化工进展 ›› 2025, Vol. 44 ›› Issue (11): 6477-6487.DOI: 10.16085/j.issn.1000-6613.2024-1541
• 材料科学与技术 • 上一篇
张雨涵1(
), 赵雪淞1,2(
), 吴秀琳1, 张婷1, 杨龙凤1
收稿日期:2024-09-23
修回日期:2024-12-25
出版日期:2025-11-25
发布日期:2025-12-08
通讯作者:
赵雪淞
作者简介:张雨涵(1996—),男,博士研究生,研究方向为新型功能材料。E-mail: lwer77@163.com。
基金资助:
ZHANG Yuhan1(
), ZHAO Xuesong1,2(
), WU Xiulin1, ZHANG Ting1, YANG Longfeng1
Received:2024-09-23
Revised:2024-12-25
Online:2025-11-25
Published:2025-12-08
Contact:
ZHAO Xuesong
摘要:
为了研究纳米高岭土的掺量对环氧树脂热性能和力学性能的影响,以环氧树脂为基体并配以固化剂,以不同掺量下的纳米高岭土为填料构建了复合环氧树脂体系,分别考察了复合材料的玻璃化转变温度、弹性模量、剪切模量、泊松比、硬度等指标并计算了自由体积分数和相互作用能。结果表明:实验条件下当纳米高岭土掺量(质量分数)为10%时,环氧复合材料的玻璃化转变温度达到最大值120.06℃、硬度达到最大值6H,杨氏模量为6.655GPa,剪切模量为2.594GPa,泊松比为0.283,热稳定性能和力学性能均达到了最佳。通过分子动力学模拟,当复合材料的交联度为90%时,模型在平衡状态下的能量波动较小并处于平衡状态,此状态下计算得到的玻璃化转变温度和力学性能在纳米高岭土掺量10%时为最优,与实验值基本吻合。纳米高岭土自身有着优异的热力学性质的同时,其适量掺入可有效降低自由体积分数,与环氧树脂之间良好的界面能相互作用对于提升高岭土/环氧树脂纳米复合材料的热稳定性能和力学性能有着十分重要的作用,为环氧纳米复合材料的微观角度研究提供了理论基础。
中图分类号:
张雨涵, 赵雪淞, 吴秀琳, 张婷, 杨龙凤. 纳米高岭土/环氧树脂复合材料的制备及其分子动力学模拟[J]. 化工进展, 2025, 44(11): 6477-6487.
ZHANG Yuhan, ZHAO Xuesong, WU Xiulin, ZHANG Ting, YANG Longfeng. Preparation and molecular dynamics simulation of nano kaolin/epoxy resin composites[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6477-6487.
| 纳米高岭土掺量/% | 杨氏模量/GPa | 剪切模量/GPa | 泊松比 |
|---|---|---|---|
| 标准差 | 0.989 | 0.499 | 0.171 |
| 0 | 4.059 | 1.458 | 0.392 |
| 5 | 4.531 | 1.741 | 0.301 |
| 10 | 6.655 | 2.594 | 0.283 |
| 15 | 4.801 | 1.590 | 0.511 |
| 20 | 4.502 | 1.448 | 0.555 |
| 25 | 3.932 | 1.135 | 0.732 |
表1 不同掺量纳米高岭土/环氧树脂复合材料的力学性能计算值及标准差
| 纳米高岭土掺量/% | 杨氏模量/GPa | 剪切模量/GPa | 泊松比 |
|---|---|---|---|
| 标准差 | 0.989 | 0.499 | 0.171 |
| 0 | 4.059 | 1.458 | 0.392 |
| 5 | 4.531 | 1.741 | 0.301 |
| 10 | 6.655 | 2.594 | 0.283 |
| 15 | 4.801 | 1.590 | 0.511 |
| 20 | 4.502 | 1.448 | 0.555 |
| 25 | 3.932 | 1.135 | 0.732 |
| 纳米高岭土掺量/% | 杨氏模量/GPa | 剪切模量/GPa | 泊松比 |
|---|---|---|---|
| 标准差 | 1.077 | 0.470 | 0.185 |
| 0 | 4.273 | 1.527 | 0.367 |
| 5 | 4.720 | 1.832 | 0.288 |
| 10 | 6.933 | 2.535 | 0.209 |
| 15 | 4.899 | 1.638 | 0.496 |
| 20 | 4.641 | 1.592 | 0.546 |
| 25 | 3.814 | 1.113 | 0.714 |
表2 不同掺量纳米高岭土/环氧树脂复合材料的力学性能模拟计算值及标准差
| 纳米高岭土掺量/% | 杨氏模量/GPa | 剪切模量/GPa | 泊松比 |
|---|---|---|---|
| 标准差 | 1.077 | 0.470 | 0.185 |
| 0 | 4.273 | 1.527 | 0.367 |
| 5 | 4.720 | 1.832 | 0.288 |
| 10 | 6.933 | 2.535 | 0.209 |
| 15 | 4.899 | 1.638 | 0.496 |
| 20 | 4.641 | 1.592 | 0.546 |
| 25 | 3.814 | 1.113 | 0.714 |
| 纳米高岭土掺量/% | 相互作用能/kcal·mol-1 |
|---|---|
| 0 | -65.71 |
| 5 | -312.75 |
| 10 | -320.42 |
| 15 | -318.78 |
| 20 | -287.75 |
| 25 | -269.73 |
表3 纳米高岭土与环氧树脂间相互作用能计算结果
| 纳米高岭土掺量/% | 相互作用能/kcal·mol-1 |
|---|---|
| 0 | -65.71 |
| 5 | -312.75 |
| 10 | -320.42 |
| 15 | -318.78 |
| 20 | -287.75 |
| 25 | -269.73 |
| [1] | WANG Haohuan, HUANG Zhengyong, ZENG Xiaoliang, et al. Enhanced anticarbonization and electrical performance of epoxy resin via densified spherical boron nitride networks[J]. ACS Applied Electronic Materials, 2023, 5(7): 3726-3732. |
| [2] | LIU Tianhui, ZHAO Yuzeng, DENG Yining, et al. Preparation of fully epoxy resin microcapsules and their application in self-healing epoxy anti-corrosion coatings[J]. Progress in Organic Coatings, 2024, 188: 108247. |
| [3] | HUANG Jialiang, ZHU Yu, GUO Shijia, et al. Surface treatment of large-area epoxy resin by water-perforated metal plate electrodes dielectric barrier discharge: Hydrophobic modification and uniformity improvement[J]. Applied Surface Science, 2023, 639: 158166. |
| [4] | MAHIDASHTI Z, RAMEZANZADEH B, BAHLAKEH G. Screening the effect of chemical treatment of steel substrate by a composite cerium-lanthanum nanofilm on the adhesion and corrosion protection properties of a polyamide-cured epoxy coating; Experimental and molecular dynamic simulations[J]. Progress in Organic Coatings, 2018, 114: 188-200. |
| [5] | QI Hongfei, HEISE Svenja, ZHOU Juncen, et al. Electrophoretic deposition of bioadaptive drug delivery coatings on magnesium alloy for bone repair[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8625-8634. |
| [6] | YANG Yuyun, ZHOU Juncen, CHEN Qiang, et al. In vitro osteocompatibility and enhanced biocorrosion resistance of diammonium hydrogen phosphate-pretreated/poly(ether imide) coatings on magnesium for orthopedic application[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 29667-29680. |
| [7] | KHODAIR Ziad T, KHADOM Anees A, JASIM Hassan A. Corrosion protection of mild steel in different aqueous media via epoxy/nanomaterial coating: Preparation, characterization and mathematical views[J]. Journal of Materials Research and Technology, 2019, 8(1): 424-435. |
| [8] | YUAN Shuai, ZHAO Xia, JIN Zuquan, et al. Fabrication of an environment-friendly epoxy coating with flexible superhydrophobicity and anti-corrosion performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633: 127545. |
| [9] | ZHOU Chaogang, CHEN Qiya, ZHAO Jingjing, et al. Superhydrophobic epoxy resin coating with composite nanostructures for metal protection[J]. Materials Today Communications, 2024, 38: 107803. |
| [10] | KANWAL Rumasa, MAQSOOD Muhammad Faheem, RAZA Mohsin ALI, et al. Polypyrrole coated carbon fiber/magnetite/graphene oxide reinforced hybrid epoxy composites for high strength and electromagnetic interference shielding[J]. Materials Today Communications, 2024, 38: 107684. |
| [11] | MENG Tian, CHEN Jingwei, Jiaqiang E, et al. Molecular dynamics study on the dissolution characteristics and cluster formation of Li2CO3 in supercritical water[J]. Journal of Molecular Liquids, 2023, 392: 123454. |
| [12] | HU Haowei, LI Qin, LIU Shuang, et al. Molecular dynamics study on water vapor condensation and infiltration characteristics in nanopores with tunable wettability[J]. Applied Surface Science, 2019, 494: 249-258. |
| [13] | MA Qiang, QI Penghao, DONG Guangneng. An experimental and molecular dynamics study of the superlubricity enabled by hydration lubrication[J]. Applied Surface Science, 2021, 553: 149590. |
| [14] | KOCAAGA Banu, Seniha GUNER F, KURKCUOGLU Ozge. Molecular dynamics simulations can predict the optimum drug loading amount in pectin hydrogels for controlled release[J]. Materials Today Communications, 2022, 31: 103268. |
| [15] | ZHANG Zhenpeng, WANG Heyu, LI Zhonglei, et al. Molecule diffusion behaviours of waterproof sealants into silicone rubber insulation for submarine cable joint based on molecular dynamics simulations[J]. High Voltage, 2021, 6(2): 230-241. |
| [16] | SHENG Can, WU Gai, SUN Xiang, et al. Molecular dynamics investigation of the thermo-mechanical properties of the moisture invaded and cross-linked epoxy system[J]. Polymers, 2021, 14(1): 103. |
| [17] | FRANK Katherine, CHILDERS Christopher, DUTTA Dhanadeep, et al. Fluid uptake behavior of multifunctional epoxy blends[J]. Polymer, 2013, 54(1): 403-410. |
| [18] | LI Mingyue, MIN Zhaohui, WANG Qichang, et al. Effect of epoxy resin content and conversion rate on the compatibility and component distribution of epoxy asphalt: A MD simulation study[J]. Construction and Building Materials, 2022, 319: 126050. |
| [19] | SUN Yingying, CHEN Lin, CUI Liu, et al. Molecular dynamics simulation of cross-linked epoxy resin and its interaction energy with graphene under two typical force fields[J]. Computational Materials Science, 2018, 143: 240-247. |
| [20] | BI Maoqiang, TONG Zhonghe, XIE Chuanlin, et al. The improvement mechanism of styrene grafted nano-Al2O3 on the hydrophobicity of epoxy resin composites: Based on molecular dynamics and experimental research[J]. Materials Today Communications, 2024, 40: 109369. |
| [21] | HONG Zixiao, XU Yuxin, YE Daiqi, et al. One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study[J]. Surface and Coatings Technology, 2023, 472: 129943. |
| [22] | POURHASHEM Sepideh, HADIZADEH Mohammad Hassan, JI Xiaohong, et al. Recognizing the function of different silane coupling agents on MXene adsorption/barrier behavior in solvent-borne epoxy coatings: Experimental studies, density functional theory, and molecular dynamics simulations[J]. Progress in Organic Coatings, 2024, 192: 108453. |
| [23] | LI Shuo, YE Wenting, SHI Yeran, et al. Atomistic simulation and experimental verification of tribological behavior of high entropy alloy/graphene composite coatings[J]. Surface and Coatings Technology, 2023, 467: 129683. |
| [24] | YU Huiping, TONG Zhihao, CHEN Pei, et al. Effects of different parameters on thermal and mechanical properties of aminated graphene/epoxy nanocomposites connected by covalent: A molecular dynamics study[J]. Current Applied Physics, 2020, 20(4): 510-518. |
| [25] | HADDEN C M, JENSEN B D, BANDYOPADHYAY A, et al. Molecular modeling of EPON-862/graphite composites: Interfacial characteristics for multiple crosslink densities[J]. Composites Science and Technology, 2013, 76: 92-99. |
| [26] | YANG Seunghwa, KWON Sunyong, LEE Man Young, et al. Molecular dynamics and micromechanics study of hygroelastic behavior in graphene oxide-epoxy nanocomposites[J]. Composites Part B: Engineering, 2019, 164: 425-436. |
| [27] | 毕茂强, 彭豪, 文娅, 等. 纳米掺杂环氧树脂热力学性能的分子动力学模拟[J]. 电瓷避雷器, 2023(2): 142-149. |
| BI Maoqiang, PENG Hao, WEN Ya, et al. Molecular dynamics simulation of the thermodynamic properties of nano-doped epoxy resins[J]. Insulators and Surge Arresters, 2023(2): 142-149. | |
| [28] | ANAM Ashutosh, GAMIT Nilam, PRAJAPATI Vimalkumar, et al. An overview of kaolin and its potential application in thermosetting polymers[J]. Materials Today Communications, 2023, 36: 106827. |
| [29] | SU Linna, ZENG Xiaoliang, HE Hongping, et al. Preparation of functionalized kaolinite/epoxy resin nanocomposites with enhanced thermal properties[J]. Applied Clay Science, 2017, 148: 103-108. |
| [30] | ZHANG Yuhan, ZHAO Xuesong, SHANG Baoyue, et al. Characterization of nano-kaolin and its enhancement of the mechanical and corrosion resistance of epoxy coatings[J]. Materials Today Communications, 2024, 41: 110371. |
| [31] | SONG Yunfei, YU Guoyang, YIN Hedong, et al. Temperature dependence of elastic modulus of single crystal sapphire investigated by laser ultrasonic[J]. Acta Physica Sinica, 2012, 61(6): 064211. |
| [32] | 王成江, 周文戟, 范正阳, 等. 六方氮化硼纳米掺杂增强环氧树脂热学和力学性能的分子动力学模拟[J]. 绝缘材料, 2021, 54(1): 78-83. |
| WANG Chengjiang, ZHOU Wenji, FAN Zhengyang, et al. Molecular dynamics simulation on thermal and mechanical properties of h-BN nano-doping enhanced epoxy resin[J]. Insulating Materials, 2021, 54(1): 78-83. | |
| [33] | TABORDA-BARRAZA M, PELISSER F, GLEIZE Philippe J P. Thermal-mechanical properties of metakaolin-based geopolymer containing silicon carbide microwhiskers[J]. Cement and Concrete Composites, 2021, 123: 104168. |
| [34] | ZIDI Zeineb, LTIFI Mounir, ZAFAR Idrees. Synthesis and attributes of nano-SiO2 local metakaolin based-geopolymer[J]. Journal of Building Engineering, 2021, 33: 101586. |
| [35] | SINGLA Rashmi, SENNA Mamoru, MISHRA T, et al. High strength metakaolin/epoxy hybrid geopolymers: Synthesis, characterization and mechanical properties[J]. Applied Clay Science, 2022, 221: 106459. |
| [36] | CHEN Shibo, WANG Xiaobo, ZHU Guiyu, et al. Developing multi-wall carbon nanotubes/fusion-bonded epoxy powder nanocomposite coatings with superior anti-corrosion and mechanical properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628: 127309. |
| [37] | QU Jiajun, GAO Ke, HOU Gunayi, et al. Molecular dynamics simulation of glass transition and thermal stability of novel silicone elastomer and its nanocomposites[J]. Materials Today Communications, 2022, 33: 104517. |
| [38] | SONG Jingfu, ZHAO Gai, DING Qingjun, et al. Molecular dynamics study on the thermal, mechanical and tribological properties of PBI/PI composites[J]. Materials Today Communications, 2022, 30: 103077. |
| [39] | Saki OTA, MICHISHIO Koji, HARADA Miyuki. Development of Tg-less epoxy thermosets by introducing crosslinking points into rigid mesogenic moiety via Schiff base-derived self-polymerization[J]. Materials Today Communications, 2022, 31: 103501. |
| [40] | GEORGE Jesiya Susan, Poornima VIJAYAN P, VAHABI Henri, et al. Sustainable hybrid green nanofiller based on cellulose nanofiber for enhancing the properties of epoxy resin[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 694: 134082. |
| [41] | SHENG Lisha, WANG Yi, CHEN Zhenqian. Kinetic and thermodynamic property study of electrostatic-assisted porous liquids, nanofluids and nanoparticle organic hybrid materials by molecular dynamics simulation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 674: 131898. |
| [42] | BISH D L, VON DREELE R B. Rietveld refinement of non-hydrogen atomic positions in kaolinite[J]. Clays and Clay Minerals, 1989, 37(4): 289-296. |
| [43] | HADIPEYKANI Majid, AGHADAVOUDI Farshid, TOGHRAIE Davood. A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: A statistical study[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 546: 123995. |
| [44] | 杨潞霞, 郭志婧, 郭丽媛, 等. 基于Perl语言的交联环氧树脂分子模型的构建和性能仿真[J]. 计算机与应用化学, 2017, 34(2): 172-176. |
| YANG Luxia, GUO Zhijing, GUO Liyuan, et al. The construction of the model and properties simulation of crosslinking epoey resin based on Perl[J]. Computers and Applied Chemistry, 2017, 34(2): 172-176. | |
| [45] | LI Yunlong, YANG Bin, YU Zitao, et al. A study on effects of Stone-Thrower-Wales defective carbon nanotubes on glass transition temperature of polymer composites using molecular dynamics simulations[J]. Computational Materials Science, 2021, 186: 110005. |
| [46] | HOUSKA J, ZEMAN P. Role of Al in Cu-Zr-Al thin film metallic glasses: Molecular dynamics and experimental study[J]. Computational Materials Science, 2023, 222: 112104. |
| [47] | HUANG Ming, ALVAREZ Nicolas J, PALMESE Giuseppe R, et al. The effect of network topology on material properties in vinyl-ester/styrene thermoset polymers using molecular dynamics simulations and time-temperature superposition[J]. Computational Materials Science, 2022, 207: 111264. |
| [48] | SALMAN M, VERESTEK W, SCHMAUDER S. Atomistic-scale modeling of nano-clay-filled shape memory polymers[J]. Computational Materials Science, 2021, 188: 110246. |
| [49] | ZHANG H J, SELLAIYAN S, SAKO K, et al. Effect of free-volume holes on static mechanical properties of epoxy resins studied by positron annihilation and PVT experiments[J]. Polymer, 2020, 190: 122225. |
| [50] | KUMAR H, SIDDARAMAIAH, KUMARASWAMY G N, et al. Free volume and the physico-mechanical behaviour of polyurethane/polyacrylonitrile interpenetrating polymer networks: Positron annihilation results[J]. Polymer International, 2005, 54(10): 1401-1407. |
| [51] | 李建超. 杂化体增强及表面镶嵌微珠的ER复合涂层耐磨防腐性能与机理研究[D]. 北京: 北京科技大学, 2022. |
| LI Jianchao. Wear and corrosion resistance properties and mechanism of ER composite coatings reinforced by hybrids and embedded with FACs[D]. Beijing: University of Science and Technology Beijing, 2022. |
| [1] | 杨誉淞, 唐健, 李银, 杨斌, 张克宇, 张少泽, 姚耀春, 胡均贤. 电解铜箔微观结构与力学性能影响因素的研究进展[J]. 化工进展, 2025, 44(9): 5043-5054. |
| [2] | 王艳芬, 艾洁, 程详, 赵光明, 李英明, 孟祥瑞. PPF增强超细水泥基注浆材料力学性能与作用机制[J]. 化工进展, 2025, 44(9): 5184-5194. |
| [3] | 齐妍, 常昊, 张磊. 基于分子动力学模拟的结构性产品配方设计方法[J]. 化工进展, 2025, 44(8): 4341-4351. |
| [4] | 李艳平, 杨涛, 王洪勋, 张城, 温国胜, 韩治成, 蓝公家, 严大洲. 三氯氢硅在氢气氛中的热分解及还原体系的反应分子动力学模拟[J]. 化工进展, 2025, 44(8): 4322-4330. |
| [5] | 段五华, 孙涛祥, 郑强. 工业规模核用离心萃取器的水力学和传质性能[J]. 化工进展, 2025, 44(7): 3709-3717. |
| [6] | 戴月明, 周梅芳, 沈建华, 姜海波, 李春忠. TiO2纳米颗粒烧结机制分子动力学模拟[J]. 化工进展, 2025, 44(4): 2202-2214. |
| [7] | 单雪影, 李玲玉, 张濛, 张家傅, 李锦春. 阻燃环氧树脂/低分子聚苯醚材料的制备及性能[J]. 化工进展, 2025, 44(3): 1533-1541. |
| [8] | 雪冰峰, 张烨, 张世元, 付鹏, 崔喆, 张袁铖, 李鑫, 庞新厂, 赵蔚, 张晓朦, 刘民英. 直接固相聚合法制备聚酰胺PA12T及性能表征[J]. 化工进展, 2025, 44(3): 1559-1569. |
| [9] | 杜静静, 蒋军, 徐信武, 邵鲁鹏, 徐朝阳, 梅长彤. 不同聚合度对聚乙烯醇成膜过程、膜结构和膜性能的影响[J]. 化工进展, 2025, 44(3): 1588-1598. |
| [10] | 冯鹏, 徐东海, 何冰, 刘欢腾, 杨立杰, 王攀, 刘青山. 亚/超临界水中典型硫酸盐Na2SO4和K2SO4的溶解特性及机理[J]. 化工进展, 2025, 44(3): 1706-1715. |
| [11] | 冯琬淇, 杨翠平, 郝俊尧, 倪红梅, 赵俭波. 棉浆黑液提取物基木塑复合材料的制备及性能[J]. 化工进展, 2025, 44(3): 1768-1775. |
| [12] | 万凯, 杨卫民, 丁奇胜, 殷荣政, 李好义, 谭晶. 激光辐照碳纤维石墨化均匀性及力学性能[J]. 化工进展, 2025, 44(2): 1025-1032. |
| [13] | 孙爱玲, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 自修复环氧防腐涂层的研究进展[J]. 化工进展, 2025, 44(10): 5881-5890. |
| [14] | 丁伟, 杜伟, 郭铁滨, 关潇卓, 王铁铮, 高健桐, 张楠, 李达, 张兰河. L-谷氨酸改性氧化石墨烯复合环氧树脂涂层的制备及防腐性能[J]. 化工进展, 2025, 44(1): 424-435. |
| [15] | 万立祥, 崔锦峰, 郭军红, 包雪梅, 杨保平. 聚酰胺酸-聚氨酯嵌段共聚物及其热亚胺化弹性体的制备与性能[J]. 化工进展, 2025, 44(1): 398-406. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |