化工进展 ›› 2024, Vol. 43 ›› Issue (12): 7115-7124.DOI: 10.16085/j.issn.1000-6613.2023-2129
• 资源与环境化工 • 上一篇
仇玉静1,2(
), 刘畅1,2, 林杰1,2, 罗国华1,2(
), 戴晓兵3
收稿日期:2023-12-01
修回日期:2024-08-19
出版日期:2024-12-15
发布日期:2025-01-11
通讯作者:
罗国华
作者简介:仇玉静(1997—),女,硕士研究生,研究方向为芳烃精制脱硫。E-mail:2413121739@qq.com。
QIU Yujing1,2(
), LIU Chang1,2, LIN Jie1,2, LUO Guohua1,2(
), DAI Xiaobing3
Received:2023-12-01
Revised:2024-08-19
Online:2024-12-15
Published:2025-01-11
Contact:
LUO Guohua
摘要:
以氯甲基聚苯乙烯大孔树脂为载体,二乙烯三胺为胺化剂,通过取代反应将含伯胺和仲胺的活性官能团锚定到树脂链上制得CS2脱硫吸附剂,采用FTIR、元素分析仪、BET对改性树脂进行表征,并对吸附剂脱除苯中CS2吸附性能进行评价,得到不同温度及不同CS2初始浓度下的吸附穿透曲线,采用Langmuir和Freundlich模型对吸附剂吸附苯中CS2的吸附等温线进行分析,准一级、准二级动力学模型及颗粒扩散模型对吸附动力学进行拟合。结果表明:胺化改性的聚苯乙烯树脂具有优异的选择性吸附二硫化碳性能,其在常压、318.15K、1h-1、原料CS2浓度为2000mg/L条件下的穿透吸附容量高达154.167mg/g。同时,该吸附剂吸附CS2符合Langmuir模型和准二级动力学模型,吸附控制步骤为CS2与吸附剂表面活性胺基基团的反应,而非传质过程。通过建立动态吸附过程的Y-N吸附模型,并对吸附穿透曲线进行分析验证,拟合值与实验值十分吻合。
中图分类号:
仇玉静, 刘畅, 林杰, 罗国华, 戴晓兵. 胺化改性树脂脱二硫化碳吸附剂的制备及吸附动力学[J]. 化工进展, 2024, 43(12): 7115-7124.
QIU Yujing, LIU Chang, LIN Jie, LUO Guohua, DAI Xiaobing. Preparation and adsorption kinetics of resin adsorbent modified by amine for removing carbon disulfide[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7115-7124.
| 分析物 | 元素质量分数/% | |||
|---|---|---|---|---|
| N | C | H | S | |
| 胺化改性树脂 | 10.85 | 77.81 | 7.66 | 0 |
表1 胺化改性后树脂的元素分析结果
| 分析物 | 元素质量分数/% | |||
|---|---|---|---|---|
| N | C | H | S | |
| 胺化改性树脂 | 10.85 | 77.81 | 7.66 | 0 |
| 样品 | BET比表面积 /m2·g-1 | 孔体积 /cm3·g-1 | 平均孔径 /nm |
|---|---|---|---|
| 氯甲基聚苯乙烯大孔树脂 | 11.668 | 0.081 | 27.710 |
| 二乙烯三胺胺化改性树脂 | 18.901 | 0.098 | 20.699 |
| 45℃吸附饱和后的树脂 | 19.520 | 0.095 | 19.518 |
表2 胺化改性及吸附前后树脂的BET参数
| 样品 | BET比表面积 /m2·g-1 | 孔体积 /cm3·g-1 | 平均孔径 /nm |
|---|---|---|---|
| 氯甲基聚苯乙烯大孔树脂 | 11.668 | 0.081 | 27.710 |
| 二乙烯三胺胺化改性树脂 | 18.901 | 0.098 | 20.699 |
| 45℃吸附饱和后的树脂 | 19.520 | 0.095 | 19.518 |
| c0/mg·L-1 | 308.15K | 318.15K | 328.15K | 338.15K | ||||
|---|---|---|---|---|---|---|---|---|
| ce/mg·L-1 | qe/mg·g-1 | ce/mg·L-1 | qe/mg·g-1 | ce/mg·L-1 | qe/mg·g-1 | ce/mg·L-1 | qe/mg·g-1 | |
| 500 | 1.000 | 14.306 | 1.500 | 14.292 | 1.500 | 14.292 | 1.000 | 14.306 |
| 1000 | 3.295 | 28.575 | 3.536 | 28.568 | 4.051 | 28.554 | 2.564 | 28.596 |
| 1500 | 10.631 | 42.700 | 8.467 | 42.762 | 8.667 | 42.756 | 5.277 | 42.853 |
| 2000 | 24.852 | 56.627 | 18.532 | 56.808 | 22.059 | 56.707 | 14.610 | 56.921 |
表3 不同温度下胺化树脂吸附二硫化碳的平衡等温吸附数据
| c0/mg·L-1 | 308.15K | 318.15K | 328.15K | 338.15K | ||||
|---|---|---|---|---|---|---|---|---|
| ce/mg·L-1 | qe/mg·g-1 | ce/mg·L-1 | qe/mg·g-1 | ce/mg·L-1 | qe/mg·g-1 | ce/mg·L-1 | qe/mg·g-1 | |
| 500 | 1.000 | 14.306 | 1.500 | 14.292 | 1.500 | 14.292 | 1.000 | 14.306 |
| 1000 | 3.295 | 28.575 | 3.536 | 28.568 | 4.051 | 28.554 | 2.564 | 28.596 |
| 1500 | 10.631 | 42.700 | 8.467 | 42.762 | 8.667 | 42.756 | 5.277 | 42.853 |
| 2000 | 24.852 | 56.627 | 18.532 | 56.808 | 22.059 | 56.707 | 14.610 | 56.921 |
| T/K | Langmuir模型 | Freundlich模型 | |||||
|---|---|---|---|---|---|---|---|
| qm/mg·g-1 | KL/L·mg-1 | R2 | RL | KF/mg·g-1·L1/n ·mg-1/n | 1/n | R2 | |
| 308.15 | 60.606 | 0.242 | 0.999 | 0.002 | 15.436 | 0.422 | 0.986 |
| 318.15 | 67.568 | 0.180 | 0.998 | 0.003 | 12.699 | 0.542 | 0.983 |
| 328.15 | 65.359 | 0.175 | 1.000 | 0.003 | 12.701 | 0.515 | 0.983 |
| 338.15 | 64.516 | 0.274 | 0.999 | 0.002 | 15.985 | 0.516 | 0.976 |
表4 不同温度下胺化树脂吸附二硫化碳Langmuir模型和Freundlich模型拟合结果
| T/K | Langmuir模型 | Freundlich模型 | |||||
|---|---|---|---|---|---|---|---|
| qm/mg·g-1 | KL/L·mg-1 | R2 | RL | KF/mg·g-1·L1/n ·mg-1/n | 1/n | R2 | |
| 308.15 | 60.606 | 0.242 | 0.999 | 0.002 | 15.436 | 0.422 | 0.986 |
| 318.15 | 67.568 | 0.180 | 0.998 | 0.003 | 12.699 | 0.542 | 0.983 |
| 328.15 | 65.359 | 0.175 | 1.000 | 0.003 | 12.701 | 0.515 | 0.983 |
| 338.15 | 64.516 | 0.274 | 0.999 | 0.002 | 15.985 | 0.516 | 0.976 |
| c0/mg·L-1 | η/% | qe,exp/mg·g-1 | 准一级动力学模型 | 准二级动力学模型 | ||||
|---|---|---|---|---|---|---|---|---|
| k1/min-1 | R2 | qe,cal/mg·g-1 | k2/min-1 | R2 | qe,cal/mg·g-1 | |||
| 2000 | 99.66 | 57.147 | 0.048 | 0.968 | 31.869 | 0.004 | 1.000 | 58.651 |
| 1500 | 99.46 | 42.771 | 0.022 | 0.993 | 34.242 | 0.002 | 0.999 | 44.763 |
| 1000 | 98.40 | 28.212 | 0.024 | 0.993 | 27.988 | 0.002 | 0.996 | 30.553 |
| 500 | 97.79 | 14.019 | 0.037 | 0.968 | 13.849 | 0.002 | 0.992 | 16.714 |
表5 不同CS2浓度下胺化树脂吸附CS2准一级动力学模型和准二级动力学模型拟合参数
| c0/mg·L-1 | η/% | qe,exp/mg·g-1 | 准一级动力学模型 | 准二级动力学模型 | ||||
|---|---|---|---|---|---|---|---|---|
| k1/min-1 | R2 | qe,cal/mg·g-1 | k2/min-1 | R2 | qe,cal/mg·g-1 | |||
| 2000 | 99.66 | 57.147 | 0.048 | 0.968 | 31.869 | 0.004 | 1.000 | 58.651 |
| 1500 | 99.46 | 42.771 | 0.022 | 0.993 | 34.242 | 0.002 | 0.999 | 44.763 |
| 1000 | 98.40 | 28.212 | 0.024 | 0.993 | 27.988 | 0.002 | 0.996 | 30.553 |
| 500 | 97.79 | 14.019 | 0.037 | 0.968 | 13.849 | 0.002 | 0.992 | 16.714 |
| T/K | η/% | qe,exp/mg·g-1 | 准一级动力学模型 | 准二级动力学模型 | ||||
|---|---|---|---|---|---|---|---|---|
| k1/min-1 | R2 | qe,cal/mg·g-1 | k2/min-1 | R2 | qe,cal/mg·g-1 | |||
| 308.15 | 98.71 | 56.601 | 0.021 | 36.087 | 0.961 | 0.001 | 0.999 | 61.538 |
| 318.15 | 99.66 | 57.147 | 0.051 | 24.516 | 0.962 | 0.004 | 0.999 | 58.651 |
| 328.15 | 99.44 | 57.022 | 0.034 | 30.054 | 0.937 | 0.003 | 1.000 | 59.032 |
| 338.15 | 99.41 | 57.002 | 0.025 | 33.869 | 0.994 | 0.002 | 1.000 | 59.418 |
表6 不同温度下胺化树脂吸附苯中CS2准一级动力学模型和准二级动力学模型拟合参数
| T/K | η/% | qe,exp/mg·g-1 | 准一级动力学模型 | 准二级动力学模型 | ||||
|---|---|---|---|---|---|---|---|---|
| k1/min-1 | R2 | qe,cal/mg·g-1 | k2/min-1 | R2 | qe,cal/mg·g-1 | |||
| 308.15 | 98.71 | 56.601 | 0.021 | 36.087 | 0.961 | 0.001 | 0.999 | 61.538 |
| 318.15 | 99.66 | 57.147 | 0.051 | 24.516 | 0.962 | 0.004 | 0.999 | 58.651 |
| 328.15 | 99.44 | 57.022 | 0.034 | 30.054 | 0.937 | 0.003 | 1.000 | 59.032 |
| 338.15 | 99.41 | 57.002 | 0.025 | 33.869 | 0.994 | 0.002 | 1.000 | 59.418 |
| T/K | texp/h | qexp/mg·g-1 | k/h-1 | τ/h | R2 | tcal/h | qe-YN/mg·g-1 |
|---|---|---|---|---|---|---|---|
308.15 318.15 328.15 338.15 | 26.5 37.0 26.0 23.5 | 121.582 168.330 118.025 109.603 | 1.801 1.775 1.817 2.049 | 28.810 40.700 28.428 26.518 | 0.993 0.991 0.991 0.990 | 25.331 36.418 24.244 22.809 | 122.492 169.583 118.450 110.492 |
表7 不同温度下CS2在胺化改性树脂吸附剂上的Y-N模型拟合结果及吸附穿透时间
| T/K | texp/h | qexp/mg·g-1 | k/h-1 | τ/h | R2 | tcal/h | qe-YN/mg·g-1 |
|---|---|---|---|---|---|---|---|
308.15 318.15 328.15 338.15 | 26.5 37.0 26.0 23.5 | 121.582 168.330 118.025 109.603 | 1.801 1.775 1.817 2.049 | 28.810 40.700 28.428 26.518 | 0.993 0.991 0.991 0.990 | 25.331 36.418 24.244 22.809 | 122.492 169.583 118.450 110.492 |
| 1 | 李怀柱. 黄原酸盐反应法脱除焦化粗苯中的二硫化碳[D]. 太原: 太原理工大学, 2012. |
| LI Huaizhu. The removal of carbon disulfide in crude benzene by using xanthogenate method[D]. Taiyuan: Taiyuan University of Technology, 2012. | |
| 2 | 江大好, 宿亮虎, 陆殿乔, 等. 焦化粗苯的组成及其加氢精制工艺技术的开发[J]. 现代化工, 2009, 29(5): 72-75. |
| JIANG Dahao, SU Lianghu, LU Dianqiao, et al. Crude benzol coking products and development of its hydro-refining technology[J]. Modern Chemical Industry, 2009, 29(5): 72-75. | |
| 3 | 党帅, 岳红. 粗苯深加工路线及焦化粗苯产业发展分析[J]. 煤化工, 2013, 41(2): 4-7. |
| DANG Shuai, YUE Hong. Route of deep processing of crude benzol and development of the coking crude benzol industry[J]. Coal Chemical Industry, 2013, 41(2): 4-7. | |
| 4 | 曾丹林, 胡义, 王可苗, 等. 焦化粗苯中噻吩分离回收的研究进展[J]. 精细石油化工进展, 2012, 13(1): 45-50. |
| ZENG Danlin, HU Yi, WANG Kemiao, et al. Progress on recovery of thiophene in coking crude benzene[J]. Advances in Fine Petrochemicals, 2012, 13(1): 45-50. | |
| 5 | 梁顺琴, 吕龙刚, 马好文, 等. 硫化物对裂解汽油一段加氢用Pd/Al2O3催化剂性能的影响[J]. 现代化工, 2014, 34(9): 85-87. |
| LIANG Shunqin, Longgang LYU, MA Haowen, et al. Effects of sulfur compounds on performance of Pd/Al2O3 catalyst for first-stage hydrogenation of pyrolysis gasoline[J]. Modern Chemical Industry, 2014, 34(9): 85-87. | |
| 6 | LIAO Junjie, BAO Lei, WANG Wenbo, et al. Preparation of AlCl3/silica gel catalyst for simultaneously removing thiophene and olefins from coking benzene by inclosed grafting method[J]. Fuel Processing Technology, 2014, 117: 38-43. |
| 7 | 王丽, 吴迪镛, 王树东, 等. 稀土氧化物CeO2脱除二硫化碳的研究[J]. 中国稀土学报, 2005, 23(S1): 35-39. |
| WANG Li, WU Diyong, WANG Shudong, et al. Study on removal of carbon disulfide by CeO2 [J]. Journal of the Chinese Society of Rare Earths, 2005, 23(S1): 35-39. | |
| 8 | HE Dan, YI Honghong, TANG Xiaolong, et al. Carbon disulfide hydrolysis over Fe-Cu/AC catalyst modified by cerium and lanthanum at low temperature[J]. Journal of Rare Earths, 2010, 28: 343-346. |
| 9 | 王丽, 李福林, 吴迪镛, 等. 催化水解-氧化耦合一步法脱除二硫化碳的研究[J]. 燃料化学学报, 2004, 32(4): 466-470. |
| WANG Li, LI Fulin, WU Diyong, et al. A novel desulfuring agent for CS2 removal by couple processing[J]. Journal of Fuel Chemistry and Technology, 2004, 32(4): 466-470. | |
| 10 | 贾丽丽, 胡典明, 孔渝华. 脱除二硫化碳的研究进展[J]. 辽宁化工, 2008, 37(3): 184-186. |
| JIA Lili, HU Dianming, KONG Yuhua. Development of removing carbon disulfide[J]. Liaoning Chemical Industry, 2008, 37(3): 184-186. | |
| 11 | YANG Ji, JUAN Peng, SHEN Zhemin, et al. Removal of carbon disulfide (CS2) from water via adsorption on active carbon fiber (ACF)[J]. Carbon, 2006, 44(8): 1367-1375. |
| 12 | 李敏, 张智宏, 魏燕. 活性炭基π络合吸附剂的制备及其脱除二硫化碳性能[J]. 精细化工, 2016, 33(10): 1130-1134. |
| LI Min, ZHANG Zhihong, WEI Yan. Preparation of π complexation adsorbent based on activated carbon and its removal performance for carbon disulfide[J]. Fine Chemicals, 2016, 33(10): 1130-1134. | |
| 13 | 孟令刚, 张现策, 李芹, 等. 焙烧气氛对K2CO3/γ-Al2O3吸附剂脱除异戊二烯中二硫化碳性能的影响[J]. 化工进展, 2021, 40(1): 221-226. |
| MENG Linggang, ZHANG Xiance, LI Qin, et al. Effect of calcination atmosphere on K2CO3/γ-Al2O3 adsorbent for removing carbon disulfide from isoprene[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 221-226. | |
| 14 | 王亚宁, 熊春华, 王槐三. 树脂吸附法去除水及空气中的CS2 [J]. 化工环保, 2006, 26(3): 174-177. |
| WANG Yaning, XIONG Chunhua, WANG Huaisan. Removal of CS2 from water and air by resin adsorption process[J]. Environmental Protection of Chemical Industry, 2006, 26(3): 174-177. | |
| 15 | 曲宏昌, 马佳凯, 龙超. 吸附树脂和活性炭吸附气体中二硫化碳的性能差异及成因研究[J]. 中国环境科学, 2023, 43(9): 4534-4541. |
| QU Hongchang, MA Jiakai, LONG Chao. An investigation of the causes of different adsorption properties of carbon disulfide vapor in gas on polymeric resin and activated carbon[J]. China Environmental Science, 2023, 43(9): 4534-4541. | |
| 16 | WANG Shuangshuang, ZHANG Liang, LONG Chao, et al. Enhanced adsorption and desorption of VOCs vapor on novel micro-mesoporous polymeric adsorbents[J]. Journal of Colloid and Interface Science, 2014, 428: 185-190. |
| 17 | 杨新玉, 史秋怡, 龙超. 吸附树脂吸附多组分VOCs的动力学特性及预测[J]. 中国环境科学, 2019, 39(5): 1830-1837. |
| YANG Xinyu, SHI Qiuyi, LONG Chao. Adsorption kinetics and prediction of multicomponent VOCs on polymeric resins[J]. China Environmental Science, 2019, 39(5): 1830-1837. | |
| 18 | 孟启, 肖网琴, 戎志峰, 等. 二(β-氨基乙基)胺型聚苯乙烯树脂的合成和性能研究[J]. 离子交换与吸附, 2014, 30(3): 258-266. |
| MENG Qi, XIAO Wangqin, RONG Zhifeng, et al. Synthesis and adsorption properties of di(β-aminoethyl) amine polystyrene resins[J]. Ion Exchange and Adsorption, 2014, 30(3): 258-266. | |
| 19 | 郑子苹, 沈健, 邓桂春. ZSM-5-SBA-15复合分子筛吸附脱除碱性氮动力学数学模型[J]. 精细石油化工, 2022, 39(5): 48-51. |
| ZHENG Ziping, SHEN Jian, DENG Guichun. Mathematic model of adsorption denitrogenation kinetics of ZSM-5-SBA-15 composite molecular sieve[J]. Speciality Petrochemicals, 2022, 39(5): 48-51. | |
| 20 | 赵子科, 陈春亮, 柯盛, 等. 榴莲壳和不同炭材料对低汞溶液的吸附动力学[J]. 岩矿测试, 2022, 41(1): 90-98. |
| ZHAO Zike, CHEN Chunliang, KE Sheng, et al. Adsorption kinetics of low mercury solution with durian shell and activated carbon[J]. Rock and Mineral Analysis, 2022, 41(1): 90-98. | |
| 21 | 刘新辙, 陈娟, 张明阳, 等. CO2在栗子壳基碳材料上的吸附动力学及热力学研究[J]. 应用化工, 2023, 52(2): 445-450. |
| LIU Xinzhe, CHEN Juan, ZHANG Mingyang, et al. Kinetics and thermodynamics of CO2 on chestnut shell-based carbon materials[J]. Applied Chemical Industry, 2023, 52(2): 445-450. | |
| 22 | 孟冠华, 张林森, 刘宝河, 等. 可见光下Cu2O/TiO2催化臭氧氧化头孢曲松钠性能研究[J]. 过程工程学报, 2023, 23(2): 311-322. |
| MENG Guanhua, ZHANG Linsen, LIU Baohe, et al. Photocatalytic ozonation of ceftriaxone sodium by Cu2O/TiO2 under visible light[J]. The Chinese Journal of Process Engineering, 2023, 23(2): 311-322. | |
| 23 | 曹仕文, 张鸿, 孟驰涵, 等. 海藻酸钠/二氧化硅杂化微球结构与吸附性能[J]. 化工进展, 2018, 37(9): 3512-3519. |
| CAO Shiwen, ZHANG Hong, MENG Chihan, et al. Structure and properties of sodium alginate/silica hybrid microspheres[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3512-3519. | |
| 24 | 郭可心, 田佳一, 孙煜璨, 等. 磁性污泥基生物炭对Pb2+的吸附性能[J]. 环境工程学报, 2022, 16(5): 1416-1428. |
| GUO Kexin, TIAN Jiayi, SUN Yucan, et al. Adsorption performance of magnetic sludge-derived biochar towards Pb2+ [J]. Chinese Journal of Environmental Engineering, 2022, 16(5): 1416-1428. | |
| 25 | LI Tingting, LIU Yunguo, PENG Qingqing, et al. Removal of lead(Ⅱ) from aqueous solution with ethylenediamine-modified yeast biomass coated with magnetic chitosan microparticles: Kinetic and equilibrium modeling[J]. Chemical Engineering Journal, 2013, 214: 189-197. |
| 26 | Abuzer ÇELEKLI, Gizem İLGÜN, Hüseyin BOZKURT. Sorption equilibrium, kinetic, thermodynamic, and desorption studies of Reactive Red 120 on Chara contraria [J]. Chemical Engineering Journal, 2012, 191: 228-235. |
| 27 | ZHAO Yafei, ZHANG Bing, ZHANG Xiang, et al. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 658-664. |
| 28 | 杨静, 沈健, 石薇薇. Cu-β/SBA-15的吸附脱硫性能及吸附动力学[J]. 精细化工, 2017, 34(10): 1153-1160. |
| YANG Jing, SHEN Jian, SHI Weiwei. Adsorption desulfurization and adsorption kinetics of Cu-β/SBA-15[J]. Fine Chemicals, 2017, 34(10): 1153-1160. | |
| 29 | 岳晓晴. 醇胺基二硫化碳储集材料的合成及制备金属硫化物的研究[D]. 呼和浩特: 内蒙古工业大学, 2019. |
| YUE Xiaoqing. Study on synthesis of alcoholamine-based carbon disulfide storage materials and preparation of metal sulfides[D]. Hohhot: Inner Mongolia University of Tehchnology, 2019. | |
| 30 | 马佳凯, 许博文, 梁晓珊, 等. CS2在超高交联树脂上的吸附脱附特性研究[J]. 应用化工, 2018, 47(8): 1684-1687, 1694. |
| MA Jiakai, XU Bowen, LIANG Xiaoshan, et al. Adsorption and desorption behavior of carbon disulfide on hypercrosslinked resin[J]. Applied Chemical Industry, 2018, 47(8): 1684-1687, 1694. | |
| 31 | 霍宇辰, 靳岩, 张茜, 等. 分子筛吸附脱除2-甲基四氢呋喃中水的研究[J]. 现代化工, 2021, 41(3): 134-139. |
| HUO Yuchen, JIN Yan, ZHANG Xi, et al. Study on removing water from 2-methyltetrahydrofuran by molecular sieves adsorption[J]. Modern Chemical Industry, 2021, 41(3): 134-139. |
| [1] | 宋财城, 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 碳基载体负载加氢脱硫催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 305-314. |
| [2] | 杨新衡, 纪志永, 郭志远, 刘萁, 张盼盼, 汪婧, 刘杰, 毕京涛, 赵颖颖, 袁俊生. 锂铝层状双金属氢氧化物的制备及其锂脱嵌过程[J]. 化工进展, 2024, 43(9): 5262-5274. |
| [3] | 马红周, 党煜博, 王耀宁, 曾劲阳, 赵小军, 史建伟. 废锌基脱硫剂与铜锌基催化剂协同真空碳热提取锌[J]. 化工进展, 2024, 43(9): 5275-5281. |
| [4] | 李一, 梁李斯, 张立兴, 乔江鱼, 崔忠宜, 陈进, 徐强, 赵晨. 次氯酸盐氧化剂同时脱硫脱硝一体化[J]. 化工进展, 2024, 43(9): 5282-5289. |
| [5] | 高昕玥, 范高峰, 刘爱平, 王长安, 侯育杰, 张津铭, 徐杰, 车得福. 湿法脱硫后烟气和浆液余热回收技术研究进展[J]. 化工进展, 2024, 43(8): 4307-4319. |
| [6] | 王嘉, 李文翠, 吴凡, 高新芊, 陆安慧. NiMo/Al2O3催化剂活性组分分布调控及其加氢脱硫应用[J]. 化工进展, 2024, 43(8): 4393-4402. |
| [7] | 刘玉灿, 高中鲁, 徐心怡, 纪现国, 张岩, 孙洪伟, 王港. 钙改性水葫芦基生物炭吸附水中敌草隆的效能与机理[J]. 化工进展, 2024, 43(8): 4630-4641. |
| [8] | 武哲, 曲树光, 冯练享, 曾湘楚. 海藻酸钠/微晶纤维素复合水凝胶对水中甲基橙和亚甲基蓝的吸附性能与机理[J]. 化工进展, 2024, 43(8): 4681-4693. |
| [9] | 黄鸿, 欧阳浩民, 杨依静, 李昌霖, 陈烁娜. 硫化零价铁-微生物复合吸附剂对磷酸三(2-氯乙基)酯的吸附-降解机制[J]. 化工进展, 2024, 43(8): 4704-4713. |
| [10] | 智远, 马吉亮, 陈晓平, 刘道银, 梁财. 流化床喷雾浸渍制备负载型钠基CO2吸附剂脱碳性能[J]. 化工进展, 2024, 43(6): 2961-2967. |
| [11] | 郑锁祺, 詹凌霄, 陈恒, 李志浩, 王禹瑞, 赵宁, 吴昊, 杨林军. 基于混合模型的脱硫废水旁路蒸发系统能耗特性[J]. 化工进展, 2024, 43(6): 2968-2976. |
| [12] | 刘京都, 余关龙, 龙志奇, 周璐, 包璞瑞, 滕骏毅, 杜春艳. 纳米球状LaAlO3的制备及其在酸性条件下的除氟性能[J]. 化工进展, 2024, 43(6): 3199-3208. |
| [13] | 屈超, 刘俊红, 贾彬, 黄勇. 水性丙烯酸树脂对PBAT/淀粉复合材料性能影响[J]. 化工进展, 2024, 43(6): 3268-3276. |
| [14] | 高凡翔, 刘阳, 张贵泉, 秦锋, 姚建涛, 金辉, 师进文. 燃煤烟气湿法协同脱硫脱碳技术研究进展[J]. 化工进展, 2024, 43(5): 2324-2342. |
| [15] | 苗诒贺, 王耀祖, 刘雨杭, 朱炫灿, 李佳, 于立军. 添加剂改性固态胺吸附剂用于碳捕集的研究进展[J]. 化工进展, 2024, 43(5): 2739-2759. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |