化工进展 ›› 2024, Vol. 43 ›› Issue (8): 4307-4319.DOI: 10.16085/j.issn.1000-6613.2023-1016
• 能源加工与技术 • 上一篇
高昕玥1(), 范高峰1,2, 刘爱平3, 王长安1(), 侯育杰1, 张津铭1, 徐杰2, 车得福1
收稿日期:
2023-06-20
修回日期:
2023-08-01
出版日期:
2024-08-15
发布日期:
2024-09-02
通讯作者:
王长安
作者简介:
高昕玥(1997—),女,博士研究生,研究方向为固体燃料燃烧特性及余热利用。E-mail:colorful5777@stu.xjtu.edu.cn。
GAO Xinyue1(), FAN Gaofeng1,2, LIU Aiping3, WANG Chang'an1(), HOU Yujie1, ZHANG Jinming1, XU Jie2, CHE Defu1
Received:
2023-06-20
Revised:
2023-08-01
Online:
2024-08-15
Published:
2024-09-02
Contact:
WANG Chang'an
摘要:
低品位余热高效深度利用是促进燃煤电站进一步节能减排的关键之一,湿法脱硫后的低温饱和湿烟气蕴含大量潜热和水资源,大量脱硫浆液吸收烟气热量后温度升高。烟气与浆液具有巨大的余热利用和水资源回收的潜力,若直接排放烟气,直接排出浆液,不但造成资源浪费,还容易引发“白色烟羽”污染环境。本文以湿法脱硫后饱和湿烟气和脱硫浆液为研究对象,针对目前湿法脱硫技术余热回收效率低、利用难以匹配冷源等困境,总结了国内外针对脱硫后烟气水热回收和浆液余热回收技术及发展方向,研究中针对浆液余热利用仍待发展。其中,直接冷凝烟气和浆液技术和热泵技术成熟,应用广泛;溶液吸收技术能源利用率高,烟气腐蚀性低;烟气膜分离技术、浆液闪蒸、热泵技术清洁环保,回收质量高。直接冷凝烟气、浆液技术和膜分离技术需要进一步提高抗腐蚀性和转换效率;浆液闪蒸、热泵技术能耗较高,吸收式热泵技术仍需寻找高效安全环保无毒的吸收溶液。最后,探讨了目前脱硫浆液余热利用的主要方式及存在问题,回收余热主要用于供暖和电厂内部热利用,以期进一步推动湿法脱硫后烟气与浆液余热回收利用,实现燃煤电站的深度节能减排。
中图分类号:
高昕玥, 范高峰, 刘爱平, 王长安, 侯育杰, 张津铭, 徐杰, 车得福. 湿法脱硫后烟气和浆液余热回收技术研究进展[J]. 化工进展, 2024, 43(8): 4307-4319.
GAO Xinyue, FAN Gaofeng, LIU Aiping, WANG Chang'an, HOU Yujie, ZHANG Jinming, XU Jie, CHE Defu. Research progress on waste heat recovery technology for flue gas and slurry after wet desulphurization[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4307-4319.
脱硫技术 | 脱硫剂/脱硫产物 | 固形物或结晶物 总质量分数/% | 循环浆液pH | 进口烟气温度/℃ | 出口烟气(浆液)温度/℃ |
---|---|---|---|---|---|
石灰石-石膏法 | 石灰石或石灰等/石膏 | 5~20 | 5.5~6.5 | 100~160 | 50~60 |
镁法 | 镁基试剂,如氢氧化镁/硫酸镁 | 1~5 | 8~10 | 120~160 | 50~60 |
双碱液法 | 钠基脱硫剂,如氢氧化钠/硫酸钠 | 1~5 | 10~11 | 120~160 | 50~60 |
海水法 | 海水/硫酸(常被石灰或石灰石中和,形成石膏) | — | 6.5~8 | 120~150 | 50~60 |
氨法 | 液氨或氨水/硫酸铵 | — | 5.5~6.5 | 120~200 | 50~80 |
表1 常用湿法脱硫技术特性对比[12,15,17,20-21]
脱硫技术 | 脱硫剂/脱硫产物 | 固形物或结晶物 总质量分数/% | 循环浆液pH | 进口烟气温度/℃ | 出口烟气(浆液)温度/℃ |
---|---|---|---|---|---|
石灰石-石膏法 | 石灰石或石灰等/石膏 | 5~20 | 5.5~6.5 | 100~160 | 50~60 |
镁法 | 镁基试剂,如氢氧化镁/硫酸镁 | 1~5 | 8~10 | 120~160 | 50~60 |
双碱液法 | 钠基脱硫剂,如氢氧化钠/硫酸钠 | 1~5 | 10~11 | 120~160 | 50~60 |
海水法 | 海水/硫酸(常被石灰或石灰石中和,形成石膏) | — | 6.5~8 | 120~150 | 50~60 |
氨法 | 液氨或氨水/硫酸铵 | — | 5.5~6.5 | 120~200 | 50~80 |
回收技术 | 回收原理 | 主要技术优势 | 主要技术不足 | 发展趋势 |
---|---|---|---|---|
烟气冷凝 | ||||
间接接触式 | 对流换热 | 系统简单,水热协同回收,应用广泛 | 回收效率低,维护成本高 | 提高换热效率,降低磨损腐蚀危害 |
直接接触式 | 接触换热 | 节能环保,适用条件广泛,回收效率高 | 冷流体被污染后极易损坏后续设备 | 提高换热和环保性能 |
膜分离 | 膜对分子的选择性 | 回收水资源质量高,清洁低耗 | 高成本,难以大规模应用 | 发展低成本、抗腐蚀和耐磨损的膜材料 |
溶液吸收(以吸收式热泵为例) | 烟气与吸收溶液间的水蒸气分压力差 | 高效高质量回收水热资源,降低烟气腐蚀性 | 高成本,工艺复杂,吸收剂可能污染环境 | 寻求新型高效环保吸收液,降低系统能耗,减小设备体积 |
表2 湿法脱硫后常用烟气水热回收技术特性对比
回收技术 | 回收原理 | 主要技术优势 | 主要技术不足 | 发展趋势 |
---|---|---|---|---|
烟气冷凝 | ||||
间接接触式 | 对流换热 | 系统简单,水热协同回收,应用广泛 | 回收效率低,维护成本高 | 提高换热效率,降低磨损腐蚀危害 |
直接接触式 | 接触换热 | 节能环保,适用条件广泛,回收效率高 | 冷流体被污染后极易损坏后续设备 | 提高换热和环保性能 |
膜分离 | 膜对分子的选择性 | 回收水资源质量高,清洁低耗 | 高成本,难以大规模应用 | 发展低成本、抗腐蚀和耐磨损的膜材料 |
溶液吸收(以吸收式热泵为例) | 烟气与吸收溶液间的水蒸气分压力差 | 高效高质量回收水热资源,降低烟气腐蚀性 | 高成本,工艺复杂,吸收剂可能污染环境 | 寻求新型高效环保吸收液,降低系统能耗,减小设备体积 |
回收技术 | 技术原理 | 主要技术优势 | 主要技术不足 | 发展方向 |
---|---|---|---|---|
浆液冷却器 | 冷却浆液 | 节水环保,工艺简单,成本较低 | 缺乏长期工程检验,回收效率较低,设备易腐蚀结垢 | 提高换热效率,降低磨损腐蚀危害 |
闪蒸 | 冷却浆液 | 高效环保,水热协同回收,控制精准 | 可能增加系统能耗,存在汽蚀风险,缺乏工程检验 | 降低应用成本,提高设备防堵塞和耐腐蚀性能 |
热泵 | 溶液吸收 | 利用范围广,回收效率高 | 系统复杂,成本高,吸收溶液可能具有环保隐患 | 发展高效集约环保型多功能热泵 |
表3 湿法脱硫后脱硫浆液余热回收技术特性对比
回收技术 | 技术原理 | 主要技术优势 | 主要技术不足 | 发展方向 |
---|---|---|---|---|
浆液冷却器 | 冷却浆液 | 节水环保,工艺简单,成本较低 | 缺乏长期工程检验,回收效率较低,设备易腐蚀结垢 | 提高换热效率,降低磨损腐蚀危害 |
闪蒸 | 冷却浆液 | 高效环保,水热协同回收,控制精准 | 可能增加系统能耗,存在汽蚀风险,缺乏工程检验 | 降低应用成本,提高设备防堵塞和耐腐蚀性能 |
热泵 | 溶液吸收 | 利用范围广,回收效率高 | 系统复杂,成本高,吸收溶液可能具有环保隐患 | 发展高效集约环保型多功能热泵 |
利用方式 | 主要利用形式 | 方案主要优势 | 方案可能存在的不足 |
---|---|---|---|
动力生产 | 有机朗肯循环发电 | 安全环保,提高能源利用率 | 高成本,技术复杂,输出功率有限 |
温差发电技术 | 环保可靠,能源利用率高 | 高成本,转换效率受限 | |
热能利用 | 加热凝结水 | 提高系统热效率 | 可能降低系统经济性 |
加热热网水 | 节能环保,提高能源利用率,降低成本 | 非采暖期难以持续利用系统余热 | |
预热空气 | 促进锅炉稳定燃烧,改善低温腐蚀 | 节能效果有限 | |
干燥燃料 | 提高系统经济性、安全性和系统效率 | 干燥效果有限,热量与燃料量匹配困难 |
表4 燃煤电站低温余热利用方式特性对比
利用方式 | 主要利用形式 | 方案主要优势 | 方案可能存在的不足 |
---|---|---|---|
动力生产 | 有机朗肯循环发电 | 安全环保,提高能源利用率 | 高成本,技术复杂,输出功率有限 |
温差发电技术 | 环保可靠,能源利用率高 | 高成本,转换效率受限 | |
热能利用 | 加热凝结水 | 提高系统热效率 | 可能降低系统经济性 |
加热热网水 | 节能环保,提高能源利用率,降低成本 | 非采暖期难以持续利用系统余热 | |
预热空气 | 促进锅炉稳定燃烧,改善低温腐蚀 | 节能效果有限 | |
干燥燃料 | 提高系统经济性、安全性和系统效率 | 干燥效果有限,热量与燃料量匹配困难 |
1 | 国家能源局. 国家能源局发布2022年全国电力工业统计数据[EB/OL]. 2023. . |
National Energy Administration. National Energy Administration releases 2022 national electricity industry statistics[EB/OL]. 2023. . | |
2 | 闫敏, 李民强, 胡德军, 等. 沉浸式换热-热泵烟气余热回收系统应用研究[J]. 山东建筑大学学报, 2022, 37(3): 44-50. |
YAN Min, LI Minqiang, HU Dejun, et al. Application research of immersive heat exchanger-heat pump flue gas waste heat recovery system[J]. Journal of Shandong Jianzhu University, 2022, 37(3): 44-50. | |
3 | XU Gang, XU Cheng, YANG Yongping, et al. A novel flue gas waste heat recovery system for coal-fired ultra-supercritical power plants[J]. Applied Thermal Engineering, 2014, 67(1/2): 240-249. |
4 | 马双忱, 别璇, 孙尧, 等. 湿法脱硫烟气水回收技术研究进展[J]. 洁净煤技术, 2019, 25(1): 64-70. |
MA Shuangchen, BIE Xuan, SUN Yao, et al. Research progress on flue gas water recovery technology in wet FGD[J]. Clean Coal Technology, 2019, 25(1): 64-70. | |
5 | 徐世明, 徐海涛, 安航, 等. 脱硫浆液闪蒸提热试验研究[J]. 热力发电, 2022, 51(7): 156-162. |
XU Shiming, XU Haitao, AN Hang, et al. Experimental study on heat recovery via flash of desulphurization slurry[J]. Thermal Power Generation, 2022, 51(7): 156-162. | |
6 | FANG Hao, XIA Jianjun, ZHU Kan, et al. Industrial waste heat utilization for low temperature district heating[J]. Energy Policy, 2013, 62: 236-246. |
7 | Yiyu MEN, LIU Xiaohua, ZHANG Tao. A review of boiler waste heat recovery technologies in the medium-low temperature range[J]. Energy, 2021, 237: 121560. |
8 | JIN Yunli, GAO Naiping, ZHU Tong. Techno-economic analysis on a new conceptual design of waste heat recovery for boiler exhaust flue gas of coal-fired power plants[J]. Energy Conversion and Management, 2019, 200: 112097. |
9 | 于经伟, 高建民, 王伟业, 等. 湿法脱硫浆液闪蒸余能回收关键参数模拟研究[J]. 节能技术, 2019, 37(1): 21-26. |
YU Jingwei, GAO Jianmin, WANG Weiye, et al. Simulation of physical parameters in flash evaporation of desulfurized slurry[J]. Energy Conservation Technology, 2019, 37(1): 21-26. | |
10 | 车得福, 刘艳华. 烟气热能梯级利用[M]. 北京: 化学工业出版社, 2006. |
CHE Defu, LIU Yanhua. Cascade utilization of flue gas heat energy[M]. Beijing: Chemical Industry Press, 2006. | |
11 | 闫敏. 燃煤烟气中潜热的回收及利用路径研究[D]. 济南: 山东大学, 2019. |
YAN Min. Study on recovery and utilization path of latent heat in coal-fired flue gas[D]. Jinan: Shandong University, 2019. | |
12 | 赵之军, 冯伟忠, 张玲, 等. 电站锅炉排烟余热回收的理论分析与工程实践[J]. 动力工程, 2009, 29(11): 994-997. |
ZHAO Zhijun, FENG Weizhong, ZHANG Ling, et al. Theoretical analysis and engineering practice of heat recovery from exhaust gas of power boilers[J]. Journal of Power Engineering, 2009, 29(11): 994-997. | |
13 | 蒋奎振. 利用热泵回收电厂余热综合研究[D]. 北京: 华北电力大学, 2019. |
JIANG Kuizhen. Comprehensive study on recovery of waste heat from power plant by heat pump[D]. Beijing: North China Electric Power University, 2019. | |
14 | 田路泞, 韩哲楠, 董勇, 等. 燃煤电厂湿烟气余热及水分回收技术研究[J]. 洁净煤技术, 2017, 23(5): 105-110. |
TIAN Luning, HAN Zhenan, DONG Yong, et al. Review of water recovering technologies from flue gas in coal fired power plant[J]. Clean Coal Technology, 2017, 23(5): 105-110. | |
15 | 张昊. 基于溶液吸收的低温燃煤湿烟气水热回收机理及试验研究[D]. 济南: 山东大学, 2022. |
ZHANG Hao. Mechanism and experiment study on water and heat recovery from low-temperature coal-fired wet flue gas based on solution absorption method[D]. Jinan: Shandong University, 2022. | |
16 | 刘海洋, 江澄宇, 谷小兵, 等. 燃煤电厂湿法脱硫废水零排放处理技术进展[J]. 环境工程, 2016, 34(4): 33-36. |
LIU Haiyang, JIANG Chengyu, GU Xiaobing, et al. Development of zero liquid discharge technologies for desulfurization wastewater from coal-fired power plant[J]. Environmental Engineering, 2016, 34(4): 33-36. | |
17 | 张鑫忠. 石灰石-石膏法脱硫烟气余热回收方案研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
ZHANG Xinzhong. Study on the CaCO3-CaSO4 wet fgd flue gas exhaust heat recovery system[D]. Harbin: Harbin Institute of Technology, 2017. | |
18 | 徐镇. 膜式壁脱硫换热热泵余热回收系统研究[D]. 长春: 长春工程学院, 2020. |
XU Zhen. Research on waste heat recovery system of heat pump on membrane wall desulfurization and heat exchanger[D]. Changchun: Changchun Institute of Technology, 2020. | |
19 | 傅艳. 燃煤锅炉烟气脱硫系统传热传质特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
FU Yan. Study on heat and mass transfer characteristics of flue gas desulfurization system of coal-fired boiler[D]. Harbin: Harbin Institute of Technology, 2017. | |
20 | 马春元, 杜谦, 崔琳, 等. 一种脱硫降温增效与余热回收利用的系统及方法: CN104180381B[P]. 2017-02-15. |
MA Chunyuan, DU Qian, CUI Lin, et al. System and method for desulfurization cooling efficiency improvement and waste heat recovery: CN104180381B[P]. 2017-02-15. | |
21 | 熊英莹, 谭厚章, 许伟刚, 等. 火电厂烟气潜热和凝结水回收的试验研究[J]. 热力发电, 2015, 44(6): 77-81. |
XIONG Yingying, TAN Houzhang, XU Weigang, et al. Experimental study on latent heat and condensate recovery from flue gas in coal-fired power plants[J]. Thermal Power Generation, 2015, 44(6): 77-81. | |
22 | 杨志国, 王力飞, 常泳, 等. 一种脱硫浆液预热锅炉送风的系统及方法: CN112628791A[P]. 2021-04-09. |
YANG Zhiguo, WANG Lifei, CHANG Yong, et al. Air feeding system and method for desulfurizing slurry liquid pre-heating boiler: CN112628791A[P]. 2021-04-09. | |
23 | CUI Zhaoyang, DU Qian, GAO Jianmin. Development of integrated technology for waste heat recovery from humid flue gas of hot water boiler[J]. International Journal of Energy Research, 2021, 45(13): 19560-19573. |
24 | 陈海平, 刘彦达, 周亚男. 中空纤维膜法回收火电厂烟气中水蒸气[J]. 热力发电, 2017, 46(1): 100-105. |
CHEN Haiping, LIU Yanda, ZHOU Yanan. Experimental study on recycling water vapor from flue gas of thermal power plants using hollow fiber membrane[J]. Thermal Power Generation, 2017, 46(1): 100-105. | |
25 | 杨建国, 许明路, 陈永辉, 等. 燃煤电厂烟气冷凝法水回收试验研究[J]. 动力工程学报, 2020, 40(4): 342-348. |
YANG Jianguo, XU Minglu, CHEN Yonghui, et al. Experimental study on water recovery from flue gas condensation in coal-fired power plants[J]. Journal of Chinese Society of Power Engineering, 2020, 40(4): 342-348. | |
26 | WEBER C. Market transformation for energy efficient technologies— Success factors and empirical evidence for gas condensing boilers[J]. Energy, 2002, 27(3): 287-315. |
27 | CHE Defu, LIU Yanhua, GAO Chunyang. Evaluation of retrofitting a conventional natural gas fired boiler into a condensing boiler[J]. Energy Conversion and Management, 2004, 45(20): 3251-3266. |
28 | 戴传山, 李彪, 王秋香. 氟塑料换热器研究进展[J]. 化工进展, 2011, 30(S1): 633-636. |
DAI Chuanshan, LI Biao, WANG Qiuxiang. Research progress of fluorine-plastic heat exchanger[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 633-636. | |
29 | 陈林, 孙颖颖, 杜小泽, 等. 回收烟气余热的特种耐腐蚀塑料换热器的性能分析[J]. 中国电机工程学报, 2014, 34(17): 2778-2783. |
CHEN Lin, SUN Yingying, DU Xiaoze, et al. Performance analysis of anti-corrosion heat exchangers made of special plastics for flue gas heat recovery[J]. Proceedings of the CSEE, 2014, 34(17): 2778-2783. | |
30 | YANG Mei, LIU Chao. The calculation of fluorine plastic economizer in economy by using the equivalent heat drop[J]. Energy, 2017, 135: 674-684. |
31 | 刘华, 周贤, 付林. 烟气与水冷凝换热影响因素实验研究[J]. 暖通空调, 2015, 45(7): 90-95. |
LIU Hua, ZHOU Xian, FU Lin. Experimental research on influence factors of direct-contact flue-gas-water condensation heat exchange[J]. Heating Ventilating & Air Conditioning, 2015, 45(7): 90-95. | |
32 | 刘华, 周贤, 付林. 接触式烟气冷凝换热器的换热性能[J]. 暖通空调, 2014, 44(9): 97-100. |
LIU Hua, ZHOU Xian, FU Lin. Heat transfer performance of direct-contact flue-gas condensation heat exchanger[J]. Heating Ventilating & Air Conditioning, 2014, 44(9): 97-100. | |
33 | 李锋, 端木琳, 付林, 等. 烟气-水直接接触式换热性能研究[J]. 暖通空调, 2017, 47(12): 91-96. |
LI Feng, DUANMU Lin, FU Lin, et al. Flue gas-water direct-contact heat transfer performances[J]. Heating Ventilating & Air Conditioning, 2017, 47(12): 91-96. | |
34 | 宋子旭. 填料式烟气余热回收装置的热质交换性能研究[D]. 天津: 天津大学, 2019. |
SONG Zixu. Study on heat and mass exchange performance of packed flue gas waste heat recovery device[D]. Tianjin: Tianjin University, 2019. | |
35 | 潘晓伟, 王绍民, 李硕, 等. 直接接触式低温烟气余热回收塔设计参数优化研究[J]. 热科学与技术, 2022, 21(6): 609-614. |
PAN Xiaowei, WANG Shaomin, LI Shuo, et al. Design optimization study on direct contact tower used for low temperature flue gas waste heat recovery[J]. Journal of Thermal Science and Technology, 2022, 21(6): 609-614. | |
36 | ZHU Kan, XIA Jianjun, XIE Xiaoyun, et al. Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger[J]. Applied Thermal Engineering, 2014, 71(1): 213-218. |
37 | LI Yuzhong, YAN Min, ZHANG Liqiang, et al. Method of flash evaporation and condensation–heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery[J]. Applied Energy, 2016, 172: 107-117. |
38 | WEI Maolin, ZHAO Xiling, FU Lin, et al. Performance study and application of new coal-fired boiler flue gas heat recovery system[J]. Applied Energy, 2017, 188: 121-129. |
39 | 滕达, 李昂, 李铁林, 等. 无机陶瓷膜烟气余热回收特性实验研究[J]. 热力发电, 2021, 50(12): 100-107. |
TENG Da, LI Ang, LI Tielin, et al. Experimental study on flue gas waste heat recovery characteristics of inorganic ceramic membrane[J]. Thermal Power Generation, 2021, 50(12): 100-107. | |
40 | BOLTO Brian, HOANG Manh, XIE Zongli. A review of water recovery by vapour permeation through membranes[J]. Water Research, 2012, 46(2): 259-266. |
41 | 陈海平, 谢天, 杨博然, 等. 火电厂烟气水分及余热陶瓷膜法回收实验[J]. 热力发电, 2018, 47(11): 46-52. |
CHEN Haiping, XIE Tian, YANG Boran, et al. Water and waste heat recovery from flue gas of thermal power plants: Using ceramic membrane method[J]. Thermal Power Generation, 2018, 47(11): 46-52. | |
42 | WANG Dexin, BAO Ainan, KUNC Walter, et al. Coal power plant flue gas waste heat and water recovery[J]. Applied Energy, 2012, 91(1): 341-348. |
43 | ZHAO Shuaifei, YAN Shuiping, WANG David K, et al. Simultaneous heat and water recovery from flue gas by membrane condensation: Experimental investigation[J]. Applied Thermal Engineering, 2017, 113: 843-850. |
44 | WANG Tingting, YUE Maowen, QI Hong, et al. Transport membrane condenser for water and heat recovery from gaseous streams: Performance evaluation[J]. Journal of Membrane Science, 2015, 484: 10-17. |
45 | CHEN Haiping, ZHOU Yanan, SU Xin, et al. Experimental study of water recovery from flue gas using hollow micro-nano porous ceramic composite membranes[J]. Journal of Industrial and Engineering Chemistry, 2018, 57: 349-355. |
46 | CHENG Chao, LIANG Dehua, ZHANG Yuntao, et al. Pilot-scale study on flue gas moisture recovery in a coal-fired power plant[J]. Separation and Purification Technology, 2021, 254: 117254. |
47 | 魏璠, 肖云汉, 张士杰, 等. 喷淋吸收过程模型及实验研究[J]. 工程热物理学报, 2008, 29(10): 1621-1624. |
WEI Fan, XIAO Yunhan, ZHANG Shijie, et al. The model and experiment of heat and mass transfer in spraying absorption[J]. Journal of Engineering Thermophysics, 2008, 29(10): 1621-1624. | |
48 | 周运虎. 含吸收式热泵的热电厂运行策略研究[D]. 大连: 大连理工大学, 2022. |
ZHOU Yunhu. Study on operation strategy of thermal power plant with absorption heat pump[D]. Dalian: Dalian University of Technology, 2022. | |
49 | LI Yan, FU Lin, ZHANG Shigang, et al. A new type of district heating method with co-generation based on absorption heat exchange (co-ah cycle)[J]. Energy Conversion and Management, 2011, 52(2): 1200-1207. |
50 | WANG Xiang, ZHUO Jiankun, LIU Jianmin, et al. Synergetic process of condensing heat exchanger and absorption heat pump for waste heat and water recovery from flue gas[J]. Applied Energy, 2020, 261: 114401. |
51 | 王猛. 基于Aspen plus热泵型烟气除湿脱白系统的模拟分析[D]. 天津: 天津大学, 2020. |
WANG Meng. Simulation analysis of flue gas dehumidification and dewhitening system based on Aspen plus heat pump[D]. Tianjin: Tianjin University, 2020. | |
52 | 白涛, 靳智平. 基于烟气余热回收的热泵供热系统热力学分析[J]. 电力学报, 2023, 38(2): 117-126. |
BAI Tao, JIN Zhiping. Thermodynamic analysis of heat pump heating system based on flue gas waste heat recovery[J]. Journal of Electric Power, 2023, 38(2): 117-126. | |
53 | ZHANG Hao, DONG Yong, LAI Yanhua, et al. Waste heat recovery from coal-fired boiler flue gas: Performance optimization of a new open absorption heat pump[J]. Applied Thermal Engineering, 2021, 183: 116111. |
54 | 白宇琦, 赵金辉, 张奥兵, 等. 基于Aspen Plus的吸收式热泵性能指标影响因素研究[J]. 郑州大学学报(理学版), 2020, 52(4): 103-109. |
BAI Yuqi, ZHAO Jinhui, ZHANG Aobing, et al. Influencing factors of performance index of absorption heat transformer[J]. Journal of Zhengzhou University (Natural Science Edition), 2020, 52(4): 103-109. | |
55 | 袁素华. 燃煤电厂浆液冷却消白系统设计[J]. 节能与环保, 2019(11): 57-59. |
YUAN Suhua. Design of slurry cooling and white removing system in coal-fired power plant[J]. Energy Conservation & Environmental Protection, 2019(11): 57-59. | |
56 | 廖国权, 李皎, 张文龙, 等. 燃煤电厂烟气深度治理探讨[J]. 电力科技与环保, 2019, 35(3): 28-30. |
LIAO Guoquan, LI Jiao, ZHANG Wenlong, et al. Discussions on deep treatment of flue gas from coal-fired power plant[J]. Electric Power Technology and Environmental Protection, 2019, 35(3): 28-30. | |
57 | 李申强, 付青梅, 李芷冰, 等. 一种脱硫浆液余热利用及浆液换热供暖装置: CN211799926U[P]. 2020-10-30. |
LI Shenqiang, FU Qingmei, LI Zhibing, et al. Desulfurization slurry waste heat utilization and slurry heat exchange heating device: CN211799926U[P]. 2020-10-30. | |
58 | 宋秉棠, 贺强, 马倩. 脱硫浆液余热回收系统: CN115468177A[P]. 2022-12-13. |
SONG Bingtang, HE Qiang, MA Qian. Desulfurization slurry waste heat recovery system: CN115468177A[P]. 2022-12-13. | |
59 | 彭烁, 周贤, 宋润, 等. 一种脱硫浆液闪蒸回收烟气余热和水分的系统: CN212003289U[P]. 2020-11-24. |
PENG Shuo, ZHOU Xian, SONG Run, et al. System for recovering flue gas waste heat and moisture through flash evaporation of desulfurization slurry: CN212003289U[P]. 2020-11-24. | |
60 | 蒋昕. 离心泵汽蚀现象分析及防汽蚀技术研究[J]. 中国设备工程, 2023(1): 166-167. |
JIANG Xin. Analysis of cavitation phenomenon of centrifugal pump and research on cavitation prevention technology[J]. China Plant Engineering, 2023(1): 166-167. | |
61 | 刘兵, 刘兴原, 黄金龙, 等. 一种基于热泵技术回收浆液余热的烟气全热利用系统: CN215295083U[P]. 2021-12-24. |
LIU Bing, LIU Xingyuan, HUANG Jinlong, et al. Flue gas total heat utilization system for recovering waste heat of slurry based on heat pump technology: CN215295083U[P]. 2021-12-24. | |
62 | 程常杰, 张荣, 冯永锋, 等. 一种脱硫浆液余热回收系统及方法: CN112675675A[P]. 2021-04-20. |
CHENG Changjie, ZHANG Rong, FENG Yongfeng, et al. A desulfurization slurry waste heat recovery system and method: CN112675675A[P]. 2021-04-20. | |
63 | 张锡乾, 白永锋, 王凯亮, 等. 一种脱硫浆液热量回收及节水系统: CN219160400U[P]. 2023-06-09. |
ZHANG Xiqian, BAI Yongfeng, WANG Kailiang, et al. Desulfurization slurry heat recovery and water saving system: CN219160400U[P]. 2023-06-09. | |
64 | 徐世明, 彭烁, 肖发亮, 等. 一种利用脱硫浆液闪蒸回收烟气余热发电的系统: CN218544376U[P]. 2023-02-28. |
XU Shiming, PENG Shuo, XIAO Faliang, et al. System for generating power by utilizing desulfurization slurry flash evaporation to recover flue gas waste heat: CN218544376U[P]. 2023-02-28. | |
65 | YAN Min, MA Yang, LI Minqiang, et al. Improved lignite predrying system integrated with heat and water recovery from wet flue gas at lignite-fired power plants: Energy and water conservation[J]. Journal of Energy Engineering, 2022, 148(1). doi.org/10.1061/(ASCE)EY.1943-7897.0000813. |
66 | 王志奇, 张欣, 夏小霞, 等. 低品位热能驱动有机朗肯循环的变工况特性[J]. 热科学与技术, 2016, 15(6): 444-449. |
WANG Zhiqi, ZHANG Xin, XIA Xiaoxia, et al. Off-design performance of organic Rankine cycle driven by low grade waste heat[J]. Journal of Thermal Science and Technology, 2016, 15(6): 444-449. | |
67 | TCHANCHE Bertrand F, LAMBRINOS G, FRANGOUDAKIS A, et al. Low-grade heat conversion into power using organic Rankine cycles— A review of various applications[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3963-3979. |
68 | Fredy VÉLEZ, SEGOVIA José J, Carmen MARTÍN M, et al. A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation[J]. Renewable and Sustainable Energy Reviews, 2012, 16(6): 4175-4189. |
69 | 高岩, 尹浩伦, 宋仟禧, 等. 循环参数对微型有机朗肯循环系统性能的影响[J]. 低温与超导, 2023, 51(4): 74-79. |
GAO Yan, YIN Haolun, SONG Qianxi, et al. Effect of operation parameters on the performance of micro organic Rankine cycle system[J]. Cryogenics & Superconductivity, 2023, 51(4): 74-79. | |
70 | TIAN Wenbiao, TENG Shiyang, XI Huan. Cogeneration system based on large temperature difference heat transfer with stepwise utilization[J]. Energy Conversion and Management, 2023, 281: 116843. |
71 | 汪安明, 赵文学, 冉颢, 等. 烟气余热利用场景的非共沸混合工质有机朗肯循环发电系统性能分析[J]. 中国电机工程学报, 2023, 43(6): 2153-2162. |
WANG Anming, ZHAO Wenxue, RAN Hao, et al. Performance analyses of the organic Rankine cycle with zeotropic mixtures in gas waste heat recovery[J]. Proceedings of the CSEE, 2023, 43(6): 2153-2162. | |
72 | 吴晋蒙. 基于锅炉余热回收的温差发电系统设计与实现[D]. 太原: 太原理工大学, 2021. |
WU Jinmeng. Design and implementation of thermoelectric generation system based on waste heat recovery of boiler[D]. Taiyuan: Taiyuan University of Technology, 2021. | |
73 | 王统才. 中低温余热回收利用温差发电系统研究[D]. 上海: 华东理工大学, 2017. |
WANG Tongcai. Study on thermoelectric power generation system with medium and low temperature waste heat recovery and utilization[D]. Shanghai: East China University of Science and Technology, 2017. | |
74 | 王迅, 李宇曦, 李想, 等. 电厂燃煤锅炉烟气余热回收的优化利用[J]. 燃烧科学与技术, 2018, 24(1): 15-20. |
WANG Xun, LI Yuxi, LI Xiang, et al. Optimized utilization of waste heat recovery from flue gas of coal-fired boiler in power plant[J]. Journal of Combustion Science and Technology, 2018, 24(1): 15-20. | |
75 | 杜和冲, 吴克锋, 申建东, 等. 烟气深度冷却系统在1000MW超超临界机组的应用[J]. 中国电力, 2014, 47(4): 32-37. |
DU Hechong, WU Kefeng, SHEN Jiandong, et al. Application of flue gas deep cooling system in 1000MW ultra-supercritical units[J]. Electric Power, 2014, 47(4): 32-37. | |
76 | 白涛, 靳智平. 燃煤烟气冷凝节水及余热回收热力学分析[J]. 动力工程学报, 2022, 42(10): 977-985. |
BAI Tao, JIN Zhiping. Thermodynamic analysis of condensation water and waste heat recovery of coal-fired flue gas[J]. Journal of Chinese Society of Power Engineering, 2022, 42(10): 977-985. | |
77 | LIU Yinhe, LI Qinlun, DUAN Xiaoli, et al. Thermodynamic analysis of a modified system for a 1000MW single reheat ultra-supercritical thermal power plant[J]. Energy, 2018, 145: 25-37. |
78 | LU Ding, CHEN Gaofei, GONG Maoqiong, et al. Thermodynamic and economic analysis of a gas-fired absorption heat pump for district heating with cascade recovery of flue gas waste heat[J]. Energy Conversion and Management, 2019, 185: 87-100. |
79 | FU Lin, ZHAO Xiling, ZHANG Shigang, et al. Performance study of an innovative natural gas CHP system[J]. Energy Conversion and Management, 2011, 52(1): 321-328. |
80 | 付林, 田贯三, 隋军, 等. 吸收式热泵在燃气采暖冷凝热回收中的应用[J]. 太阳能学报, 2003, 24(5): 620-624. |
FU Lin, TIAN Guansan, SUI Jun, et al. Combining absorption heat pump with gas boiler for exhaust condensing heat recovery in district heating system[J]. Acta Energiae Solaris Sinica, 2003, 24(5): 620-624. | |
81 | 刘彤, 李君, 徐钢, 等. 锅炉前置式空气预热器综合分析与优选[J]. 华东电力, 2013, 41(8): 1755-1759. |
LIU Tong, LI Jun, XU Gang, et al. Comprehensive analysis and optimal selection of front-loading air preheater in utility boiler[J]. East China Electric Power, 2013, 41(8): 1755-1759. | |
82 | 李建锋, 朱超, 冷杰, 等. 降低锅炉排烟温度的2种方式比较[J]. 中国电力, 2012, 45(7): 28-33. |
LI Jianfeng, ZHU Chao, LENG Jie, et al. Comparison of two methods for reducing boiler exhaust flue gas temperature[J]. Electric Power, 2012, 45(7): 28-33. | |
83 | 王秀红, 盛伟, 刘全山. 电站锅炉烟气余热利用技术方案研究[J]. 发电技术, 2019, 40(3): 276-280. |
WANG Xiuhong, SHENG Wei, LIU Quanshan. Study on technical scheme of flue gas waste heat utilization in utility boiler[J]. Power Generation Technology, 2019, 40(3): 276-280. | |
84 | 唐丽丽, 谢林贵, 赖强, 等. 燃煤发电机组机炉耦合系统经济性的对比分析[J]. 热能动力工程, 2022, 37(10): 81-86. |
TANG Lili, XIE Lingui, LAI Qiang, et al. Comparison on economic performances of boiler-turbine coupling systems for coal-fired power plants[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(10): 81-86. | |
85 | YANG Yongping, XU Cheng, XU Gang, et al. A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery[J]. Energy Conversion and Management, 2015, 89: 137-146. |
86 | 马有福, 杨丽娟. 褐煤锅炉冷端优化热力系统技术经济性比较[J]. 化工进展, 2016, 35(12): 4088-4095. |
MA Youfu, YANG Lijuan. Techno-economic comparison of the thermodynamic system at lignite-fired boiler's cold-end for recovering waste heat of exhaust gases[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4088-4095. | |
87 | 栾涛. 一种利用脱硫浆液的余热消除烟囱冒白烟的系统及工艺: CN108592068A[P]. 2018-09-28. |
TAO Luan. System and technology capable of utilizing waste heat of desulfurated slurry to prevent chimney from emitting white smoke: CN108592068A[P]. 2018-09-28. | |
88 | HAN Xiaoqu, LIU Ming, WU Kaili, et al. Exergy analysis of the flue gas pre-dried lignite-fired power system based on the boiler with open pulverizing system[J]. Energy, 2016, 106: 285-300. |
89 | XU Cheng, XU Gang, ZHAO Shifei, et al. An improved configuration of lignite pre-drying using a supplementary steam cycle in a lignite fired supercritical power plant[J]. Applied Energy, 2015, 160: 882-891. |
90 | ATSONIOS Konstantinos, VIOLIDAKIS Ioannis, AGRANIOTIS Michalis, et al. Thermodynamic analysis and comparison of retrofitting pre-drying concepts at existing lignite power plants[J]. Applied Thermal Engineering, 2015, 74: 165-173. |
91 | 李勤道, 刘明, 严俊杰, 等. 锅炉烟气预干燥褐煤发电系统热经济性计算分析[J]. 中国电机工程学报, 2012, 32(20): 14-19. |
LI Qindao, LIU Ming, YAN Junjie, et al. Thermal economic calculation and analysis for boiler flue gas pre-dried lignite-fired power generation system[J]. Proceedings of the CSEE, 2012, 32(20): 14-19. | |
92 | 沈望俊, 刘建忠, 虞育杰, 等. 低品位热源干燥低阶煤技术研究进展[J]. 热力发电, 2013, 42(5): 1-6. |
SHEN Wangjun, LIU Jianzhong, YU Yujie, et al. Advance research on low grade heat source drying low-rank coal technology[J]. Thermal Power Generation, 2013, 42(5): 1-6. | |
93 | YAN Min, MA Chunyuan, SHEN Qiuwan, et al. A novel lignite pre-drying system integrated with flue gas waste heat recovery at lignite-fired power plants[J]. Applied Thermal Engineering, 2019, 150: 200-209. |
[1] | 穆连波, 王随林, 鲁军辉, 刘贵昌, 赵立秋, 刘锦程, 郝安峰, 张彤. 烷烃脱氢加热炉排烟余热深度回收协同烟压控制性能分析[J]. 化工进展, 2024, 43(6): 3029-3041. |
[2] | 胡亚飞, 冯自平, 田佳垚, 宋文吉. 空气源燃气热泵系统多制热运行模式下余热回收特性[J]. 化工进展, 2023, 42(8): 4204-4211. |
[3] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[4] | 张群力, 黄昊天, 张琳, 赵文强, 张秋月. 喷淋式烟气源热泵冷凝余热回收系统性能分析[J]. 化工进展, 2023, 42(2): 650-657. |
[5] | 张群力, 汪玉诗, 翟洪宝, 郭颖杰, 张秋月, 黄昊天. 热泵型烟气余热回收及降氮系统性能[J]. 化工进展, 2023, 42(12): 6600-6608. |
[6] | 马有福, 王梓文, 吕俊复. 热风再循环机炉耦合高效发电系统变负荷性能仿真及优化[J]. 化工进展, 2022, 41(5): 2340-2347. |
[7] | 宋峥元, 孙国刚, 祖泽辉, 王中原. 耦合热泵的FCC脱硫湿烟气脱白净化及余热回收系统设计分析[J]. 化工进展, 2021, 40(12): 6934-6940. |
[8] | 王东亮, 孟文亮, 杨勇, 董鹏, 李春强. 热泵耦合甲醇多效精馏节能新工艺[J]. 化工进展, 2020, 39(9): 3550-3555. |
[9] | 尹珩宇,樊俊杰,邓加晓,杜梅芳,陈时选. 焦炉多余热回收系统的分析及优化[J]. 化工进展, 2020, 39(3): 1181-1186. |
[10] | 杨宇鑫, 张红光, 赵蕊, 李健, 赵腾龙, 张梦茹. 工质泵变运行工况对有机朗肯循环系统性能的影响[J]. 化工进展, 2019, 38(02): 851-857. |
[11] | 姚玉婷, 李士雨. 高通量换热器用于低温发电系统的研究[J]. 化工进展, 2018, 37(10): 3737-3743. |
[12] | 马双忱, 杨静, 张立男, 华继洲, 温佳琪, 高然. 多相条件下亚硫酸钙氧化及pH、氧化还原电位(ORP)响应[J]. 化工进展, 2017, 36(01): 383-390. |
[13] | 朱轶林, 李惟毅, 孙冠中, 唐强, 高静, 曹春辉. 船舶烟气余热驱动有机朗肯循环的系统性能分析[J]. 化工进展, 2016, 35(12): 3858-3865. |
[14] | 马双忱, 杨静, 张立男, 华继洲, 于伟静. 湿法脱硫浆液的氧化控制缺陷及对策[J]. 化工进展, 2016, 35(08): 2547-2552. |
[15] | 张大洲, 卢文新, 陈风敬, 夏吴, 左静, 王志刚, 商宽祥. 褐煤干燥水分回收利用及其研究进展[J]. 化工进展, 2016, 35(02): 472-478. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |