化工进展 ›› 2025, Vol. 44 ›› Issue (1): 388-397.DOI: 10.16085/j.issn.1000-6613.2023-2266
收稿日期:
2023-12-25
修回日期:
2024-02-07
出版日期:
2025-01-15
发布日期:
2025-02-13
通讯作者:
张红婴
作者简介:
闻静(1998—),女,硕士研究生,研究方向为建筑节能技术。E-mail:1002768975@qq.com。
基金资助:
WEN Jing(), ZHANG Hongying(
), ZHANG Yingdong, XU Runze
Received:
2023-12-25
Revised:
2024-02-07
Online:
2025-01-15
Published:
2025-02-13
Contact:
ZHANG Hongying
摘要:
以月桂酸(LA)和石蜡(PS)为原料制备了月桂酸-石蜡(LA-PS)二元共晶混合物,通过真空吸附法将二元共晶混合物吸附到纳米SiO2气凝胶中形成复合相变材料月桂酸-石蜡/纳米SiO2气凝胶。泄漏实验表明,纳米SiO2气凝胶对LA-PS的最大吸附率为70%;傅里叶红外光谱的结果显示,LA-PS/纳米SiO2气凝胶具有优异的化学相容性;DSC测试结果显示,LA-PS/纳米SiO2气凝胶的相变温度为35.19℃,相变潜热为115.89J/g。此外,LA-PS/纳米SiO2气凝胶的储能效率为98.99%,说明LA-PS/纳米SiO2气凝胶具有良好的蓄热性能。因此,制备的复合相变材料在玻璃窗透明围护结构利用方面,具有合适的相变温度、较高的相变潜热和较好的热稳定性和耐久性,从而具有较好的应用前景。
中图分类号:
闻静, 张红婴, 张屹东, 许润泽. 月桂酸-石蜡二元共晶和纳米SiO2气凝胶新型建筑储能材料的研制和性能表征[J]. 化工进展, 2025, 44(1): 388-397.
WEN Jing, ZHANG Hongying, ZHANG Yingdong, XU Runze. Development and performance characterization of architectural energy storage materials with lauric acid-paraffin binary eutectic and nanosized SiO2 aerogel[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 388-397.
相变材料 | 熔化温度 | 熔化潜热 | 凝固温度 | 凝固潜热 |
---|---|---|---|---|
月桂酸(LA) | 43.3 | 178.11 | 32.97 | 178.98 |
石蜡(PS) | 30.79 | 36.03 | 23.98 | 34.09 |
55.04 | 165.2 | 43.90 | 181.7 | |
LA-PS(75∶25) | 37.28 | 171.86 | 34.11 | 180.36 |
LA-PS(76∶24) | 37.25 | 181.16 | 34.23 | 179.46 |
LA-PS(77∶23) | 37.50 | 179.66 | 34.48 | 187.46 |
表1 LA-PS最佳配比及相邻比例的热物性参数
相变材料 | 熔化温度 | 熔化潜热 | 凝固温度 | 凝固潜热 |
---|---|---|---|---|
月桂酸(LA) | 43.3 | 178.11 | 32.97 | 178.98 |
石蜡(PS) | 30.79 | 36.03 | 23.98 | 34.09 |
55.04 | 165.2 | 43.90 | 181.7 | |
LA-PS(75∶25) | 37.28 | 171.86 | 34.11 | 180.36 |
LA-PS(76∶24) | 37.25 | 181.16 | 34.23 | 179.46 |
LA-PS(77∶23) | 37.50 | 179.66 | 34.48 | 187.46 |
性能 | 实验仪器 | 制造商(型号) | 实验条件 |
---|---|---|---|
CPCMs的微观形态 | 扫描电子显微镜(SEM) | FEI MLA650F, USA | — |
CPCMs的热性能稳定性 | 差示扫描量热仪(DSC) | 美国DSC2500 | 0~80℃,5℃/min,N2 |
CPCMs的化学结构 | 傅里叶变换红外光谱仪(FTIR) | 美国热电科学公司Nicolet iS20 | 波数范围:400~4000cm-1 |
CPCMs的晶体结构 | X射线衍射仪(XRD) | 德国布鲁克D8 Advance | 角度范围:5°~90° 扫描速度:10(°)/min |
CPCMs的热稳定性 | 热重分析仪(TG) | NETZSCH STA499 F5,德国 | 30~600℃,N2,10℃/min |
表2 性能表征和测试条件
性能 | 实验仪器 | 制造商(型号) | 实验条件 |
---|---|---|---|
CPCMs的微观形态 | 扫描电子显微镜(SEM) | FEI MLA650F, USA | — |
CPCMs的热性能稳定性 | 差示扫描量热仪(DSC) | 美国DSC2500 | 0~80℃,5℃/min,N2 |
CPCMs的化学结构 | 傅里叶变换红外光谱仪(FTIR) | 美国热电科学公司Nicolet iS20 | 波数范围:400~4000cm-1 |
CPCMs的晶体结构 | X射线衍射仪(XRD) | 德国布鲁克D8 Advance | 角度范围:5°~90° 扫描速度:10(°)/min |
CPCMs的热稳定性 | 热重分析仪(TG) | NETZSCH STA499 F5,德国 | 30~600℃,N2,10℃/min |
质量比 | 热处理前的质量m1/g | 热处理后的质量m2/g | 泄漏率 |
---|---|---|---|
60∶40 | 0.471 | 0.471 | 仪器未检测出 |
65∶35 | 0.418 | 0.418 | 仪器未检测出 |
70∶30 | 0.406 | 0.404 | 0.4 |
75∶25 | 0.496 | 0.490 | 1.2 |
80∶20 | 0.516 | 0.506 | 1.9 |
表3 LA-PS/纳米SiO2气凝胶的泄漏率
质量比 | 热处理前的质量m1/g | 热处理后的质量m2/g | 泄漏率 |
---|---|---|---|
60∶40 | 0.471 | 0.471 | 仪器未检测出 |
65∶35 | 0.418 | 0.418 | 仪器未检测出 |
70∶30 | 0.406 | 0.404 | 0.4 |
75∶25 | 0.496 | 0.490 | 1.2 |
80∶20 | 0.516 | 0.506 | 1.9 |
参数 | 数值/% |
---|---|
70 | |
63.97 | |
63.32 | |
91.39 | |
98.99 |
表4 LA-PS/纳米SiO2气凝胶的热性能参数
参数 | 数值/% |
---|---|
70 | |
63.97 | |
63.32 | |
91.39 | |
98.99 |
复合相变材料 | 吸附率 /% | 熔化温度 /℃ | 熔化潜热 /J·g-1 | 参考文献 |
---|---|---|---|---|
硬脂酸/膨胀石墨 | 37 | 53.2 | 48.4 | [ |
SA/海泡石 | 49 | 67.1 | 94.4 | [ |
CA-MA/蛭石 | 50 | 21.8 | 72.6 | [ |
a-MMT/SA | 48 | 59.9 | 84.4 | [ |
海泡石/石蜡 | 50 | 35.70 | 62.08 | [ |
电纺SiO2/CA-LA-PA | 81.3 | 21.7 | 100.9 | [ |
膨胀珍珠岩/LA-PA-SA | 55 | 31.8 | 81.5 | [ |
蛭石/LA-PA-SA | 50 | 31.4 | 75.8 | [ |
表5 其他复合相变材料的热物理性能
复合相变材料 | 吸附率 /% | 熔化温度 /℃ | 熔化潜热 /J·g-1 | 参考文献 |
---|---|---|---|---|
硬脂酸/膨胀石墨 | 37 | 53.2 | 48.4 | [ |
SA/海泡石 | 49 | 67.1 | 94.4 | [ |
CA-MA/蛭石 | 50 | 21.8 | 72.6 | [ |
a-MMT/SA | 48 | 59.9 | 84.4 | [ |
海泡石/石蜡 | 50 | 35.70 | 62.08 | [ |
电纺SiO2/CA-LA-PA | 81.3 | 21.7 | 100.9 | [ |
膨胀珍珠岩/LA-PA-SA | 55 | 31.8 | 81.5 | [ |
蛭石/LA-PA-SA | 50 | 31.4 | 75.8 | [ |
循环次数/次 | ||||
---|---|---|---|---|
1 | 35.19 | 115.89 | 32.45 | 112.47 |
250 | 35.64 | 115.14 | 32.75 | 111.93 |
500 | 36.29 | 114.76 | 32.90 | 108.78 |
750 | 34.33 | 112.45 | 31.16 | 102.67 |
1000 | 33.98 | 110.59 | 31.36 | 104.37 |
表6 多次冷热循环后LA-PS/纳米SiO2气凝胶的相变参数值
循环次数/次 | ||||
---|---|---|---|---|
1 | 35.19 | 115.89 | 32.45 | 112.47 |
250 | 35.64 | 115.14 | 32.75 | 111.93 |
500 | 36.29 | 114.76 | 32.90 | 108.78 |
750 | 34.33 | 112.45 | 31.16 | 102.67 |
1000 | 33.98 | 110.59 | 31.36 | 104.37 |
1 | WANG Zhoujie, QIAO Yuhao, LIU Yan, et al. Thermal storage performance of building envelopes for nearly-zero energy buildings during cooling season in Western China: An experimental study[J]. Building and Environment, 2021, 194: 107709. |
2 | 李仕国, 王烨. 中国建筑能耗现状及节能措施概述[J]. 环境科学与管理, 2008, 33(2): 6-9. |
LI Shiguo, WANG Ye. Summarization of present building energy consumption and corresponding strategies in China[J]. Environmental Science and Management, 2008, 33(2): 6-9. | |
3 | CUCE Erdem, RIFFAT Saffa B. A state-of-the-art review on innovative glazing technologies[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 695-714. |
4 | ZHONG Kecheng, LI Shuhong, SUN Gaofeng, et al. Simulation study on dynamic heat transfer performance of PCM-filled glass window with different thermophysical parameters of phase change material[J]. Energy and Buildings, 2015, 106: 87-95. |
5 | WAN Xian, CHEN Cong, TIAN Songyun, et al. Thermal characterization of net-like and form-stable ML/SiO2 composite as novel PCM for cold energy storage[J]. Journal of Energy Storage, 2020, 28: 101276. |
6 | TYAGI V V, CHOPRA K, SHARMA R K, et al. A comprehensive review on phase change materials for heat storage applications: Development, characterization, thermal and chemical stability[J]. Solar Energy Materials and Solar Cells, 2022, 234: 111392. |
7 | LI Shuhong, SUN Gaofeng, ZOU Kaikai, et al. Experimental research on the dynamic thermal performance of a novel triple-pane building window filled with PCM[J]. Sustainable Cities and Society, 2016, 27: 15-22. |
8 | ZHANG Yinping, ZHOU Guobing, LIN Kunping, et al. Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook[J]. Building and Environment, 2007, 42(6): 2197-2209. |
9 | ZHOU Jiahong, FEI Hua, HE Qian, et al. Structural characteristics and thermal performances of lauric-myristic-palmitic acid introduced into modified water hyacinth porous biochar for thermal energy storage[J]. Science of the Total Environment, 2023, 882: 163670. |
10 | HE Qian, FEI Hua, ZHOU Jiahong, et al. Utilization of carbonized water hyacinth for effective encapsulation and thermal conductivity enhancement of phase change energy storage materials[J]. Construction and Building Materials, 2023, 372: 130841. |
11 | M Francis Luther KING, RAO Putta Nageswara, SIVAKUMAR A, et al. Thermal performance of a double-glazed window integrated with a phase change material (PCM)[J]. Materials Today: Proceedings, 2022, 50: 1516-1521. |
12 | RATTANONGPHISAT Waraporn. Experimental study of double glass window with phase change material[J]. Advanced Materials Research, 2013, 770: 46-49. |
13 | KAUSHIK Nitish, SARAVANAKUMAR P, DHANASEKHAR S, et al. Thermal analysis of a double-glazing window using a Nano-Disbanded Phase Changing Material (NDPCM)[J]. Materials Today: Proceedings, 2022, 62: 1702-1707. |
14 | Martin KOLÁČEK, Hana CHARVÁTOVÁ, Stanislav SEHNÁLEK. Experimental and numerical research of the thermal properties of a PCM window panel[J]. Sustainability, 2017, 9(7): 1222. |
15 | GHADIM Hamidreza Benisi, SHAHBAZ Kaveh, Refat AL-SHANNAQ, et al. Binary mixtures of fatty alcohols and fatty acid esters as novel solid-liquid phase change materials[J]. International Journal of Energy Research, 2019: er.4852. |
16 | ZHANG Shihua, ZHANG Xuelai, XU Xiaofeng, et al. Preparation and properties of decyl-myristyl alcohol/expanded graphite low temperature composite phase change material[J]. Phase Transitions, 2020, 93(5): 491-503. |
17 | SAEED Rami M, SCHLEGEL J P, CASTANO C, et al. Preparation and thermal performance of methyl palmitate and lauric acid eutectic mixture as phase change material (PCM)[J]. Journal of Energy Storage, 2017, 13: 418-424. |
18 | CHANG Seong Jin, Seunghwan WI, JEONG Su-Gwang, et al. Thermal performance evaluation of macro-packed phase change materials (PCMs) using heat transfer analysis device[J]. Energy and Buildings, 2016, 117: 120-127. |
19 | SILVA Tiago, VICENTE Romeu, SOARES Nelson, et al. Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: A passive construction solution[J]. Energy and Buildings, 2012, 49: 235-245. |
20 | BAO Jiaming, ZOU Deqiu, ZHU Sixian, et al. A medium-temperature, metal-based, microencapsulated phase change material with a void for thermal expansion[J]. Chemical Engineering Journal, 2021, 415: 128965. |
21 | REN Miao, WEN Xiaodong, GAO Xiaojian, et al. Thermal and mechanical properties of ultra-high performance concrete incorporated with microencapsulated phase change material[J]. Construction and Building Materials, 2021, 273: 121714. |
22 | LIU Lei, PENG Ben, YUE Changsheng, et al. Low-cost, shape-stabilized fly ash composite phase change material synthesized by using a facile process for building energy efficiency[J]. Materials Chemistry and Physics, 2019, 222: 87-95. |
23 | HUANG Xiubing, CHEN Xiao, LI Ang, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356: 641-661. |
24 | LIU Peng, GU Xiaobin, BIAN Liang, et al. Capric acid/intercalated diatomite as form-stable composite phase change material for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(1): 359-368. |
25 | ATINAFU Dimberu G, DONG Wenjun, BERARDI Umberto, et al. Phase change materials stabilized by porous metal supramolecular gels: Gelation effect on loading capacity and thermal performance[J]. Chemical Engineering Journal, 2020, 394: 124806. |
26 | SU Weiguang, HU Meiyong, WANG Li, et al. Microencapsulated phase change materials with graphene-based materials: Fabrication, characterisation and prospects[J]. Renewable and Sustainable Energy Reviews, 2022, 168: 112806. |
27 | LI Min, GUO Qiangang, SU Yongli. The thermal conductivity improvements of phase change materials using modified carbon nanotubes[J]. Diamond and Related Materials, 2022, 125: 109023. |
28 | CHIU Yu-Jen, YAN Wei-Mon, CHIU Han-Chieh, et al. Investigation on the thermophysical properties and transient heat transfer characteristics of composite phase change materials[J]. International Communications in Heat and Mass Transfer, 2018, 98: 223-231. |
29 | FAN Zhixuan, ZHAO Yunchao, DING Yufei, et al. Fabrication and comprehensive analysis of expanded perlite impregnated with myristic acid-based phase change materials as composite materials for building thermal management[J]. Journal of Energy Storage, 2022, 55: 105710. |
30 | REKA Arianit A, PAVLOVSKI Blagoj, FAZLIJA Emira, et al. Diatomaceous Earth: Characterization, thermal modification, and application[J]. Open Chemistry, 2021, 19(1): 451-461. |
31 | ZHAO Xiaoguang, TANG Yili, XIE Weimin, et al. 3D hierarchical porous expanded perlite-based composite phase-change material with superior latent heat storage capability for thermal management[J]. Construction and Building Materials, 2023, 362: 129768. |
32 | Ahmet SARı, SHARMA R K, Gökhan HEKIMOĞLU, et al. Preparation, characterization, thermal energy storage properties and temperature control performance of form-stabilized sepiolite based composite phase change materials[J]. Energy and Buildings, 2019, 188: 111-119. |
33 | CHUNG Okyoung, JEONG Su-Gwang, KIM Sumin. Preparation of energy efficient paraffinic PCMs/expanded vermiculite and perlite composites for energy saving in buildings[J]. Solar Energy Materials and Solar Cells, 2015, 137: 107-112. |
34 | WANG Fuxian, GAO Shiyuan, PAN Jiachuan, et al. Short-chain modified SiO2 with high absorption of organic PCM for thermal protection[J]. Nanomaterials, 2019, 9(4): 657. |
35 | CHEN Feixu, ZHANG Yihe, LIU Jingang, et al. Fly ash based lightweight wall materials incorporating expanded perlite/SiO2 aerogel composite: Towards low thermal conductivity[J]. Construction and Building Materials, 2020, 249: 118728. |
36 | 张寅平, 苏跃红, 葛新石. (准)共晶系相变材料融点及融解热的理论预测[J]. 中国科学技术大学学报, 1995, 25(4): 474-478. |
ZHANG Yinping, SU Yuehong, GE Xinshi. Theoretical prediction of melting point and melting heat of (quasi-) eutectic phase change materials[J]. Journal of University of Science and Technology of China, 1995, 25(4): 474-478. | |
37 | GENOVESE A, AMARASINGHE G, GLEWIS M, et al. Crystallisation, melting, recrystallisation and polymorphism of n-eicosane for application as a phase change material[J]. Thermochimica Acta, 2006, 443(2): 235-244. |
38 | FENG Lili, ZHENG Jie, YANG Huazhe, et al. Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials[J]. Solar Energy Materials and Solar Cells, 2011, 95(2): 644-650. |
39 | QIAN Tingting, LI Jinhong, MA Hongwen, et al. The preparation of a green shape-stabilized composite phase change material of polyethylene glycol/SiO2 with enhanced thermal performance based on oil shale ash via temperature-assisted sol-gel method[J]. Solar Energy Materials and Solar Cells, 2015, 132: 29-39. |
40 | YU Shiyu, WANG Xiaodong, WU Dezhen. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation[J]. Applied Energy, 2014, 114: 632-643. |
41 | LUO Yue, XIONG Suya, HUANG Jintao, et al. Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 231: 111300. |
42 | LI Chuanchang, FU Liangjie, OUYANG Jing, et al. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage[J]. Scientific Reports, 2013, 3: 1908. |
43 | SHEN Qiang, LIU Songyang, OUYANG Jing, et al. Sepiolite supported stearic acid composites for thermal energy storage[J]. RSC Advances, 2016, 6(113): 112493-112501. |
44 | KARAIPEKLI Ali, Ahmet SARı. Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage[J]. Solar Energy, 2009, 83(3): 323-332. |
45 | WANG Yi, ZHENG Han, FENG Huixia, et al. Effect of preparation methods on the structure and thermal properties of stearic acid/activated montmorillonite phase change materials[J]. Energy and Buildings, 2012, 47: 467-473. |
46 | KONUKLU Yeliz, ERSOY Orkun. Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage[J]. Applied Thermal Engineering, 2016, 107: 575-582. |
47 | CAI Yibing, SUN Guiyan, LIU Mengmeng, et al. Fabrication and characterization of capric-lauric-palmitic acid/electrospun SiO2 nanofibers composite as form-stable phase change material for thermal energy storage/retrieval[J]. Solar Energy, 2015, 118: 87-95. |
48 | ZHANG Nan, YUAN Yanping, YUAN Yaguang, et al. Lauric-palmitic-stearic acid/expanded perlite composite as form-stable phase change material: Preparation and thermal properties[J]. Energy and Buildings, 2014, 82: 505-511. |
49 | ZHANG Nan, YUAN Yanping, LI Tianyu, et al. Study on thermal property of lauric-palmitic-stearic acid/vermiculite composite as form-stable phase change material for energy storage[J]. Advances in Mechanical Engineering, 2015, 7(9): 168781401560502. |
[1] | 邹鹏翔, 张明阳, 朱文杰, 郭耀骏, 程婕, 赵妍舒, 袁迎春. 基于CFD的脂肪酸甲酯环氧化用液-液撞击流旋流反应器入口结构优化[J]. 化工进展, 2024, 43(S1): 166-173. |
[2] | 尹少武, 黄若萧, 昝晓君, 童莉葛, 刘传平, 王立. 基于CPCM正六边形砖的蓄热储能系统设计与蓄放热模拟[J]. 化工进展, 2024, 43(S1): 243-254. |
[3] | 何瑞强, 方敏, 周健夺, 费华, 杨凯. 锂电池热管理用TPE基柔性复合相变材料的研究进展[J]. 化工进展, 2024, 43(6): 3159-3173. |
[4] | 梁西妹, 费华, 李元林, 雍帆, 郭梦倩, 周嘉宏. 月桂酸基二元低共融储能材料的制备及热性能[J]. 化工进展, 2024, 43(6): 3256-3267. |
[5] | 吕青檐, 高汉文, 谢昆谕, 范冬青, 黄龙, 陈志强. 废弃有机物用于混合菌群合成PHA的利用现状与挑战[J]. 化工进展, 2024, 43(6): 3374-3385. |
[6] | 孙文瑾, 王雪梅, 李子富. 厨余垃圾厌氧发酵定向产酸的影响因素[J]. 化工进展, 2024, 43(10): 5778-5790. |
[7] | 全翠, 陈常祥, 高宁博, 陆丽芳. 表面活性剂及聚乳酸塑料对餐厨垃圾发酵产酸特性影响[J]. 化工进展, 2024, 43(10): 5791-5804. |
[8] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[9] | 黄越, 赵立欣, 姚宗路, 于佳动, 李再兴, 申瑞霞, 安柯萌, 黄亚丽. 木质纤维类废弃物定向生物转化乳酸、乙酸研究进展[J]. 化工进展, 2023, 42(5): 2691-2701. |
[10] | 赵西坡, 卞武勋, 冉宝清, 刘进超, 尹少鼎, 孙义明. 石蜡固-固相变材料的制备及性能[J]. 化工进展, 2023, 42(2): 897-906. |
[11] | 马跃, 王钦艳, 金央. 麻花式插件微通道中游离脂肪酸预酯化[J]. 化工进展, 2023, 42(12): 6191-6196. |
[12] | 方强, 赵明. 液冷-相变材料复合电池散热系统的协同性[J]. 化工进展, 2023, 42(12): 6278-6285. |
[13] | 汪晨祥, 秦永丽, 蒋永荣, 葛仕佳, 郑国权, 孙振举. ABR产酸-硫酸盐还原相颗粒污泥富集PHAs产生菌[J]. 化工进展, 2023, 42(12): 6658-6665. |
[14] | 黄龙腾, 祁影霞, 王誉程, 姜盛军. 基于复合相变材料-热管耦合的电池散热性能[J]. 化工进展, 2023, 42(11): 5680-5688. |
[15] | 李栋先, 王佳, 蒋剑春. 超声辅助下皂脚加压水解制备脂肪酸[J]. 化工进展, 2023, 42(1): 409-416. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 6
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 53
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |