化工进展 ›› 2025, Vol. 44 ›› Issue (11): 6716-6729.DOI: 10.16085/j.issn.1000-6613.2024-1684
• 资源与环境化工 • 上一篇
刘倩(
), 李梦茹, 白守礼, 冯拥军(
), 唐平贵(
), 李殿卿
收稿日期:2024-10-20
修回日期:2024-12-18
出版日期:2025-11-25
发布日期:2025-12-08
通讯作者:
冯拥军,唐平贵
作者简介:刘倩(2000—),女,硕士研究生,研究方向为无机功能材料。E-mail:2022201016@buct.edu.cn。
基金资助:
LIU Qian(
), LI Mengru, BAI Shouli, FENG Yongjun(
), TANG Pinggui(
), LI Dianqing
Received:2024-10-20
Revised:2024-12-18
Online:2025-11-25
Published:2025-12-08
Contact:
FENG Yongjun, TANG Pinggui
摘要:
粉煤灰的资源化利用对社会和环境的可持续发展具有重要意义。本文以粉煤灰基硅渣为原料,采用NaOH碱熔法提取SiO2,在碱熔温度为300℃、碱与灰质量比为2∶1、反应时间为2h的条件下,SiO2的提取率达到72.26%;进而以提硅得到的Na2SiO3溶液和MgO为原料,通过水热反应制备硅酸镁纳米片,考察了Na2SiO3溶液浓度、Si与Mg摩尔比、反应温度及反应时间对硅酸镁纳米片的组成、晶相结构和孔道结构的影响规律。结果表明,在Na2SiO3浓度为0.50mol/L、Si与Mg摩尔比为1.25∶1、反应温度为220℃和反应时间为10h的条件下制备了结晶度较好、比表面积达240.6m2/g的介孔硅酸镁纳米片;其对亚甲基蓝(MB)具有较快的吸附速率,吸附量达285.0mg/g,对MB的吸附行为符合准二级动力学模型和Langmuir等温吸附模型。
中图分类号:
刘倩, 李梦茹, 白守礼, 冯拥军, 唐平贵, 李殿卿. 粉煤灰基硅酸镁纳米片的制备及其亚甲基蓝吸附性能[J]. 化工进展, 2025, 44(11): 6716-6729.
LIU Qian, LI Mengru, BAI Shouli, FENG Yongjun, TANG Pinggui, LI Dianqing. Preparation and adsorption performance to methylene blue of fly ash based magnesium silicate nanosheets[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6716-6729.
| 样品 | 准一级吸附动力学模型 | 准二级吸附动力学模型 | ||||
|---|---|---|---|---|---|---|
| q1/mg·g-1 | k1/min-1 | R2 | q2/mg·g-1 | k2/ g·mg-1·min-1 | R2 | |
| MgSiO3(1∶1) | 46.64 | 3.75×10-2 | 0.3659 | 275.5 | 1.72×10-3 | 0.9992 |
| MgSiO3(1.25∶1) | 62.53 | 4.63×10-2 | 0.7430 | 289.9 | 1.80×10-3 | 0.9998 |
| MgSiO3(1.5∶1) | 44.45 | 2.75×10-2 | 0.6320 | 255.8 | 2.03×10-3 | 0.9997 |
表1 MgSiO3吸附MB的拟一级动力学和拟二级动力学参数
| 样品 | 准一级吸附动力学模型 | 准二级吸附动力学模型 | ||||
|---|---|---|---|---|---|---|
| q1/mg·g-1 | k1/min-1 | R2 | q2/mg·g-1 | k2/ g·mg-1·min-1 | R2 | |
| MgSiO3(1∶1) | 46.64 | 3.75×10-2 | 0.3659 | 275.5 | 1.72×10-3 | 0.9992 |
| MgSiO3(1.25∶1) | 62.53 | 4.63×10-2 | 0.7430 | 289.9 | 1.80×10-3 | 0.9998 |
| MgSiO3(1.5∶1) | 44.45 | 2.75×10-2 | 0.6320 | 255.8 | 2.03×10-3 | 0.9997 |
| 吸附剂 | 比表面积/m2·g-1 | 吸附量/mg·g-1 | 参考文献 |
|---|---|---|---|
| 碱活化MgSiO3 | 8.6 | 74.6 | [ |
| SiO2@MgSiO3 | 588 | 299 | [ |
| MgSiO3 | 582.3 | 234.19 | [ |
| MgSiO3 | 521 | 207 | [ |
| MgSiO3纳米管 | 539.4 | 175.13 | [ |
| MgSiO3纳米管 | 293 | 188 | [ |
| 棉/MgSiO3复合膜 | 523.1 | 194.4 | [ |
| MgSiO3 | 240.6 | 285.0 | 本文 |
表2 不同MgSiO3吸附剂对MB的吸附量对比
| 吸附剂 | 比表面积/m2·g-1 | 吸附量/mg·g-1 | 参考文献 |
|---|---|---|---|
| 碱活化MgSiO3 | 8.6 | 74.6 | [ |
| SiO2@MgSiO3 | 588 | 299 | [ |
| MgSiO3 | 582.3 | 234.19 | [ |
| MgSiO3 | 521 | 207 | [ |
| MgSiO3纳米管 | 539.4 | 175.13 | [ |
| MgSiO3纳米管 | 293 | 188 | [ |
| 棉/MgSiO3复合膜 | 523.1 | 194.4 | [ |
| MgSiO3 | 240.6 | 285.0 | 本文 |
| [1] | 陈岚, 权宇珩, 李志勇, 等. 超声波辅助粉煤灰去除水中亚甲基蓝染料的动力学分析[J]. 化工学报, 2019, 70(7): 2708-2716. |
| CHEN Lan, QUAN Yuheng, LI Zhiyong, et al. Kinetic analysis of removal of methylene blue using fly ash assisted by ultrasound from aqueous solution[J]. CIESC Journal, 2019, 70(7): 2708-2716. | |
| [2] | 王倩, 李神勇, 康帅, 等. 粉煤灰分质高效利用预处理技术的研究进展[J]. 化工学报, 2023, 74(3): 1010-1032. |
| WANG Qian, LI Shenyong, KANG Shuai, et al. Research progress of pretreatment technology for efficient utilization of coal ash[J]. CIESC Journal, 2023, 74(3): 1010-1032. | |
| [3] | 张世蕊, 范朕连, 宋慧平, 等. 粉煤灰负载光催化材料的研究进展[J]. 化工进展, 2024, 43(7): 4043-4058. |
| ZHANG Shirui, FAN Zhenlian, SONG Huiping, et al. Research progress of fly ash supported photocatalytic materials[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058. | |
| [4] | 张国卿, 宋舒波, 王兴瑞, 等. 煤固废基分子筛的制备及其应用进展[J]. 化工进展, 2024, 43(5): 2311-2323. |
| ZHANG Guoqing, SONG Shubo, WANG Xingrui, et al. Recent advances in the synthesis and application of zeolites from coal-based solid wastes[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2311-2323. | |
| [5] | 马子然, 王宝冬, 路光杰, 等. 粉煤灰基SAPO-34分子筛脱硝催化剂的合成及其脱硝性能[J]. 化工进展, 2020, 39(10): 4051-4060. |
| MA Ziran, WANG Baodong, LU Guangjie, et al. Preparation and performance of SAPO-34 based SCR catalyst derived from fly ash[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4051-4060. | |
| [6] | YADAV Virendra Kumar, FULEKAR Madhusudan Hiraman. Advances in methods for recovery of ferrous, alumina, and silica nanoparticles from fly ash waste[J]. Ceramics, 2020, 3(3): 384-420. |
| [7] | LIU Huidong. Conversion of harmful fly ash residue to zeolites: Innovative processes focusing on maximum activation, extraction, and utilization of aluminosilicate[J]. ACS Omega, 2022, 7(23): 20347-20356. |
| [8] | JU Tongyao, JIANG Jianguo, MENG Yuan, et al. An investigation of the effect of ultrasonic waves on the efficiency of silicon extraction from coal fly ash[J]. Ultrasonics Sonochemistry, 2020, 60: 104765. |
| [9] | TAN Miaomiao, LI Xiangyu, FENG Yu, et al. Fly ash-derived mesoporous silica with large pore volume for augmented CO2 capture[J]. Fuel, 2023, 351: 128874. |
| [10] | YAN Kezhou, ZHANG Ting, LIU Dandan, et al. Strengthening desilication of coal fly ash by alkaline leaching with the addition of ethylene diamine tetraacetic acid[J]. Minerals Engineering, 2023, 201: 108219. |
| [11] | YADAV Virendra Kumar, AMARI Abdelfattah, WANALE Shivraj Gangadhar, et al. Synthesis of floral-shaped nanosilica from coal fly ash and its application for the remediation of heavy metals from fly ash aqueous solutions[J]. Sustainability, 2023, 15(3): 2612. |
| [12] | JU Tongyao, MENG Yuan, HAN Siyu, et al. A green and multi-win strategy for coal fly ash disposal by CO2 fixation and mesoporous silica synthesis[J]. Science of the Total Environment, 2023, 883: 163822. |
| [13] | BAO Jing, FENG Yongjun, PAN Yong, et al. Modified approaches to prepare nano-magnesium silicates with hierarchical pore structure and their performance towards adsorption of Cd2+ [J]. Environmental Science and Pollution Research International, 2023, 30(38): 89784-89793. |
| [14] | GHODS Bahare, REZAEI Mehran, MESHKANI Fereshteh. Synthesis of nanostructured magnesium silicate with high surface area and mesoporous structure[J]. Ceramics International, 2016, 42(6): 6883-6890. |
| [15] | ZHAO Rui, LI Yanzi, SUN Bolun, et al. Highly flexible magnesium silicate nanofibrous membranes for effective removal of methylene blue from aqueous solution[J]. Chemical Engineering Journal, 2019, 359: 1603-1616. |
| [16] | WANG Bin, GAO Kai, WANG Yujie, et al. Synergistic dispersion, adsorption, and anti-wear effects of magnesium silicate hydroxide nanomaterials and carboxylic acid[J]. Applied Surface Science, 2024, 665: 160373. |
| [17] | XING Lang, LI Xinran, CAO Pengxu, et al. Stepwise extraction and utilization of silica and alumina from coal fly ash by mild hydrothermal process[J]. Process Safety and Environmental Protection, 2024, 182: 918-929. |
| [18] | WANG Xuekai, WANG Jinshu, TENG Weili, et al. Fabrication of highly efficient magnesium silicate and its adsorption behavior towards Cr(Ⅵ)[J]. Microporous and Mesoporous Materials, 2021, 323: 111196. |
| [19] | HE Zhendong, REN Bozhi, HURSTHOUSE Andrew, et al. Efficient removal of Cd(Ⅱ) using SiO2-Mg(OH)2 nanocomposites derived from sepiolite[J]. International Journal of Environmental Research and Public Health, 2020, 17(7): 2223. |
| [20] | SUN Zhiwei, LIU Yanhua, SRINIVASAKANNAN Chandrasekar. One-pot fabrication of rod-like magnesium silicate and its adsorption for Cd2+ [J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104380. |
| [21] | PAYAN François, ISSA Albert, KRAFFT Jean-Marc, et al. Controlling magnesium silicates coprecipitation conditions: A tool to tune their surface acid-base reactivity[J]. Catalysts, 2023, 13(11): 1393. |
| [22] | SUN Zhiwei, LIU Yanhua, HONG Wei. Facile synthesis of porous hydrated magnesium silicate adsorbent from ordinary silica gel[J]. Materials Letters, 2020, 272: 127886. |
| [23] | WANG Weixue, CHEN Zhe, ZHOU Haijiang, et al. Two-dimensional lamellar magnesium silicate with large spacing as an excellent adsorbent for uranium immobilization[J]. Environmental Science: Nano, 2018, 5(10): 2406-2414. |
| [24] | Kardelen KAYA-ÖZKIPER, UZUN Alper, Sezen SOYER-UZUN. A novel alkali activated magnesium silicate as an effective and mechanically strong adsorbent for methylene blue removal[J]. Journal of Hazardous Materials, 2022, 424: 127256. |
| [25] | SUN Zhiwei, HUANG Di, DUAN Xinhui, et al. Functionalized nanoflower-like hydroxyl magnesium silicate for effective adsorption of aflatoxin B1[J]. Journal of Hazardous Materials, 2020, 387: 121792. |
| [26] | LI Qiang, ZHANG Jingjing, LU Qingshan, et al. Hydrothermal synthesis and characterization of ordered mesoporous magnesium silicate-silica for dyes adsorption[J]. Materials Letters, 2016, 170: 167-170. |
| [27] | TIAN Yaxi, CUI Guijia, LIU Yan, et al. Self-assembly synthesis of hollow double silica@mesoporous magnesium silicate magnetic hierarchical nanotubes with excellent performance for fast removal of cationic dyes[J]. Applied Surface Science, 2016, 387: 631-641. |
| [28] | ZHAO Wenting, FENG Ke, ZHANG Huan, et al. Sustainable green conversion of coal gangue waste into cost-effective porous multimetallic silicate adsorbent enables superefficient removal of Cd(Ⅱ) and dye[J]. Chemosphere, 2023, 324: 138287. |
| [29] | WANG Yongqiang, WANG Guozhong, WANG Hongqiang, et al. Chemical-template synthesis of micro/nanoscale magnesium silicate hollow spheres for waste-water treatment[J]. Chemistry—A European Journal, 2010, 16(11): 3497-3503. |
| [30] | YANG Jinbo, ZHANG Min, ZHANG Yanwei, et al. Facile synthesis of magnetic magnesium silicate hollow nanotubes with high capacity for removal of methylene blue[J]. Journal of Alloys and Compounds, 2017, 721: 772-778. |
| [31] | ZHENG Jun, CHENG Chao, YAN Ruiwen, et al. Synthesis of yolk-shell magnetic magnesium silicate with tunable yolk morphology for removal of methylene blue in water[J]. Journal of Alloys and Compounds, 2014, 596: 5-9. |
| [32] | BIAN Shaowei, HUANG Yali, YUE Yuan, et al. Porous cotton/magnesium silicate composite films as high-performance adsorbents for organic dye removal[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625: 126751. |
| [1] | 王瑞琪, 刘浩伟, 孙彦丽, 李荣花, 王政, 吴玉花, 吴建波, 张慧, 白红存. 面向高效储氢MOFs的设计构筑与性能调控研究现状分析及展望[J]. 化工进展, 2025, 44(S1): 323-339. |
| [2] | 刘颖, 包成, 张欣欣. 用于氢气提纯的改性载铜活性炭[J]. 化工进展, 2025, 44(S1): 413-421. |
| [3] | 王睿, 王海澜, 戴若彬, 王志伟. 工业废水深度处理反渗透膜硅污染研究进展:机理、影响因素与控制策略[J]. 化工进展, 2025, 44(9): 5315-5326. |
| [4] | 孙梦圆, 陆诗建, 刘玲, 薛艳阳, 张云蓉, 董琦, 康国俊. 金属有机框架及衍生物在碳捕集领域的研究进展[J]. 化工进展, 2025, 44(9): 5339-5350. |
| [5] | 卢永琦, 肖嘉宁, 迭庆杞, 徐思琪, 黄瑞潇, 孔祥蕊, 杨玉飞. 堆存粉煤灰长期淋溶过程污染物释放特征与环境风险评估[J]. 化工进展, 2025, 44(9): 5479-5490. |
| [6] | 杨证禄, 杨立峰, 路晓飞, 锁显, 张安运, 崔希利, 邢华斌. 机器学习加速多孔吸附剂筛选发现的研究进展[J]. 化工进展, 2025, 44(8): 4288-4301. |
| [7] | 仇玉静, 刘畅, 罗国华, 董森, 李建华. 脱除苯中二硫化碳吸附剂的制备及其吸附性能[J]. 化工进展, 2025, 44(4): 2374-2382. |
| [8] | 孙雅娟, 段思宇, 张宏, 周冬冬, 路广军, 马志斌. 化学外加剂对固废基胶凝材料性能及水化行为的影响[J]. 化工进展, 2025, 44(3): 1739-1748. |
| [9] | 左骥, 罗莉, 谢永锴, 陈文尧, 钱刚, 周兴贵, 段学志. 甲醇无氧脱氢制甲醛Cu催化剂的粒径效应[J]. 化工进展, 2025, 44(3): 1347-1354. |
| [10] | 倪鹏, 王先泓, 黄钰涵, 马晓彤, 马子轸, 谈琰, 张华伟, 刘亭. 活性炭类和磁性金属类吸附剂喷射脱汞技术应用对比及最新进展[J]. 化工进展, 2025, 44(1): 513-524. |
| [11] | 张炜, 黄赳, 朱晓芳, 李鹏. 凹凸棒石基钴钨水滑石吸附铅的性能及机理[J]. 化工进展, 2025, 44(1): 596-606. |
| [12] | 闻静, 张红婴, 张屹东, 许润泽. 月桂酸-石蜡二元共晶和纳米SiO2气凝胶新型建筑储能材料的研制和性能表征[J]. 化工进展, 2025, 44(1): 388-397. |
| [13] | 刘丽, 冯博, 文洋, 古启雄. 硅基介孔材料的合成、功能化及对金属的吸附研究进展[J]. 化工进展, 2024, 43(9): 5063-5078. |
| [14] | 阳梦萍, 孙军军, 张晨曦, 薛昊龙, 肖长发. 聚丙烯/聚硅氧烷-二氧化硅中空纤维膜的制备与性能分析[J]. 化工进展, 2024, 43(9): 5106-5112. |
| [15] | 杨新衡, 纪志永, 郭志远, 刘萁, 张盼盼, 汪婧, 刘杰, 毕京涛, 赵颖颖, 袁俊生. 锂铝层状双金属氢氧化物的制备及其锂脱嵌过程[J]. 化工进展, 2024, 43(9): 5262-5274. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |