1 | 朱建民. 聚酰胺树脂及其应用[M]. 北京: 化学工业出版社, 2011: 186-191. | 1 | ZHU Jianmin. Polyamide resin and applications[M]. Beijing: Chemical Industry Press, 2011: 186-191. | 2 | NAKAJIMA H,DIJKSTRA P,LOOS K. The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed[J]. Polymers, 2017,9(10): 523-549. | 3 | OEVER M VAN DEN, MOLENVELD K. Replacing fossil based plastic performance products by bio-based plastic products-technical feasibility[J]. New Biotechnology, 2017, 37: 48-59. | 4 | WESOLOWSKI J, PLACHTA K. Market for polyamides[J]. Fibres & Textiles in Eastern Europe, 2016, 24(6): 12-18. | 5 | 陈沁, 杜杰毫, 谢海波, 等. 生物基可聚合单体及其聚合物制备与性能研究进展[J]. 高分子学报, 2016(10): 1330-1358. | 5 | CHEN Qin, DU Jiehao, XIE Haibo, et al. Studies on preparation and properties of bio-based polymeric monomers and their bio-based polymers[J]. ACTA Polymerica Sinica, 2016(10): 1330-1358. | 6 | 高晗, 弓桦, 朱宁, 等. 生物基尼龙的研究现状[J]. 生物产业技术, 2017(3): 63-67. | 6 | GAO Han, GONG Ye, ZHU Ning, et al. Progress in bio-based nylons[J]. Biotechnology & Business, 2017(3): 63-67. | 7 | QUILES-CARRILLO L, MONTANES N, BORONAT T, et al. Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion[J]. Polymer Testing, 2017, 61: 421-429. | 8 | HIRAI T, KAWADA J, NARITA M, et al. Fully bio-based polymer blend of polyamide 11 and poly(vinylcatechol) showing thermodynamic miscibility and excellent engineering properties[J]. Polymer, 2019, 181: 121667. | 9 | HUANG Y Q, DAI D D, LI H B, et al. Oxygen barrier, free volume, and blending properties of fully bio-based polyamide 11/poly(vinyl alcohol) blends[J]. Journal of Applied Polymer Science, 2020,137(15):48562. | 10 | BATTEGAZZORE D, FRACHE A. Bio-based PA5.10 for industrial applications: improvement of barrier and thermo-mechanical properties with rice husk ash and nanoclay[J]. Journal of Polymers and the Environment, 2019, 27(10): 2213-2223. | 11 | OLIVER-ORTEGA H, LLOP M F, ESPINACH F X, et al. Study of the flexural modulus of lignocellulosic fibers reinforced bio-based polyamide11 green composites[J]. Composites B:Engineering, 2018, 152: 126-132. | 12 | OLIVER-ORTEGA H, GRAND, L A, ESPINACH F X, et al. Stiffness of bio-based polyamide 11 reinforced with softwood stone ground-wood fibres as an alternative to polypropylene-glass fibre composites[J]. European Polymer Journal, 2016, 84: 481-489. | 13 | OLIVER-ORTEGA H, GRAND L A, ESPINACH F X, et al. Tensile properties and micromechanical analysis of stone groundwood from softwood reinforced bio-based polyamide11 composites[J]. Composites Science and Technology, 2016, 132: 123-130. | 14 | OLIVER-ORTEGA H, MENDEZ J A, MUTJE P, et al. Evaluation of thermal and thermomechanical behaviour of bio-based polyamide 11 based composites reinforced with lignocellulosic fibres[J]. Polymers, 2017, 9(10): 522. | 15 | OLIVER-ORTEGA H, MENDEZ J A, ESPINACH F X, et al. Impact strength and water uptake behaviors of fully bio-based PA11-SGW composites[J]. Polymers, 2017, 10(7): 717. | 16 | SALLEM-IDRISSI N, VELTHEM P VAN, SCLAVONS M. Fully bio-sourced nylon 11/raw lignin composites: thermal and mechanical performances[J]. Journal of Polymers and the Environment, 2018, 26(12): 4405-4414. | 17 | ROHNER S, HUMPHRY J, CHALEAT C M, et al. Mechanical properties of polyamide 11 reinforced with cellulose nanofibres from Triodia pungens[J]. Cellulose, 2018, 25(4): 2367-2380. | 18 | LANDREAU E, BERZIN F, TIGHZERT L, et al. Morphologies and properties of plasticized starch/polyamide compatibilized blends[J]. European Polymer Journal, 2009, 45(9): 2609-2618. | 19 | LEBAUPIN Y, CHAUVIN M, HOANG T Q T, et al. Influence of constituents and process parameters on mechanical properties of flax fibre-reinforced polyamide 11 composite[J]. Journal of Thermoplastic Composite Materials, 2017, 30(11): 1503-1521. | 20 | ARMIOUN S, PANTHAPULAKKAL S, SCHEEL J, et al. Sustainable and lightweight biopolyamide hybrid composites for greener auto parts[J]. Canadian Journal of Chemical Engineering, 2016, 94(11): 2052-2060. | 21 | NUZZO A, BILOTTI E, PEIJS T, et al. Nanoparticle-induced co-continuity in immiscible polymer blends—A comparative study on bio-based PLA-PA11 blends filled with organoclay, sepiolite, and carbon nanotubes[J]. Polymer, 2014, 55(19): 4908-4919. | 22 | STOCLET G, SCLAVONS M, DEVAUX J. Relations between structure and property of polyamide 11 nanocomposites based on raw clays elaborated by water-assisted extrusion[J]. Journal of Applied Polymer Science, 2013, 127(6): 4809-4824. | 23 | PRASHANTHA K, LACRAMPE M F, KRAWCZAK P. Highly dispersed polyamide-11/halloysite nanocomposites: thermal, rheological, optical, dielectric, and mechanical properties[J]. Journal of Applied Polymer Science, 2013, 130(1): 313-321. | 24 | SISTI L, TOTARO G, VANNINI M, et al. Bio-based PA11/graphene nanocomposites prepared by in situ polymerization[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(2): 1169-1175. | 25 | NAFFAKH M, SHUTTLEWORTH P S, ELLIS G. Bio-based polymer nanocomposites based on nylon 11 and WS2 inorganic nanotubes[J]. RSC Advances, 2015, 5(23): 17879-17887. | 26 | FELDMANN M, BLEDZKI A K. Bio-based polyamides reinforced with cellulosic fibres—Processing and properties[J]. Composites Science and Technology, 2014, 100: 113-120. | 27 | FELDMANN M, HEIM H P, ZARGES J C. Influence of the process parameters on the mechanical properties of engineering biocomposites using a twin-screw extruder[J]. Composites A: Applied Science and Manufacturing, 2016, 83: 113-119. | 28 | KUCIEL S, KUZNIA P, JAKUBOWSKA P. Properties of composites based on polyamide 10.10 reinforced with carbon fibers [J]. Polimery, 2016, 61(2): 106-112. | 29 | BATTEGAZZORE D, SALVETTI O, FRACHE A, et al. Thermo-mechanical properties enhancement of bio-polyamides (PA10.10 and PA6.10) by using rice husk ash and nanoclay[J]. Composites A:Applied Science and Manufacturing, 2015, 81: 193-201. | 30 | MITTAL V, CHAUDHRY A U, LUCKACHAN G E. Biopolymer-thermally reduced graphene nanocomposites: structural characterization and properties[J]. Materials Chemistry and Physics, 2014, 147(1/2): 319-332. | 31 | , BORONAT T, MONTANES N, et al. Injection-molded parts of fully bio-based polyamide 1010 strengthened with waste derived slate fibers pretreated with glycidyl- and amino-silane coupling agents[J]. Polymer Testing, 2019, 77: 105875. | 32 | KIND S, NEUBAUER S, BECKER J, et al. From zero to hero- production of bio-based nylon from renewable resources using engineered corynebacterium glutamicum[J]. Metabolic Engineering, 2014, 25: 113-123. | 33 | LESZCZYNSKA A, KICILINSKI P, PIELICHOWSKI K. Biocomposites of polyamide 4.10 and surface modified microfibrillated cellulose (MFC): influence of processing parameters on structure and thermomechanical properties[J]. Cellulose, 2015, 22(4): 2551-2569. | 34 | KAWADA J, KITOU M, MOURI M, et al. Morphology controlled PA11 bio-alloys with excellent impact strength[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2158-2164. | 35 | KAWADA J, KITOU M, MOURI M, et al. Super impact absorbing bio-alloys from inedible plants[J]. Green Chemistry, 2017, 19(19): 4503-4508. | 36 | QUILES-CARRILLO L, MONTANES N, FOMBUENA V, et al. Enhancement of the processing window and performance of polyamide 1010/bio-based high-density polyethylene blends by melt mixing with natural additives[J]. Polymer International, 2019, 69: 61-71. | 37 | YU H Y, ZHANG Y, REN W T, et al. Comparison of the toughening effects of different elastomers on nylon 1010[J]. Journal of Applied Polymer Science, 2011, 121(6): 3340-3346. | 38 | TEYSSANDIER F, CASSAGNAU P, GERARD J F, et al. Morphology and mechanical properties of compatibilized bio-sourced PA/plasticized starch grafted PP ternary polymer blends[J]. International Polymer Processing, 2012, 27(4): 452-460. | 39 | PAGACZ J, LESZCZYNSKA A, MODESTI M, et al. Thermal decomposition studies of bio-resourced polyamides by thermogravimetry and evolved gas analysis[J]. Thermochimica Acta, 2015, 612: 40-48. | 40 | MACHECA A D, FOCKE W W, KACI M, et al. Flame retarding polyamide 11 with exfoliated vermiculite nanoflakes[J]. Polymer Engineering and Science, 2018, 58(10): 1746-1755. | 41 | NEGRELL C, FRENEHARD P, SONNIER R, et al. Self-extinguishing bio-based polyamides[J]. Polymer Degradation and Stability, 2016, 134: 10-18. | 42 | JIN X D, SUN J, ZHANG J S Q, et al. Preparation of a novel intumescent flame retardant based on supramolecular interactions and its application in polyamide 11[J]. ACS Applied Materials & Interfaces, 2017, 29(9): 24964-24975. | 43 | BATTEGAZZORE D, ALONGI J, FONTAINE G, et al. Bulk vs. surface flame retardancy of fully bio-based polyamide 10,10 [J]. RSC Advances, 2015, 5(49): 39424-39432. | 44 | SHABANIAN M, MIRZAKHANIAN Z, BASAKI N, et al. Flammability and thermal properties of novel semi aromatic polyamide/organoclay nanocomposite[J]. Thermochimica Acta, 2014, 585: 63-70. | 45 | SHABANIAN M, KANG N J, LIU J W, et al. Bio-based semi-aromatic polyamide/functional clay nanocomposites: preparation and properties[J]. RSC Advances, 2014, 4(45): 23420-23427. | 46 | RASHMI B J, PRASHANTHA K, LACRAMPE M F, et al. Scalable production of multifunctional bio-based polyamide 11/graphene nanocomposites by melt extrusion processes via masterbatch approach[J]. Advances in Polymer Technology, 2018, 37(4): 1067-1075. | 47 | LEVEQUE M, DOUCHAIN C, RGUITI M, et al. Vibrational energy-harvesting performance of bio-sourced flexible polyamide 11/layered silicate nanocomposite films[J]. International Journal of Polymer Analysis and Characterization, 2017, 22(1): 72-82. | 48 | MOSANENZADEH S G, LIU M W, OSIA A, et al. Thermal composites of biobased polyamide with boron nitride micro networks[J]. Journal of Polymers and the Environment, 2015, 23(4): 566-579. |
|