化工进展 ›› 2025, Vol. 44 ›› Issue (10): 5881-5890.DOI: 10.16085/j.issn.1000-6613.2024-1363
• 精细化工 • 上一篇
孙爱玲(
), 杨建军(
), 吴庆云, 吴明元, 张建安, 刘久逸
收稿日期:2024-08-20
修回日期:2024-10-14
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
杨建军
作者简介:孙爱玲(2000—),女,硕士研究生,研究方向为高分子复合材料。E-mail: 3519688176 @qq.com。
基金资助:
SUN Ailing(
), YANG Jianjun(
), WU Qingyun, WU Mingyuan, ZHANG Jian’an, LIU Jiuyi
Received:2024-08-20
Revised:2024-10-14
Online:2025-10-25
Published:2025-11-10
Contact:
YANG Jianjun
摘要:
环氧树脂涂料具有优异的附着力和防腐性能,但其在固化过程中容易产生空隙和裂纹,直接影响涂层的防腐性能和使用寿命。自修复环氧防腐涂层可以主动修复表面损伤,提高防腐性能。本文介绍了“外援型”和“内在触发型”两种自修复环氧防腐涂层。“外援型”的愈合是基于含有愈合剂的微胶囊、纳米纤维和纳米容器等添加成分,完成修复过程;“内在触发型”的愈合主要是基于聚合物链之间的可逆共价键或非共价键,在受损区域通过物理或化学反应实现主动愈合。通过对两种自修复环氧防腐涂层已有的研究进行分析,对比其优缺点,为未来开发新的自修复环氧防腐涂层提供了借鉴。
中图分类号:
孙爱玲, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 自修复环氧防腐涂层的研究进展[J]. 化工进展, 2025, 44(10): 5881-5890.
SUN Ailing, YANG Jianjun, WU Qingyun, WU Mingyuan, ZHANG Jian’an, LIU Jiuyi. Research progress of self-healing epoxy anti-corrosion coatings[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5881-5890.
| 样品 | 环氧树脂 EP/g | 3,3′-二硫代二丙酸 DTPA/g | 三苯基膦 TPP/g | 己二酸 ADA/g | 二聚酸 DAA/g | DAA与DTPA的 摩尔比 |
|---|---|---|---|---|---|---|
| EP-ADA-DAA | 4.00 | 0 | 0.13 | 0.74 | 1.12 | — |
| EP-SS | 4.00 | 1.47 | 0.13 | 0 | 0 | 0 |
| EP-SS-DAA1 | 4.00 | 1.26 | 0.13 | 0 | 0.56 | 0.17 |
| EP-SS-DAA2 | 4.00 | 1.05 | 0.13 | 0 | 1.12 | 0.40 |
| EP-SS-DAA3 | 4.00 | 0.82 | 0.13 | 0 | 1.74 | 0.80 |
表1 环氧树脂涂层样品的合成配方[41]
| 样品 | 环氧树脂 EP/g | 3,3′-二硫代二丙酸 DTPA/g | 三苯基膦 TPP/g | 己二酸 ADA/g | 二聚酸 DAA/g | DAA与DTPA的 摩尔比 |
|---|---|---|---|---|---|---|
| EP-ADA-DAA | 4.00 | 0 | 0.13 | 0.74 | 1.12 | — |
| EP-SS | 4.00 | 1.47 | 0.13 | 0 | 0 | 0 |
| EP-SS-DAA1 | 4.00 | 1.26 | 0.13 | 0 | 0.56 | 0.17 |
| EP-SS-DAA2 | 4.00 | 1.05 | 0.13 | 0 | 1.12 | 0.40 |
| EP-SS-DAA3 | 4.00 | 0.82 | 0.13 | 0 | 1.74 | 0.80 |
| 样品 | 抗拉强度/MPa | 断裂伸长率/% | 杨氏模量/GPa | 韧性/MJ·m-3 |
|---|---|---|---|---|
| EP-SS | 56.15±1.12 | 8.18±1.33 | 2.34±0.04 | 4.02±0.11 |
| EP-SS-DAA1 | 37.47±0.85 | 91.40±4.58 | 2.06±0.02 | 32.28±0.57 |
| EP-SS-DAA2 | 35.85±0.92 | 150.55±5.81 | 1.86±0.03 | 42.14±0.42 |
| EP-SS-DAA3 | 18.01±0.67 | 178.45±4.97 | 1.31±0.02 | 28.23±0.53 |
表2 环氧树脂涂层样品的机械性能[41]
| 样品 | 抗拉强度/MPa | 断裂伸长率/% | 杨氏模量/GPa | 韧性/MJ·m-3 |
|---|---|---|---|---|
| EP-SS | 56.15±1.12 | 8.18±1.33 | 2.34±0.04 | 4.02±0.11 |
| EP-SS-DAA1 | 37.47±0.85 | 91.40±4.58 | 2.06±0.02 | 32.28±0.57 |
| EP-SS-DAA2 | 35.85±0.92 | 150.55±5.81 | 1.86±0.03 | 42.14±0.42 |
| EP-SS-DAA3 | 18.01±0.67 | 178.45±4.97 | 1.31±0.02 | 28.23±0.53 |
| 样品 | SPE、CM-β-CD、CHCA、PEGBC摩尔比 |
|---|---|
| SCCPB-0 | 1∶1∶1∶0 |
| SCCPB-1 | 1∶1∶1∶1 |
| SCCPB-2 | 1∶1∶1∶2 |
| SCCPB-3 | 1∶1∶1∶3 |
| SCCPB-4 | 1∶1∶1∶4 |
表3 制备各固化产物的反应物的摩尔比[46]
| 样品 | SPE、CM-β-CD、CHCA、PEGBC摩尔比 |
|---|---|
| SCCPB-0 | 1∶1∶1∶0 |
| SCCPB-1 | 1∶1∶1∶1 |
| SCCPB-2 | 1∶1∶1∶2 |
| SCCPB-3 | 1∶1∶1∶3 |
| SCCPB-4 | 1∶1∶1∶4 |
| [1] | JIA Zhitong, FU Mingjiao, ZHAO Xiaodong, et al. Intelligent identification of metal corrosion based on corrosion-YOLOv5s[J]. Displays, 2023, 76: 102367. |
| [2] | 黄小庆, 杨建军, 陈春俊, 等. 功能型环氧树脂基防腐涂层的研究进展[J]. 精细化工, 2023, 40(8): 1625-1635, 1666. |
| HUANG Xiaoqing, YANG Jianjun, CHEN Chunjun, et al. Research progress on functional epoxy-based anti-corrosion coatings[J]. Fine Chemicals, 2023, 40(8): 1625-1635, 1666. | |
| [3] | LIN Xiuzhou, CHEN Xulei, ZHAO Shixiong, et al. Effect of silane-modified fluorinated graphene on the anticorrosion property of epoxy coating[J]. Journal of Applied Polymer Science, 2023, 140(12): e53637. |
| [4] | ZHANG Binbin, FAN Hao, XU Weichen, et al. Thermally triggered self-healing epoxy coating towards sustained anti-corrosion[J]. Journal of Materials Research and Technology, 2022, 17: 2684-2689. |
| [5] | 孙军艳, 许瑶菲, 杨松伟, 等. 基于动态共价键自修复环氧树脂研究进展[J]. 广州化学, 2023, 48(6): 13-19, 79. |
| SUN Junyan, XU Yaofei, YANG Songwei, et al. Progress of self-healing epoxy resins based on dynamic covalent bonds[J]. Guangzhou Chemistry, 2023, 48(6): 13-19, 79. | |
| [6] | HE Shasha, GAO Yijian, GONG Xinghou, et al. Advance of design and application in self-healing anticorrosive coating: A review[J]. Journal of Coatings Technology and Research, 2023, 20(3): 819-841. |
| [7] | ZHANG Cheng, WANG Haoran, ZHOU Qixin. Preparation and characterization of microcapsules based self-healing coatings containing epoxy ester as healing agent[J]. Progress in Organic Coatings, 2018, 125: 403-410. |
| [8] | LIU Tianhui, ZHAO Yuzeng, DENG Yining, et al. Preparation of fully epoxy resin microcapsules and their application in self-healing epoxy anti-corrosion coatings[J]. Progress in Organic Coatings, 2024, 188: 108247. |
| [9] | ZHANG He, CHENG Chuanrui, GUO Meiling. Fabrication of diisocyanate microcapsules for self-healing anti-corrosion coatings via integrating electrospraying and interfacial polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 695: 134247. |
| [10] | YANG Kang, NIU Yongping, WANG Xiaowei, et al. Self-lubricating epoxy composite coating with linseed oil microcapsule self-healing functionality[J]. Journal of Applied Polymer Science, 2024, 141(6): e54927. |
| [11] | SAFDARI Alireza, KHORASANI Saied Nouri, NEISIANY Rasoul Esmaeely, et al. Corrosion resistance evaluation of self-healing epoxy coating based on dual-component capsules containing resin and curing agent[J]. International Journal of Polymer Science, 2021, 2021(1): 6617138. |
| [12] | GUO Maolian, LI Wei, HAN Na, et al. Novel dual-component microencapsulated hydrophobic amine and microencapsulated isocyanate used for self-healing anti-corrosion coating[J]. Polymers, 2018, 10(3): 319. |
| [13] | WANG Rui, YU Fei, FENG Hengyu, et al. Preparation of two-component micro-encapsulated epoxy self-healing materials based on Pickering emulsion method[J]. Journal of Applied Polymer Science, 2023, 140(35): e54350. |
| [14] | XU Yangbo, SHEN Rulin, TANG Juntao, et al. Optimizing mechanical properties and corrosion resistance in core-shell nanofiber epoxy self-healing coatings: Impact of shell material variation[J]. Polymer Engineering & Science, 2024, 64(4): 1770-1785. |
| [15] | XU Shuai, LI Jing, QIU Hanxun, et al. Repeated self-healing of composite coatings with core-shell fibres[J]. Composites Communications, 2020, 19: 220-225. |
| [16] | NAGA KUMAR C, PRABHAKAR M N, Song JUNG-IL. PVDF green nanofibers as potential carriers for improving self-healing and mechanical properties of carbon fiber/epoxy prepregs[J]. Nanotechnology Reviews, 2022, 11(1): 1890-1900. |
| [17] | LI Pengchong, SHANG Zhi, CUI Kejian, et al. Coaxial electrospinning core-shell fibers for self-healing scratch on coatings[J]. Chinese Chemical Letters, 2019, 30(1): 157-159. |
| [18] | WANG Ruzheng, CAO Lin, WANG Wei, et al. Construction of smart coatings containing core-shell nanofibers with self-healing and active corrosion protection[J]. ACS Applied Materials & Interfaces, 2024, 16(32): 42748-42761. |
| [19] | FU Xue, DU Wenbo, DOU Haixu, et al. Nanofiber composite coating with self-healing and active anticorrosive performances[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 57880-57892. |
| [20] | HASSIM Mohamad Tarmizie, PRABHAKAR M N, SONG Jung-Il. Strengthening and self-healing of natural fiber composites via PLA core-shell nanofibers as healing agent carrier[J]. Polymer Composites, 2024, 45(10): 9350-9361. |
| [21] | HAO Yongsheng, ZHAO Yifan, YANG Xiaoxuan, et al. Self-healing epoxy coating loaded with phytic acid doped polyaniline nanofibers impregnated with benzotriazole for Q235 carbon steel[J]. Corrosion Science, 2019, 151: 175-189. |
| [22] | JI Xiaohong, JI Wenhui, POURHASHEM Sepideh, et al. Novel superhydrophobic core-shell fibers/epoxy coatings with self-healing anti-corrosion properties in both acidic and alkaline environments[J]. Reactive and Functional Polymers, 2023, 187: 105574. |
| [23] | WANG Qi, WANG Wei, JI Xiaohong, et al. Self-healing coatings containing core-shell nanofibers with pH-responsive performance[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 3139-3152. |
| [24] | CAO Lin, WANG Qi, WANG Wei, et al. Synthesis of smart nanofiber coatings with autonomous self-warning and self-healing functions[J]. ACS Applied Materials & Interfaces, 2022, 14(23): 27168-27176. |
| [25] | ZHANG Yuanyuan, XING Jinjuan, TIAN Hu, et al. Smart nanoarchitectonics of epoxy coating: Preparation, release behavior and self-healing performance based on mesoporous silica nano-containers loaded with DMTD inhibitors[J]. Materials Today Communications, 2024, 39: 108673. |
| [26] | LI Xuejin, LI Long, ZHANG Weiqiang, et al. Grafting of polyaniline onto polydopamine-wrapped carbon nanotubes to enhance corrosion protection properties of epoxy coating[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670: 131548. |
| [27] | LAMPRAKOU Zoi, BI Huichao, WEINELL Claus Erik, et al. Smart epoxy coating with mesoporous silica nanoparticles loaded with calcium phosphate for corrosion protection[J]. Progress in Organic Coatings, 2022, 165: 106740. |
| [28] | ZHU Ziwei, CHEN Sifan, ZHANG Yue, et al. Corrosion resistance of polyvinyl butyral/reduced graphene oxide/titanium dioxide composite coatings for stainless steel in different environments[J]. Progress in Organic Coatings, 2022, 173: 107226. |
| [29] | JIANG Li, DONG Yanmao, YUAN Yan, et al. Recent advances of metal-organic frameworks in corrosion protection: From synthesis to applications[J]. Chemical Engineering Journal, 2022, 430: 132823. |
| [30] | WEN Jiaxin, LEI Jinglei, CHEN Jinlong, et al. Polyethylenimine wrapped mesoporous silica loaded benzotriazole with high pH-sensitivity for assembling self-healing anti-corrosive coatings[J]. Materials Chemistry and Physics, 2020, 253: 123425. |
| [31] | LIU Liang, WANG Haifeng, ZHANG Chuanxu, et al. Improved anti-corrosion and self-healing performance of epoxy coatings reinforced by chitosan encapsulated mesoporous silica nanocontainers[J]. Materials Letters, 2024, 366: 136595. |
| [32] | ZHANG Zhenhua, CAO Yangyang, WAN Jieru, et al. Double-layered composite coating with enhanced self-healing and anti-corrosion performance based on synergistic effect of l-methionine and vanillin[J]. Progress in Organic Coatings, 2024, 192: 108477. |
| [33] | ALIYARI Donya, MAHDAVIAN Mohammad, RAMEZANZADEH Bahram. Zinc-cobalt bimetallic metal-organic framework (Zn/Co-MOF) nanoparticles as potent pH stimuli anti-corrosive agent for development of a self-healable epoxy composite coating[J]. Materials Today Chemistry, 2024, 38: 102105. |
| [34] | YAN Han, FAN Xiaoqiang, CAI Meng, et al. Amino-functionalized Ti3C2T x loading ZIF-8 nanocontainer@benzotriazole as multifunctional composite filler towards self-healing epoxy coating[J]. Journal of Colloid and Interface Science, 2021, 602: 131-145. |
| [35] | SOLAIMANY Farnaz, RAMEZANZADEH Mohammad, HADDADI Seyyed Arash, et al. BTA@MoS2/hydroxyapatite/ZIF8 self-assembled nanohybrid for designing multi-functional smart anti-corrosion system[J]. Materials Today Chemistry, 2024, 37: 102012. |
| [36] | HU Zhen, ZHANG Dayu, LU Fei, et al. Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host-guest interactions[J]. Macromolecules, 2018, 51(14): 5294-5303. |
| [37] | WANG Juntao, CHEN Dingding, XING Suli, et al. Highly thermal stable, stiff, and recyclable self-healing epoxy based on Diels-Alder reaction[J]. ACS Applied Polymer Materials, 2024, 6(1): 466-474. |
| [38] | CAO Ying, WANG Xiaoyu, WU Jianhua, et al. A novel self-healing and removable hexagonal boron nitride/epoxy coating with excellent anti-corrosive property based on Diels-Alder reaction[J]. Progress in Organic Coatings, 2022, 173: 107209. |
| [39] | ZHANG Yunpeng, YE Jiaofeng, QU Dongan, et al. Thermo-adjusted self-healing epoxy resins based on Diels-Alder dynamic chemical reaction[J]. Polymer Engineering & Science, 2021, 61(9): 2257-2266. |
| [40] | WEN Jie, WANG Lin, LI Rui, et al. Design and properties of dynamic self-healing polyurea molecule based on disulfide bonds[J]. Journal of Applied Polymer Science, 2023, 140(6): e53436. |
| [41] | WU Jianxin, LIU Xiaochun, CHEN Lijing, et al. Rapid self-healing and high-mechanical-strength epoxy resin coatings incorporating dynamic disulfide bonds[J]. ACS Applied Polymer Materials, 2024, 6(8): 4778-4788. |
| [42] | WANG Baolei, LI Zewei, LIU Xinru, et al. Preparation of epoxy resin with disulfide-containing curing agent and its application in self-healing coating[J]. Materials, 2023, 16(12): 4440. |
| [43] | LIU Tong, ZHAO Haichao, ZHANG Dawei, et al. Ultrafast and high-efficient self-healing epoxy coatings with active multiple hydrogen bonds for corrosion protection[J]. Corrosion Science, 2021, 187: 109485. |
| [44] | KIM Geonwoo, CAGLAYAN Cigdem, YUN GUN jin. Epoxy-based catalyst-free self-healing elastomers at room temperature employing aromatic disulfide and hydrogen bonds[J]. ACS Omega, 2022, 7(49): 44750-44761. |
| [45] | HONMA Yoshiyuki, SUGANE Kaito, SHIBATA Mitsuhiro. Self-healing photocured methacrylic resins utilizing host-guest interactions of cyclodextrin and adamantane[J]. European Polymer Journal, 2023, 196: 112244. |
| [46] | KURIHARA Risa, OGAWA Yamato, SUGANE Kaito, et al. Self-healing carboxylic acid-cured epoxy networks driven by the cyclodextrin-cyclohexane host-guest interaction[J]. Polymer Bulletin, 2024, 81(7): 6405-6421. |
| [47] | SUGANE Kaito, MARUOKA Yuji, SHIBATA Mitsuhiro. Self-healing epoxy networks based on cyclodextrin-adamantane host-guest interactions[J]. Journal of Polymer Research, 2021, 28(11): 423. |
| [1] | 张博, 马骏, 张维隆, 贾世川, 张智飞, 丁宇, 潘有华, 王俊宇, 张兰河. α-ZrP/PDMS超疏水防腐涂层的制备及其耐腐蚀性能[J]. 化工进展, 2025, 44(9): 5130-5139. |
| [2] | 左启斌, 张涵, 孙传付, 胡桂林, 夏玉珍. 镍/石墨烯涂层在质子交换膜燃料电池泡沫金属流场上的应用[J]. 化工进展, 2025, 44(9): 5195-5201. |
| [3] | 刘文龙, 马秀清, 李长金, 何东洋, 高觊兴, 张杨, 李满意, 杨卫民, 李好义. LDPE/PEW熔喷超细纤维及其非织造布性能[J]. 化工进展, 2025, 44(7): 4032-4038. |
| [4] | 俸三喆, 匡唐清, 柳和生, 杨帆, 陈灏. 弹头直径对短玻纤增强聚丙烯水驱动弹头辅助共注塑管件的质量影响[J]. 化工进展, 2025, 44(7): 4061-4069. |
| [5] | 陈倩, 仝坤, 谢加才, 邵志国, 聂凡, 李成涛. 含聚油泥处理技术研究进展[J]. 化工进展, 2025, 44(7): 4158-4168. |
| [6] | 邹志鹏, 潘全旺, 赵陈, 沈海涛, 丛梅, 赵基钢. 流体在光滑圆条上的降膜流动分析[J]. 化工进展, 2025, 44(6): 3405-3412. |
| [7] | 李庆斯, 张黎明, 张雷. 防冰涂层研究进展及抗冻蛋白防覆冰应用前景[J]. 化工进展, 2025, 44(5): 2505-2514. |
| [8] | 乔金樑. 原料替代助力我国石化产业高质量发展[J]. 化工进展, 2025, 44(5): 2803-2805. |
| [9] | 陈积权, 任鹏炜, 朱日广, 陈思思, 唐兴颖, 覃新宇, 杨健乔. 镍基合金在含侵蚀性离子的超临界水氧化中的腐蚀研究进展[J]. 化工进展, 2025, 44(4): 2141-2155. |
| [10] | 贺静, 郑娜, 徐丽, 沈素丹, 浦群, 房尔园, 介素云. 原子力显微镜红外光谱和化学成像的技术与应用[J]. 化工进展, 2025, 44(4): 2156-2171. |
| [11] | 赵敏, 徐静, 郭兴建, 陈昇, 李鹏洁, 何萌. 阻垢涂层中纳米填料的研究进展[J]. 化工进展, 2025, 44(4): 2183-2195. |
| [12] | 邓雪菲, 吕开河, 黎剑, 孙金声, 樊俊豪, 廖婷, 黄宁. 超深井钻井液用聚合物降滤失剂研究现状及发展趋势[J]. 化工进展, 2025, 44(4): 2119-2132. |
| [13] | 赵凯强, 刘浩, 戴振华, 孙振峰, 杨超, 马诚. 植物油制备高硫聚合物的研究进展[J]. 化工进展, 2025, 44(3): 1454-1465. |
| [14] | 宋慈, 李海燕, 张世珍, 刘洪伟, 张建英, 邱家浩, 曹仁伟, 孙坤, 秦颖, 朱明绪, 高梦岩. 自修复防腐蚀涂层的类型及应用现状[J]. 化工进展, 2025, 44(3): 1466-1484. |
| [15] | 雪冰峰, 张烨, 张世元, 付鹏, 崔喆, 张袁铖, 李鑫, 庞新厂, 赵蔚, 张晓朦, 刘民英. 直接固相聚合法制备聚酰胺PA12T及性能表征[J]. 化工进展, 2025, 44(3): 1559-1569. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |