化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2505-2514.DOI: 10.16085/j.issn.1000-6613.2024-1858
• 合成生物制造 • 上一篇
收稿日期:2024-11-12
修回日期:2025-01-26
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
张雷
作者简介:李庆斯(1992—),男,博士,助理研究员,研究方向为生物化工。E-mail:liqingsi@tju.edu.cn基金资助:
LI Qingsi1,2(
), ZHANG Liming1,2(
), ZHANG Lei1,2(
)
Received:2024-11-12
Revised:2025-01-26
Online:2025-05-25
Published:2025-05-20
Contact:
ZHANG Lei
摘要:
户外设施表面覆冰问题严重影响了其正常运行。传统除冰方法(如加热、化学除冰剂及机械除冰)存在高能耗、环境不友好以及对设备的潜在损害等问题。因此,亟需开发绿色、经济且长效的防冰策略。近年来,构建防冰涂层已成为应对覆冰问题的重要需求,也成为了防冰领域的研究热点。本综述梳理了当今防冰涂层的前沿研究进展,并讨论了防冰涂层的生物基原料替代的可能性。首先,综述了防冰涂层的主要类型(包括超疏水、超润滑、光热、电热以及活性防冰涂层)及其发展现状。其次,重点介绍并分析了自愈合防冰涂层的研究进展,讨论了自愈合特性给防冰涂层带来的重要价值。然后,总结了抗冻蛋白(AFP)的防冰作用机制与AFP防冰涂层的研究现状。最后,对防冰涂层的未来发展方向进行了展望。
中图分类号:
李庆斯, 张黎明, 张雷. 防冰涂层研究进展及抗冻蛋白防覆冰应用前景[J]. 化工进展, 2025, 44(5): 2505-2514.
LI Qingsi, ZHANG Liming, ZHANG Lei. Research progress on anti-icing coatings and anti-icing application prospects of antifreeze proteins[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2505-2514.
| 1 | WU Yuanlong, DONG Lei, SHU Xin, et al. Recent advancements in photothermal anti-icing/deicing materials[J]. Chemical Engineering Journal, 2023, 469: 143924. |
| 2 | YANG Hui, WANG Zhanhui, TAN Sicong, et al. Bio-inspired anti-icing material as an energy-saving design toward sustainable ice repellency[J]. Advanced Materials Technologies, 2022, 7(12): 2200502. |
| 3 | LI Wen, ZHAN Yanlong, YU Sirong. Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives[J]. Progress in Organic Coatings, 2021, 152: 106117. |
| 4 | HUANG Wei, HUANG Jinxia, GUO Zhiguang, et al. Icephobic/anti-icing properties of superhydrophobic surfaces[J]. Advances in Colloid and Interface Science, 2022, 304: 102658. |
| 5 | WANG Nan, XIONG Dangsheng, DENG Yaling, et al. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties[J]. ACS Applied Materials & Interfaces, 2015, 7(11): 6260-6272. |
| 6 | LONG Yifei, YIN Xingxing, MU Peng, et al. Slippery liquid-infused porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and intensified durability for protecting substrates[J]. Chemical Engineering Journal, 2020, 401: 126137. |
| 7 | BENNANI Lokman, TRONTIN Pierre, RADENAC Emmanuel. Numerical simulation of an electrothermal ice protection system in anti-icing and deicing mode[J]. Aerospace, 2023, 10(1): 75. |
| 8 | REKUVIENE Regina, SAEIDIHARZAND Shaghayegh, Liudas MAŽEIKA, et al. A review on passive and active anti-icing and de-icing technologies[J]. Applied Thermal Engineering, 2024, 250: 123474. |
| 9 | HUANG Xiao, TEPYLO Nick, Valérie POMMIER-BUDINGER, et al. A survey of icephobic coatings and their potential use in a hybrid coating/active ice protection system for aerospace applications[J]. Progress in Aerospace Sciences, 2019, 105: 74-97. |
| 10 | EDUOK Ubong, FAYE Omar, SZPUNAR Jerzy. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials[J]. Progress in Organic Coatings, 2017, 111: 124-163. |
| 11 | WEN Gang, GUO Zhiguang, LIU Weimin. Biomimetic polymeric superhydrophobic surfaces and nanostructures: From fabrication to applications[J]. Nanoscale, 2017, 9(10): 3338-3366. |
| 12 | JIANG Shanshan, DIAO Yunhe, YANG Huige. Recent advances of bio-inspired anti-icing surfaces[J]. Advances in Colloid and Interface Science, 2022, 308: 102756. |
| 13 | WANG Peng, YAO Tao, LI Ziqiang, et al. A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite[J]. Composites Science and Technology, 2020, 198: 108307. |
| 14 | ZENG Dan, LI Yong, LIU Hongquan, et al. Superhydrophobic coating induced anti-icing and deicing characteristics of an airfoil[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 660: 130824. |
| 15 | WANG Feng, ZHUO Yizhi, HE Zhiwei, et al. Dynamic anti-icing surfaces (DAIS)[J]. Advanced Science, 2021, 8(21): 2101163. |
| 16 | YAN Wenhao, XUE Shuaiya, ZHAO Xuerui, et al. Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy[J]. Chinese Chemical Letters, 2024, 35(4): 109224. |
| 17 | LATTHE Sanjay S, SUTAR Rajaram S, BHOSALE Appasaheb K, et al. Recent developments in air-trapped superhydrophobic and liquid-infused slippery surfaces for anti-icing application[J]. Progress in Organic Coatings, 2019, 137: 105373. |
| 18 | WANG Guowei, GUO Zhiguang. Liquid infused surfaces with anti-icing properties[J]. Nanoscale, 2019, 11(47): 22615-22635. |
| 19 | GRISHAEV Viktor G, BORODULIN Ivan S, USACHEV Igor A, et al. Anti-icing fluids interaction with surfaces: Ice protection and wettability change[J]. International Communications in Heat and Mass Transfer, 2021, 129: 105698. |
| 20 | TIAN Shu, LI Ruiqi, LIU Xinmeng, et al. Inhibition of defect-induced ice nucleation, propagation, and adhesion by bioinspired self-healing anti-icing coatings[J]. Research, 2023, 6: 0140. |
| 21 | LI Ruiqi, TIAN Shu, TIAN Yunqing, et al. An extreme-environment-resistant self-healing anti-icing coating[J]. Small, 2023, 19(10): 2206075.[LinkOut] |
| 22 | ELLIOTT Gloria D, WANG Shangping, FULLER Barry J. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures[J]. Cryobiology, 2017, 76: 74-91. |
| 23 | SONG Da Hye, KIM Minjae, JIN Eon-Seon, et al. Cryoprotective effect of an antifreeze protein purified from Tenebrio molitor larvae on vegetables[J]. Food Hydrocolloids, 2019, 94: 585-591. |
| 24 | CHANG Tie, ZHAO Gang. Ice inhibition for cryopreservation: Materials, strategies, and challenges[J]. Advanced Science, 2021, 8(6): 2002425. |
| 25 | EWART K V, LIN Q, HEW C L. Structure, function and evolution of antifreeze proteins[J]. Cellular and Molecular Life Sciences, 1999, 55(2): 271-283. |
| 26 | GRAHAM Ben, BAILEY Trisha L, HEALEY Joseph R J, et al. Polyproline as a minimal antifreeze protein mimic that enhances the cryopreservation of cell monolayers[J]. Angewandte Chemie International Edition, 2017, 56(50): 15941-15944. |
| 27 | BERGER Tehilla, MEISTER Konrad, DEVRIES Arthur L, et al. Synergy between antifreeze proteins is driven by complementary ice-binding[J]. Journal of the American Chemical Society, 2019, 141(48): 19144-19150. |
| 28 | Jianyong Lyu, SONG Yanlin, JIANG Lei, et al. Bio-inspired strategies for anti-icing[J]. ACS Nano, 2014, 8(4): 3152-3169. |
| 29 | PENG Chao, YANG Dongjin, YOU Zhanping, et al. Preparation and performance evaluation of the plant antifreeze protein (PAFP) modified emulsified asphalt coating[J]. Construction and Building Materials, 2023, 408: 133619. |
| 30 | MENG Yongjun, ZHAO Qixiong, LEI Jiechao, et al. Preparation of biological antifreeze protein-modified emulsified asphalt coating and research on its anti-icing performance[J]. Construction and Building Materials, 2021, 294: 123473. |
| 31 | SONG Xinyuan, PHILPOTT Matthew A, BEST Serena M, et al. Controlling the architecture of freeze-dried collagen scaffolds with ultrasound-induced nucleation[J]. Polymers, 2024, 16(2): 213. |
| 32 | ZHAO Lingfeng, SHEN Yizhou, LIU Weilan, et al. Solid-liquid-ice interfaces for anti-icing materials[J]. Surfaces and Interfaces, 2023, 42: 103510. |
| 33 | ZHANG Haonan, GUO Huangying, JIANG Rijia, et al. Research progress of multifunctional anti-icing composites materials[J]. Journal of Applied Polymer Science, 2024, 141(36): e55922. |
| 34 | ZHOU Liang, LIU Ruidi, YI Xian. Research and development of anti-icing/deicing techniques for vessels: Review[J]. Ocean Engineering, 2022, 260: 112008. |
| 35 | AWASTHI Sanjay Kumar, SHARMA Kamal, GUPTA Aayush. Zirconia based hydrophobic coatings exhibiting excellent durability for versatile use[J]. Journal of Electrochemical Science and Engineering, 2024. |
| 36 | NAKAJIMA Akira. Design of a transparent hydrophobic coating[J]. Journal of the Ceramic Society of Japan, 2004, 112(1310): 533-540. |
| 37 | NAKAJIMA Akira, HASHIMOTO Kazuhito, WATANABE Toshiya. Recent studies on super-hydrophobic films[J]. Monatshefte Für Chemie/Chemical Monthly, 2001, 132(1): 31-41. |
| 38 | PRAVEEN Lakkimsetti Lakshmi, KAILASAM Karakavalasa, VARDHAN Robbi Vivek, et al. Bio-inspired, ultra-hydrophobic natured durable thermal-sprayed ytterbium-oxide coatings: Review and perspectives[J]. Transactions of the Indian Ceramic Society, 2024, 83(3): 149-165. |
| 39 | LIU Jie, GUO Haoyuan, ZHANG Bo, et al. Guided self-propelled leaping of droplets on a micro-anisotropic superhydrophobic surface[J]. Angewandte Chemie International Edition, 2016, 55(13): 4265-4269. |
| 40 | David QUÉRÉ. Non-sticking drops[J]. Reports on Progress in Physics, 2005, 68(11): 2495-2532. |
| 41 | YANG Jialei, SONG Yunyun, ZHANG Xu, et al. Research progress of bionic fog collection surfaces based on special structures from natural organisms[J]. RSC Advances, 2023, 13(40): 27839-27864. |
| 42 | WANG Jiajie, LU Yingzhuo, CHU Qindan, et al. Facile construction of superhydrophobic surfaces by coating fluoroalkylsilane/silica composite on a modified hierarchical structure of wood[J]. Polymers, 2020, 12(4): 813. |
| 43 | ALDHALEAI Ahmed, TSAI Peichun Amy. Fabrication of transparent and microstructured superhydrophobic substrates using additive manufacturing[J]. Langmuir, 2021, 37(1): 348-356. |
| 44 | YANG Huige, DIAO Yunhe, HUANG Beili, et al. Metal-catechol complexes mediate ice nucleation[J]. Chemical Communications, 2019, 55(45): 6413-6416. |
| 45 | DOU Renmei, CHEN Jing, ZHANG Yifan, et al. Anti-icing coating with an aqueous lubricating layer[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 6998-7003. |
| 46 | WONG Tak-Sing, KANG Sung Hoon, TANG Sindy K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. |
| 47 | URATA Chihiro, Roland HÖNES, SATO Tomoya, et al. Textured organogel films showing unusual thermoresponsive dewetting, icephobic, and optical properties[J]. Advanced Materials Interfaces, 2019, 6(2): 1801358. |
| 48 | MA Wei, LI Yang, CHAO Christopher Y H, et al. Solar-assisted icephobicity down to -60℃ with superhydrophobic selective surfaces[J]. Cell Reports Physical Science, 2021, 2(3): 100384. |
| 49 | WU Shuwang, DU Yingjie, ALSAID Yousif, et al. Superhydrophobic photothermal icephobic surfaces based on candle soot[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(21): 11240-11246. |
| 50 | GUO Hongshuang, LIU Min, XIE Changhai, et al. A sunlight-responsive and robust anti-icing/deicing coating based on the amphiphilic materials[J]. Chemical Engineering Journal, 2020, 402: 126161. |
| 51 | YU Bo, SUN Zhengrong, LIU Yubo, et al. Improving anti-icing and de-icing performances via thermal-regulation with macroporous xerogel[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37609-37616. |
| 52 | NASERI Iman, ZIAEE Morteza, NILSSON Zach N, et al. Electrothermal performance of heaters based on laser-induced graphene on aramid fabric[J]. ACS Omega, 2022, 7(4): 3746-3757. |
| 53 | MEMON Halar, DE FOCATIIS Davide S A, CHOI Kwing-So, et al. Toward exceptional icephobicity with chionophile-inspired durable biomimetic coatings[J]. ACS Applied Polymer Materials, 2021, 3(8): 4184-4194. |
| 54 | HE Zhiyuan, XIE WEN jun, LIU Zhenqi, et al. Tuning ice nucleation with counterions on polyelectrolyte brush surfaces[J]. Science Advances, 2016, 2(6): e1600345. |
| 55 | LIU Zhang, ZHENG Xia, WANG Jianjun. Bioinspired ice-binding materials for tissue and organ cryopreservation[J]. Journal of the American Chemical Society, 2022, 144(13): 5685-5701. |
| 56 | JUNG Kyung Kuk, JUNG Young, PARK Byung-Geon, et al. Super wear resistant nanostructured superhydrophobic surface[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2022, 9(4): 1177-1189. |
| 57 | WANG Lizhong, LI Daizhou, JIANG Guochen, et al. Dual-energy-barrier stable superhydrophobic structures for long icing delay[J]. ACS Nano, 2024, 18(19): 12489-12502. |
| 58 | CHEN Huaiyin, WANG Fangfang, FAN Huizhou, et al. Construction of MOF-based superhydrophobic composite coating with excellent abrasion resistance and durability for self-cleaning, corrosion resistance, anti-icing, and loading-increasing research[J]. Chemical Engineering Journal, 2021, 408: 127343. |
| 59 | XIAO Zhen, CHEN Chujun, LIU Siqi, et al. Endowing durable icephobicity by combination of a rough powder coating and a superamphiphobic coating[J]. Chemical Engineering Journal, 2024, 482: 149001. |
| 60 | CHEN Jun, LUO Zhenyang, AN Rong, et al. Novel intrinsic self-healing poly-silicone-urea with super-low ice adhesion strength[J]. Small, 2022, 18(22): 2200532. |
| 61 | GUO Hongshuang, HAN Yi, ZHAO Weiqiang, et al. Universally autonomous self-healing elastomer with high stretchability[J]. Nature Communications, 2020, 11(1): 2037. |
| 62 | MULTANEN Victor, BHUSHAN Bharat. Bioinspired self-healing, superliquiphobic and self-cleaning hydrogel-coated surfaces with high durability[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377(2150): 20190117. |
| 63 | LI Chenghui, WANG Chao, KEPLINGER Christoph, et al. A highly stretchable autonomous self-healing elastomer[J]. Nature Chemistry, 2016, 8(6): 618-624. |
| 64 | KANG Jiheong, Donghee SON, WANG Ging-Ji Nathan, et al. Tough and water-insensitive self-healing elastomer for robust electronic skin[J]. Advanced Materials, 2018, 30(13): 1706846. |
| 65 | KHATIB Muhammad, ZOHAR Orr, SALIBA Walaa, et al. Highly efficient and water-insensitive self-healing elastomer for wet and underwater electronics[J]. Advanced Functional Materials, 2020, 30(22): 1910196. |
| 66 | YANG Kai, LI Qingsi, TIAN Shu, et al. Highly stretchable, self-healing, and sensitive E-skins at -78℃ for polar exploration[J]. Journal of the American Chemical Society, 2024, 146(15): 10699-10707. |
| 67 | CHEN Jun, Marcus BJÖRLING, Pär MARKLUND, et al. Effect of anti-icing coating functional groups on ice adhesion[J]. Applied Materials Today, 2024, 39: 102264.[LinkOut] |
| 68 | ZHENG Yan, WANG Jie, LIU Junpeng, et al. Energy saving strategy for the development of icephobic coatings and surfaces[J]. Thin Solid Films, 2019, 687: 137458. |
| 69 | WU Xiaojun, YAO Fanglian, ZHANG Hong, et al. Antifreeze proteins and their biomimetics for cell cryopreservation: Mechanism, function and application—A review[J]. International Journal of Biological Macromolecules, 2021, 192: 1276-1291. |
| 70 | THOSAR Aniket U, SHALOM Yitzhar, BRASLAVSKY Ido, et al. Accumulation of antifreeze proteins on ice is determined by adsorption[J]. Journal of the American Chemical Society, 2023, 145(32): 17597-17602. |
| 71 | LIU Kai, WANG Chunlei, MA Ji, et al. Janus effect of antifreeze proteins on ice nucleation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51): 14739-14744. |
| 72 | MITCHELL Daniel E, CLARKSON Guy, David J FOX, et al. Antifreeze protein mimetic metallohelices with potent ice recrystallization inhibition activity[J]. Journal of the American Chemical Society, 2017, 139(29): 9835-9838. |
| 73 | ESSER-KAHN Aaron P, TRANG Vivian, FRANCIS Matthew B. Incorporation of antifreeze proteins into polymer coatings using site-selective bioconjugation[J]. Journal of the American Chemical Society, 2010, 132(38): 13264-13269. |
| 74 | MENG Yongjun, LEI Jiechao, ZHAO Qixiong, et al. Multi-scale study of anti-freeze properties, anti-freeze mechanism and rheological properties of biological antifreeze protein (AFP) modified emulsified asphalt coating[J]. Construction and Building Materials, 2021, 305: 124780. |
| 75 | GAO Yihang, QI Haishan, FAN Daidi, et al. Beetle and mussel-inspired chimeric protein for fabricating anti-icing coating[J]. Colloids and Surfaces B: Biointerfaces, 2022, 210: 112252. |
| [1] | 王良玉, 曹辉, 谭天伟. 基于微生物发酵构建生物基材料及单体模块[J]. 化工进展, 2025, 44(5): 2394-2406. |
| [2] | 曹湘洪, 周峰, 姜睿, 刘诗哲, 方向晨, 亢万忠, 乔金樑, 聂红. 加快我国生物基材料产业发展的对策[J]. 化工进展, 2025, 44(5): 2385-2393. |
| [3] | 陈慕华, 嵇震, 王芳, 黄凯健, 付博, 刘博, 刘绍忠, 朱新宝. 纤维素基共聚型聚羧酸减水剂的合成及其性能[J]. 化工进展, 2024, 43(S1): 564-570. |
| [4] | 谢国平, 谭雪松, 刘鹏, 苗长林, 许光文, 庄新姝. 基于生物基衍生有机溶剂的木质纤维素预处理研究进展[J]. 化工进展, 2024, 43(6): 3347-3358. |
| [5] | 谢蒙蒙, 刘健, 党蕊, 李美馨, 林晓婷, 苏舟, 王洁. 离子导电水凝胶的制备及在柔性电子领域的应用[J]. 化工进展, 2024, 43(6): 3128-3144. |
| [6] | 刘萌萌, 秋列维, 万智卫, 李世婧, 许玉雨. 自愈水凝胶的设计原理及应用[J]. 化工进展, 2024, 43(3): 1350-1362. |
| [7] | 谈继淮, 余敏, 张彤彤, 黄能坤, 王梓雯, 朱新宝. 新型栲胶聚丙氧基醚酯的合成及增塑PVC性能[J]. 化工进展, 2023, 42(9): 4847-4855. |
| [8] | 王少凡, 周颖, 郝康安, 黄安荣, 张如菊, 吴翀, 左晓玲. 具有pH响应性的自愈合蓝光水凝胶[J]. 化工进展, 2023, 42(9): 4837-4846. |
| [9] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
| [10] | 戴行, 高瑞雪, 李奕国, 朱锦, 王静刚. 高玻璃化转变温度抗冲击透明聚酯的研究进展[J]. 化工进展, 2023, 42(5): 2555-2565. |
| [11] | 赵毅, 杨臻, 王佳, 李静雯, 郑煜. 沥青胶结料自愈合行为分子动力学模拟研究进展[J]. 化工进展, 2023, 42(2): 803-813. |
| [12] | 邱艺娟, 林佳伟, 秦济锐, 吴嘉茵, 林凤采, 卢贝丽, 唐丽荣, 黄彪. 双重动态共价键交联纳米纤维素导电水凝胶及其柔性传感器[J]. 化工进展, 2022, 41(8): 4406-4416. |
| [13] | 易聪华, 徐青荷, 王淼, 杨东杰. pH敏感性生物基纳米载药粒子的研究进展[J]. 化工进展, 2021, 40(6): 3411-3420. |
| [14] | 蒋波, 蔡飞鹏, 秦显忠, 王波, 姜桂林, 高金华. 生物基尼龙材料改性与应用进展[J]. 化工进展, 2020, 39(9): 3469-3477. |
| [15] | 刘瑞, 李录平, 龚妙. 铜基超疏水表面防覆冰/抗霜冻特性分析[J]. 化工进展, 2019, 38(s1): 166-171. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |