化工进展 ›› 2025, Vol. 44 ›› Issue (4): 2374-2382.DOI: 10.16085/j.issn.1000-6613.2024-0631
仇玉静1,2(
), 刘畅1,2, 罗国华1,2(
), 董森3, 李建华3
收稿日期:2024-04-15
修回日期:2024-06-05
出版日期:2025-04-25
发布日期:2025-05-07
通讯作者:
罗国华
作者简介:仇玉静(1997—),女,硕士研究生,研究方向为芳烃精制脱硫。E-mail:2413121739@qq.com。
基金资助:
QIU Yujing1,2(
), LIU Chang1,2, LUO Guohua1,2(
), DONG Sen3, LI Jianhua3
Received:2024-04-15
Revised:2024-06-05
Online:2025-04-25
Published:2025-05-07
Contact:
LUO Guohua
摘要:
采用氯甲基聚苯乙烯大孔树脂(D201)作为接枝载体,通过接枝有机胺类物质制得胺化改性的树脂脱硫吸附剂,并用于脱除苯中微量CS2;对有机胺类型、洗涤方式、树脂与有机胺质量比等制备条件以及吸附温度、吸附空速、原料CS2浓度等工艺条件对吸附剂吸附性能的影响进行了考察;采用BET、有机元素分析仪、傅里叶变换红外光谱(FTIR)对吸附剂进行了表征,并对吸附机理进行了分析。研究表明:胺化改性树脂的吸附过程是通过表面伯胺及仲胺基官能团与CS2反应生成硫代酸,硫代酸不稳定分解生成异硫酸氰酯,继而生成硫脲而被选择吸附下来。在吸附温度为45℃、常压、体积空速为1h-1、进料CS2浓度为2000mg/L的条件下,采用D201接枝乙二胺制得的D201-EDA吸附剂的穿透吸附容量和饱和吸附容量分别高达183.33mg/g和200.78mg/g。
中图分类号:
仇玉静, 刘畅, 罗国华, 董森, 李建华. 脱除苯中二硫化碳吸附剂的制备及其吸附性能[J]. 化工进展, 2025, 44(4): 2374-2382.
QIU Yujing, LIU Chang, LUO Guohua, DONG Sen, LI Jianhua. Preparation and adsorption performance of adsorbents for removing carbon disulfide from benzene[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2374-2382.
| 样品 | BET比表面积/m²·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm |
|---|---|---|---|
| D201 | 6.743 | 0.019 | 12.354 |
表1 D201的BET表征结果
| 样品 | BET比表面积/m²·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm |
|---|---|---|---|
| D201 | 6.743 | 0.019 | 12.354 |
| 洗涤方式 | 树脂种类 | 穿透时间/h | 穿透吸附容量/mg·g-1 | 饱和吸附容量/mg·g-1 | N质量分数/% | Cl质量分数/% |
|---|---|---|---|---|---|---|
| 水洗 | D201-EDA | 42.00 | 175.00 | 202.99 | 12.31 | 15.10 |
| 碱洗 | D201-EDA | 44.00 | 183.33 | 200.78 | 12.92 | 0 |
表2 不同洗涤方式对胺化改性树脂吸附性能及吸附剂氮元素质量分数的影响
| 洗涤方式 | 树脂种类 | 穿透时间/h | 穿透吸附容量/mg·g-1 | 饱和吸附容量/mg·g-1 | N质量分数/% | Cl质量分数/% |
|---|---|---|---|---|---|---|
| 水洗 | D201-EDA | 42.00 | 175.00 | 202.99 | 12.31 | 15.10 |
| 碱洗 | D201-EDA | 44.00 | 183.33 | 200.78 | 12.92 | 0 |
| 有机胺种类 | 吸附剂 | 穿透时间/h | 穿透吸附容量/mg·g-1 | 饱和吸附容量/mg·g-1 | N质量分数/% |
|---|---|---|---|---|---|
| DETA | D201-DETA | 42.50 | 177.08 | 191.57 | 12.48 |
| EDA | D201-EDA | 44.00 | 183.33 | 200.78 | 12.92 |
表3 不同有机胺对胺化改性树脂吸附性能及吸附剂氮元素质量分数的影响
| 有机胺种类 | 吸附剂 | 穿透时间/h | 穿透吸附容量/mg·g-1 | 饱和吸附容量/mg·g-1 | N质量分数/% |
|---|---|---|---|---|---|
| DETA | D201-DETA | 42.50 | 177.08 | 191.57 | 12.48 |
| EDA | D201-EDA | 44.00 | 183.33 | 200.78 | 12.92 |
| 胺化原料配比m(D201)∶m(EDA) | 吸附剂 | 穿透时间/h | 穿透吸附容量/mg·g-1 | 饱和吸附容量/mg·g-1 | N质量分数/% |
|---|---|---|---|---|---|
| 1∶1 | D201-EDA | 41.00 | 170.83 | 183.58 | 12.04 |
| 1∶2 | D201-EDA | 44.00 | 183.33 | 200.78 | 12.92 |
| 1∶3 | D201-EDA | 40.00 | 166.67 | 179.08 | 11.75 |
| 1∶4 | D201-EDA | 40.00 | 166.67 | 180.40 | 11.75 |
| 1∶6 | D201-EDA | 39.00 | 162.50 | 176.21 | 11.46 |
表4 不同胺化原料配比对D201-EDA吸附性能及吸附剂氮元素质量分数的影响
| 胺化原料配比m(D201)∶m(EDA) | 吸附剂 | 穿透时间/h | 穿透吸附容量/mg·g-1 | 饱和吸附容量/mg·g-1 | N质量分数/% |
|---|---|---|---|---|---|
| 1∶1 | D201-EDA | 41.00 | 170.83 | 183.58 | 12.04 |
| 1∶2 | D201-EDA | 44.00 | 183.33 | 200.78 | 12.92 |
| 1∶3 | D201-EDA | 40.00 | 166.67 | 179.08 | 11.75 |
| 1∶4 | D201-EDA | 40.00 | 166.67 | 180.40 | 11.75 |
| 1∶6 | D201-EDA | 39.00 | 162.50 | 176.21 | 11.46 |
| 吸附工艺条件 | 穿透时间 /h | 穿透吸附容量 /mg·g-1 | 饱和吸附容量 /mg·g-1 |
|---|---|---|---|
| 吸附温度 | |||
| 35℃ | 34.00 | 141.67 | 161.57 |
| 45℃ | 44.00 | 183.33 | 200.78 |
| 55℃ | 36.00 | 150.00 | 168.93 |
| 65℃ | 36.00 | 150.00 | 169.70 |
| 体积空速 | |||
| 1h-1 | 44.00 | 183.33 | 200.78 |
| 2h-1 | 19.00 | 79.17 | 86.35 |
| 3h-1 | 12.00 | 50.00 | 57.40 |
| 原料二硫化碳浓度 | |||
| 2000mg/L | 44.00 | 183.33 | 200.78 |
| 500mg/L | 152.00 | 158.33 | 171.75 |
| 100mg/L | 572.00 | 119.17 | 127.49 |
表5 不同吸附工艺条件下D201-EDA对苯中CS2的吸附时间和吸附容量的影响
| 吸附工艺条件 | 穿透时间 /h | 穿透吸附容量 /mg·g-1 | 饱和吸附容量 /mg·g-1 |
|---|---|---|---|
| 吸附温度 | |||
| 35℃ | 34.00 | 141.67 | 161.57 |
| 45℃ | 44.00 | 183.33 | 200.78 |
| 55℃ | 36.00 | 150.00 | 168.93 |
| 65℃ | 36.00 | 150.00 | 169.70 |
| 体积空速 | |||
| 1h-1 | 44.00 | 183.33 | 200.78 |
| 2h-1 | 19.00 | 79.17 | 86.35 |
| 3h-1 | 12.00 | 50.00 | 57.40 |
| 原料二硫化碳浓度 | |||
| 2000mg/L | 44.00 | 183.33 | 200.78 |
| 500mg/L | 152.00 | 158.33 | 171.75 |
| 100mg/L | 572.00 | 119.17 | 127.49 |
| 1 | LIAO Junjie, BAO Lei, WANG Wenbo, et al. Preparation of AlCl3/silica gel catalyst for simultaneously removing thiophene and olefins from coking benzene by inclosed grafting method[J]. Fuel Processing Technology, 2014, 117: 38-43. |
| 2 | 唐晓东, 谯勤, 李晶晶, 等. 裂解C5脱有机硫实验研究[J]. 石油学报(石油加工), 2014, 30(4): 650-655. |
| TANG Xiaodong, QIAO Qin, LI Jingjing, et al. Experimental study on organic sulfide removal from refinery C5 fraction[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(4): 650-655. | |
| 3 | 刘俊, 刘春友, 程晓宇, 等. 脱除裂解碳五中二硫化碳的应用研究[J]. 化工设计通讯, 2020, 46(11): 51-52. |
| LIU Jun, LIU Chunyou, CHENG Xiaoyu, et al. Applied research on removing carbon disulfide from cracked carbon five[J]. Chemical Engineering Design Communications, 2020, 46(11): 51-52. | |
| 4 | 曹志涛, 王健, 赵晶, 等. 分子筛吸附脱硫生产清洁燃料[J]. 齐鲁石油化工, 2016, 44(4): 331-334. |
| CAO Zhitao, WANG Jian, ZHAO Jing, et al. Molecular sieve adsorptive desulfurization technology for production of clean fuel[J]. Qilu Petrochemical Technology, 2016, 44(4): 331-334. | |
| 5 | WANG Yuhe, YANG Ralph T, HEINZEL John M. Desulfurization of jet fuel JP-5 light fraction by MCM-41 and SBA-15 supported cuprous oxide for fuel cell applications[J]. Industrial & Engineering Chemistry Research, 2009, 48(1): 142-147. |
| 6 | 孟令刚, 张现策, 李芹, 等. 焙烧气氛对K2CO3/γ-Al2O3吸附剂脱除异戊二烯中二硫化碳性能的影响[J]. 化工进展, 2021, 40(1): 221-226. |
| MENG Linggang, ZHANG Xiance, LI Qin, et al. Effect of calcination atmosphere on K2CO3/γ-Al2O3 adsorbent for removing carbon disulfide from isoprene[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 221-226. | |
| 7 | 李敏, 张智宏, 魏燕. 活性炭基π络合吸附剂的制备及其脱除二硫化碳性能[J]. 精细化工, 2016, 33(10): 1130-1134. |
| LI Min, ZHANG Zhihong, WEI Yan. Preparation of π complexation adsorbent based on activated carbon and its removal performance for carbon disulfide[J]. Fine Chemicals, 2016, 33(10): 1130-1134. | |
| 8 | 金健, 张智宏, 白鸿帆. γ-Fe2O3/AC脱硫剂的制备及低温脱除CS2性能[J]. 化工进展, 2018, 37(11): 4397-4404. |
| JIN Jian, ZHANG Zhihong, BAI Hongfan. Preparation and performance of γ-Fe2O3/AC desulfurizer at low temperature for CS2 removal[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4397-4404. | |
| 9 | LU Weigang, SCULLEY Julian P, YUAN Daqiang, et al. Carbon dioxide capture from air using amine-grafted porous polymer networks[J]. Journal of Physical Chemistry C, 2013, 117(8): 4057-4061. |
| 10 | Michael MCGUIRK C, SIEGELMAN Rebecca L, DRISDELL Walter S, et al. Cooperative adsorption of carbon disulfide in diamine-appended metal-organic frameworks[J]. Nature Communications, 2018, 9(1): 5133. |
| 11 | 杨元法, 曾朝霞, 卢茂玲, 等. 乙二胺改性氯球负载Pd(0)配合物催化剂对Heck芳基化反应的催化性能[J]. 石油化工, 2005, 34(10): 970-973. |
| YANG Yuanfa, ZENG Zhaoxia, LU Maoling, et al. Performance of Pd(0) complex catalyst supported on ethylenediamine modified-chloromethylpolystyrene for Heck arylation[J]. Petrochemical Technology, 2005, 34(10): 970-973. | |
| 12 | 赵丽华. N,N'-二异丙基碳二亚胺的合成[J]. 山东化工, 2006, 35(3): 1-2, 4. |
| ZHAO Lihua. Synthesis of N,N'-diisopropylcarbodiimide[J]. Shandong Chemical Industry, 2006, 35(3): 1-2, 4. | |
| 13 | 申艳玲, 杨云峰, 高保娇, 等. 制备氯甲基化聚苯乙烯交联微球的新方法[J]. 高等学校化学学报, 2007, 28(3): 580-583. |
| SHEN Yanling, YANG Yunfeng, GAO Baojiao, et al. New method of preparing chloromethylated crosslinking polystyrene microspheres[J]. Chemical Journal of Chinese Universities, 2007, 28(3): 580-583. | |
| 14 | 罗许英, 陈兰. 佛尔哈德法测定复杂物料中氯[J]. 湖南有色金属, 2019, 35(1): 70-72. |
| LUO Xuying, CHEN Lan. Determination of chlorine in complex materials by volhard method[J]. Hunan Nonferrous Metals, 2019, 35(1): 70-72. | |
| 15 | 蒋龙飞, 彭磊, 于萍, 等. 5A分子筛分离工业异己烷中低含量正己烷[J]. 能源化工, 2016, 37(3): 57-62. |
| JIANG Longfei, PENG Lei, YU Ping, et al. Separate small amounts of n-hexane from industrial isohexane on 5A molecular sieves[J]. Energy Chemical Industry, 2016, 37(3): 57-62. | |
| 16 | 朱文祥, 梁客, 王昊, 等. 反复淬冷烃类水蒸气转化Z417催化剂的构效研究[J]. 齐鲁石油化工, 2023, 51(4): 261-265. |
| ZHU Wenxiang, LIANG Ke, WANG Hao, et al. Structure-activity study of Z417 catalyst with repeatedly quenching treatment for hydrocarbon steam conversion[J]. Qilu Petrochemical Technology, 2023, 51(4): 261-265. | |
| 17 | 曹仕文, 张鸿, 孟驰涵, 等. 海藻酸钠/二氧化硅杂化微球结构与吸附性能[J]. 化工进展, 2018, 37(9): 3512-3519. |
| CAO Shiwen, ZHANG Hong, MENG Chihan, et al. Structure and properties of sodium alginate/silica hybrid microspheres[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3512-3519. | |
| 18 | PENG Bingxian, LI Xinrui, MA Zhen, et al. Release of fluorine and chlorine during increase of phosphate rock grade by calcination and digestion[J]. Environmental Pollution, 2021, 270: 116321. |
| 19 | JIANG Hongming, LI C, CHEN Luyou, et al. Dechlorination performance of chemical looping conversion using red mud as an oxygen carrier[J]. Energy & Fuels, 2022, 36(17): 9616-9627. |
| 20 | 丁梦祎, 任祺恺, 罗婧盈, 等. 植酸改性木粉制备及其吸附性能研究[J]. 北京林业大学学报, 2022, 44(2): 131-140. |
| DING Mengyi, REN Qikai, LUO Jingying, et al. Preparation and adsorption property of phytic acid modified wood flour[J]. Journal of Beijing Forestry University, 2022, 44(2): 131-140. | |
| 21 | 何炳林, 周勤馨. 交联聚N-(乙烯苄基)乙二胺的合成(Ⅱ)[J]. 高分子通讯, 1982(3): 213-218. |
| HE Binglin, ZHOU Qinxin. The synthesis of the crossljnked poly-N-(vinylbenzyl)ethylenediamine (Ⅱ)[J]. Acta Polymerica Sinica, 1982(3): 213-218. | |
| 22 | YANG Yan, FU Jiaju, ZHANG Yun, et al. Molecular engineering for bottom-up construction of high-performance non-precious-metal electrocatalysts with well-defined active sites[J]. The Journal of Physical Chemistry C, 2021, 125(41): 22397-22420. |
| 23 | WANG Zhen, LIU Jing, YANG Yingju, et al. Molecular mechanistic nature of elemental mercury oxidation by surface oxygens over the Co3O4 catalyst[J]. The Journal of Physical Chemistry C, 2020, 124(8): 4605-4612. |
| 24 | 杨子腾, 张丰润泽, 张艺夕, 等. RAFT水溶液聚合制备调驱用凝胶分散体及其性能评价[J]. 油田化学, 2022, 39(3): 418-424. |
| YANG Ziteng, ZHANG Fengrunze, ZHANG Yixi, et al. Preparation and performance evaluation of gel dispersion for profile-controlling and flooding by aqueous RAFT polymerization[J]. Oilfield Chemistry, 2022, 39(3): 418-424. | |
| 25 | 钱多, 苏文恩, 刘致远, 等. 大豆蛋白金纳米簇“关-开”型荧光探针检测炭疽杆菌生物标志物DPA[J]. 光谱学与光谱分析, 2023, 43(6): 1815-1820. |
| QIAN Duo, SU Wenen, LIU Zhiyuan, et al. Soy protein gold nanocluster as an “off-on” fluorescent probe for the detection of bacillus anthracis biomarkers DPA[J]. Spectroscopy and Spectral Analysis, 2023, 43(6): 1815-1820. | |
| 26 | TAVAKOL Hossein, MAHMOUDI Amir, RANJBARI Mohammad-Amin. Synthesis of di- and tri-substituted thiourea derivatives in water using choline chloride-urea catalyst[J]. Journal of Sulfur Chemistry, 2019, 40(2): 113-123. |
| 27 | BHOSLE Siddhanath D, JADHAV Krishna A, ITAGE Shivanand V, et al. Zn catalyzed a simple and convenient method for thiourea synthesis[J]. Journal of Sulfur Chemistry, 2023, 44(2): 186-200. |
| 28 | DING Chaochao, WANG Shaoli, SHENG Yaoguang, et al. One-step construction of unsymmetrical thioureas and oxazolidinethiones from amines and carbon disulfide via a cascade reaction sequence[J]. RSC Advances, 2019, 9(46): 26768-26772. |
| 29 | 李合平, 常帅军, 宋士杰, 等. 对称性硫脲的绿色合成工艺[J]. 精细化工, 2023, 40(6): 1386-1392. |
| LI Heping, CHANG Shuaijun, SONG Shijie, et al. Green synthesis of symmetric thiourea compounds[J]. Fine Chemicals, 2023, 40(6): 1386-1392. | |
| 30 | GARCÍA-VALENZUELA J A. Simple thiourea hydrolysis or intermediate complex mechanism? Taking up the formation of metal sulfides from metal-thiourea alkaline solutions[J]. Comments on Inorganic Chemistry, 2017, 37(2): 99-115. |
| [1] | 李琢宇, 余美琪, 陈孝彦, 胡若晖, 王庆宏, 陈春茂, 詹亚力. 炼油废催化剂吸附去除水中硝基苯的特性与机制[J]. 化工进展, 2025, 44(2): 1076-1087. |
| [2] | 杨帆, 赵溢涛, 朱学栋, 王达锐. 三元尖晶石与孪晶ZSM-5分子筛在苯与二氧化碳甲基化中的应用[J]. 化工进展, 2025, 44(2): 856-866. |
| [3] | 何然, 梁宏, 黄洪, 羊宥郦, 郑强, 李琋. 乙炔黑/Fe3O4阴极制备及电Fenton氧化降解2,4,6-三氯苯酚[J]. 化工进展, 2025, 44(1): 572-582. |
| [4] | 王雨菲, 贾宇, 张议升, 薛伟, 李芳, 王延吉. 甲酸为氢源硝基苯转移加氢合成对氨基苯酚[J]. 化工进展, 2024, 43(8): 4421-4431. |
| [5] | 宋占龙, 汤涛, 潘蔚, 赵希强, 孙静, 毛岩鹏, 王文龙. 微纳米气泡强化臭氧氧化降解含酚废水[J]. 化工进展, 2024, 43(8): 4614-4623. |
| [6] | 屈超, 刘俊红, 贾彬, 黄勇. 水性丙烯酸树脂对PBAT/淀粉复合材料性能影响[J]. 化工进展, 2024, 43(6): 3268-3276. |
| [7] | 蓝瑞嵩, 刘丽华, 张倩, 陈博彦, 洪俊明. 硫掺杂石墨烯作为MFC阴极性能和生物毒性检测[J]. 化工进展, 2024, 43(6): 3430-3439. |
| [8] | 李亚男, 郭凯, 王嘉琪, 武亚宁. 煤气化渣活化过二硫酸盐和过一硫酸盐降解苯酚的比较[J]. 化工进展, 2024, 43(6): 3503-3512. |
| [9] | 段翔, 田野, 董文威, 宋松, 李新刚. 苯酐合成的反应网络及催化反应机制研究现状与展望[J]. 化工进展, 2024, 43(5): 2587-2599. |
| [10] | 曾浩桀, 周媚, 邹镇远, 熊峰, 曾星星, 刘宝玉. 表面钝化型二维ZSM-5分子筛的制备及甲苯与甲醇烷基化性能[J]. 化工进展, 2024, 43(5): 2696-2704. |
| [11] | 朱泰忠, 张良, 黄泽权, 罗伶萍, 黄菲, 薛立新. 具有烷基磺酸侧链的凝胶型聚苯并咪唑质子交换膜的制备与表征[J]. 化工进展, 2024, 43(4): 1962-1971. |
| [12] | 郑佳, 刘一鸣, 许利刚, 姚琳. 温度与pH双重刺激响应变色水凝胶的制备及性能[J]. 化工进展, 2024, 43(12): 6811-6819. |
| [13] | 吴佳楠, 张华, 李哲, 徐珊, 尹勇, 张文艺. 牛骨炭载体菌剂(HD)协同蚯蚓生物降解土壤中的2,4-DCP及对微生物群落的影响[J]. 化工进展, 2024, 43(12): 6896-6904. |
| [14] | 仇玉静, 刘畅, 林杰, 罗国华, 戴晓兵. 胺化改性树脂脱二硫化碳吸附剂的制备及吸附动力学[J]. 化工进展, 2024, 43(12): 7115-7124. |
| [15] | 崔维怡, 谭乃迪, 霍其雷, 李伟. 锰基催化剂催化氧化甲苯的研究进展[J]. 化工进展, 2024, 43(11): 6129-6139. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |