on a complex system of natural gas hydrates: Application in flow assurance[J]. Energy & Fuels, 2023, 37(9): 6533-6544. |
| [35] | NAVANEETHA KANNAN Seetharaman, DELGADO-LINARES Jose G, SUN Hejian, et al. Influence of varying underinhibition on methanol in gas hydrate agglomeration[J]. Energy & Fuels, 2024, 38(14): 12569-12575. |
| [36] | AMAN Zachary M, DI LORENZO Mauricio, KOZIELSKI Karen, et al. Hydrate formation and deposition in a gas-dominant flowloop: Initial studies of the effect of velocity and subcooling[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 1490-1498. |
| [37] | YAGASAKI Takuma, MATSUMOTO Masakazu, ANDOH Yoshimichi, et al. Dissociation of methane hydrate in aqueous NaCl solutions[J]. The Journal of Physical Chemistry B, 2014, 118(40): 11797-11804. |
| [38] | LI Xiaoyun, GJERTSEN Lars Henrik, AUSTVIK Torstein. Thermodynamic inhibitors for hydrate plug melting[J]. Annals of the New York Academy of Sciences, 2000, 912(1): 822-831. |
| [39] | CHEN Litao, YU Changhong, LIU Hongtao, et al. Investigation on the synergistic effect of cocoamidopropyl dimethylamine to MEG in efficient hydrate plug removal[J]. Fuel, 2025, 386: 134309. |
| [40] | BOXALL John A, Song H NG, AMAN Zachary M, et al. Hydrate plug dissociation via active heating: Uniform heating and a simple predictive model[J]. Energy & Fuels, 2016, 30(11): 9275-9284. |
| [41] | DAVIES S R, SELIM M S, SLOAN E D, et al. Hydrate plug dissociation[J]. AIChE Journal, 2006, 52(12): 4016-4027. |
| [42] | KANNAN Seetharaman Navaneetha, RAVICHANDRAN Sriram, ESTANGA Douglas, et al. Modeling two-step mechanism of thermodynamic hydrate inhibitor injection for gas hydrate plug dissociation[J]. Energy & Fuels, 2024, 38(14): 12586-12594. |
| [43] | PEI Jihao, SUI Xiuan, ZHANG Jianbo, et al. Experimental study on hydrate blockage formation and decomposition in gas-dominated Fluctuating pipes[J]. Geoenergy Science and Engineering, 2024, 242: 213286. |
| [44] | PANTER Justin L, BALLARD Adam L, Amadeu K SUM, et al. Hydrate plug dissociation via nitrogen purge: Experiments and modeling[J]. Energy & Fuels, 2011, 25(6): 2572-2578. |
| [45] | LIU Zheyuan, LIU Zaixing, WANG Jiguang, et al. Hydrate blockage observation and removal using depressurization in a fully visual flow loop[J]. Fuel, 2021, 294: 120588. |
| [46] | SLOAN E D, KOH C A, SUM A. Natural gas hydrates in flow assurance[M]. Gulf Professional Publishing, 2010. |
| [47] | DE OLIVEIRA Marcia Cristina Khalil, TEIXEIRA Adriana, VIEIRA Lenise Couto, et al. Flow assurance study for waxy crude oils[J]. Energy & Fuels, 2012, 26(5): 2688-2695. |
| [48] | SKIBA Sergey, SAGIDULLIN Aleksey, SHAPOVALOVA Alexandra, et al. Texture, composition and properties of plugs formed by carbon dioxide hydrate and wax[J]. Petroleum Exploration and Development, 2021, 48(6): 1462-1470. |
| [49] | KIM H C, BISHNOI P R, HEIDEMANN R A, et al. Kinetics of methane hydrate decomposition[J]. Chemical Engineering Science, 1987, 42(7): 1645-1653. |
| [50] | WANG Xiaohui, XU Xiaojie, CAI Jin, et al. Experimental study on the intrinsic dissociation rate of methane hydrate[J]. Chemical Engineering Science, 2023, 282: 119278. |
| [51] | TAKEYA Satoshi, SHIMADA Wataru, KAMATA Yasushi, et al. In situ X-ray diffraction measurements of the self-preservation effect of CH4 hydrate[J]. The Journal of Physical Chemistry A, 2001, 105(42): 9756-9759. |
| [52] | JAMALUDDIN A K M, KALOGERAKIS N, BISHNOI P R. Modelling of decomposition of a synthetic core of methane gas hydrate by coupling intrinsic kinetics with heat transfer rates[J]. The Canadian Journal of Chemical Engineering, 1989, 67(6): 948-954. |
| [53] | 何晓霞, 余劲松, 马应海, 等. 甲烷水合物分解的缩粒动力学模型[J]. 天然气地球科学, 2005, 16(6): 818-821. |
| HE Xiaoxia, YU Jinsong, MA Yinghai, et al. Particle shrinking dynamic model for methane hydrate decomposition[J]. Natural Gas Geoscience, 2005, 16(6): 818-821. | |
| [54] | SONG Shangfei, SHI Bohui, YU Weichao, et al. A new methane hydrate decomposition model considering intrinsic kinetics and mass transfer[J]. Chemical Engineering Journal, 2019, 361: 1264-1284. |
| [55] | FEYZI Vafa, MOHEBBI Vahid. Experimental and modeling study of the kinetics of methane hydrate formation and dissociation[J]. Chinese Journal of Chemical Engineering, 2021, 29: 365-374. |
| [56] | CLARKE Matthew, BISHNOI P R. Determination of the intrinsic rate of ethane gas hydrate decomposition[J]. Chemical Engineering Science, 2000, 55(21): 4869-4883. |
| [57] | WINDMEIER Christoph, OELLRICH Lothar R. Visual observation of the methane hydrate formation and dissociation process[J]. Chemical Engineering Science, 2014, 109: 75-81. |
| [58] | ZHANG Dongxu, HUANG Qiyu, WANG Wei, et al. Effects of waxes and asphaltenes on CO2 hydrate nucleation and decomposition in oil-dominated systems[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103799. |
| [59] | TONG Shikun, LI Pengfei, Fengjun LYU, et al. Promotion and inhibition effects of wax on methane hydrate formation and dissociation in water-in-oil emulsions[J]. Fuel, 2023, 337: 127211. |
| [60] | CAI Jin, TANG Han, ZHANG Tenghua, et al. Phase equilibria of gas hydrates: A review of experiments, modeling, and potential trends[J]. Renewable and Sustainable Energy Reviews, 2025, 215: 115612. |
| [61] | WANG Jiguang, YANG Bowen, JIN Kaiming, et al. Intelligent deepwater energy development: Flow assurance monitoring and smart decision-making system[J]. The Innovation Energy, 2025, 2(2): 100081. |
| [62] | WANG Jiguang, WANG Qi, MENG Yang, et al. Flow characteristic and blockage mechanism with hydrate formation in multiphase transmission pipelines: in situ observation and machine learning predictions[J]. Fuel, 2022, 330: 125669. |
| [1] | 龙回龙, 唐浩然, 马源, 秦云锋, 包祎辉, 张增富. 典型水合物相图的数值计算方法[J]. 化工进展, 2025, 44(8): 4871-4878. |
| [2] | 王梓丞, 张海帆, 袁鹏, 孙晨, 邹炜杰, 李欣泽, 邢晓凯. 适用于超临界/密相二氧化碳管输的稳态水力热力耦合计算模型[J]. 化工进展, 2025, 44(8): 4701-4708. |
| [3] | 张鹏飞, 赵广乐, 赵阳, 莫昌艺, 任亮. 劣质蜡油中氮化物的分布、结构及其加氢转化规律分析[J]. 化工进展, 2025, 44(7): 3828-3837. |
| [4] | 甄箫斐, 杨特勃, 董缇, 齐永豪, 刘佳. 多孔介质强化水合物储气性能研究进展[J]. 化工进展, 2025, 44(6): 3413-3431. |
| [5] | 王佳琪, 刘佳兴, 魏皓琦, 周昕霖, 程传晓, 葛坤. 鼠李糖脂强化CO2水合物生成[J]. 化工进展, 2025, 44(4): 1998-2007. |
| [6] | 廖涛, 王梓丞, 张海帆, 安国钰, 熊小琴, 张文辉, 李欣泽, 邢晓凯. 超临界CO2长输管道多管段多点放空方案设计[J]. 化工进展, 2025, 44(10): 5582-5589. |
| [7] | 王世鑫, 闫锋, 刘晓利, 宋光春, 李玉星, 胡其会. “双碳”背景下二氧化碳管道输送技术研究进展[J]. 化工进展, 2025, 44(1): 17-26. |
| [8] | 张强, 孙楠, 郑俊杰, 吴强, 刘传海, 李元吉. 混合热力学促进剂对水合物法分离回收瓦斯的影响[J]. 化工进展, 2025, 44(1): 192-201. |
| [9] | 闻静, 张红婴, 张屹东, 许润泽. 月桂酸-石蜡二元共晶和纳米SiO2气凝胶新型建筑储能材料的研制和性能表征[J]. 化工进展, 2025, 44(1): 388-397. |
| [10] | 尹然, 穆野, 霍富永, 曹钦亮, 蔺港归, 王毅杰, 黄启玉. 原油组分及蜡晶结构对JH页岩油结构破坏与恢复的影响规律[J]. 化工进展, 2024, 43(S1): 590-596. |
| [11] | 徐晴晴, 张璇, 赵瑞东, 熊鑫, 蒋璐朦, 禹胜阳. 基于贝叶斯网络的掺氢管道泄漏风险评价方法[J]. 化工进展, 2024, 43(S1): 61-70. |
| [12] | 陶一, 张晨, 胡益炯, 邱彤. 基于分子结构分布的减压蜡油分子重构模型[J]. 化工进展, 2024, 43(S1): 71-76. |
| [13] | 张东旭, 刘成, 宋乐春, 黄启玉, 王唯. 乳状液体系中气体水合物成核过程研究进展[J]. 化工进展, 2024, 43(6): 3007-3020. |
| [14] | 蒋晨光, 张胜振, 张翠清, 郭屹, 孙永伟. 基于DFSS方法优化52#费托蜡的制备工艺[J]. 化工进展, 2024, 43(4): 1742-1753. |
| [15] | 孙贤, 柳军, 王晓辉, 孙长宇, 陈光进. 含下伏气的第一类天然气水合物藏开发实验与模拟研究进展[J]. 化工进展, 2024, 43(4): 2091-2103. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |