化工进展 ›› 2025, Vol. 44 ›› Issue (4): 2172-2182.DOI: 10.16085/j.issn.1000-6613.2024-0627
收稿日期:2024-04-12
修回日期:2024-07-11
出版日期:2025-04-25
发布日期:2025-05-07
通讯作者:
李新杰
作者简介:王浩(1996—),男,硕士研究生,研究方向为水处理功能材料的制备与应用。E-mail:18257113663@163.com。
基金资助:Received:2024-04-12
Revised:2024-07-11
Online:2025-04-25
Published:2025-05-07
Contact:
LI Xinjie
摘要:
次氯酸钠(NaClO)作为一种高效廉价的消毒剂而被广泛使用。电解法是制备NaClO的便捷、有效方法,其中电极是NaClO发生器的核心部件,决定设备的析氯效率、电能消耗和工作寿命。目前,混合金属氧化物涂层钛电极(Ti/MMO)因具备优异的电催化活性、较长的工作寿命、较低的电耗等特点,已成为该类电极材料研究的热点,但由于使用了贵金属材料,制作成本仍处于高位。本文总结归纳了多种用于电解法制备NaClO的电极材料组成、性能及其发展趋势,分析了早期的尺寸稳定阳极(DSA)钝化的原因,重点讨论了电极制备工艺优化的三种途径;结合当前研究中存在的问题,展望了电极材料的发展方向,其中,涂层中金属元素的合理选择及其多元化、通过阳极原位氧化引入二氧化钛纳米管阵列(TNT)中间层以及结合水热合成法制备电极是工艺优化的关键。
中图分类号:
王浩, 李新杰. 电解法制备次氯酸钠用电极材料的研究进展[J]. 化工进展, 2025, 44(4): 2172-2182.
WANG Hao, LI Xinjie. Research progress on electrode materials for the preparation of sodium hypochlorite by electrolysis[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2172-2182.
| 元素名称 | 价格① | 氯过电位 | 氧过电位 | 耐蚀性 |
|---|---|---|---|---|
| Ir | 高 | 低 | 低 | 好 |
| Pt | 中 | 高 | 高 | 中 |
| Rh | 高 | 中 | 中 | 好 |
| Pd | 中 | 低 | 高 | 可 |
| Ru | 低 | 低 | 低 | 可 |
表1 铂族金属特性[24]
| 元素名称 | 价格① | 氯过电位 | 氧过电位 | 耐蚀性 |
|---|---|---|---|---|
| Ir | 高 | 低 | 低 | 好 |
| Pt | 中 | 高 | 高 | 中 |
| Rh | 高 | 中 | 中 | 好 |
| Pd | 中 | 低 | 高 | 可 |
| Ru | 低 | 低 | 低 | 可 |
| 阳极材料 | 电流效率/% | 寿命 | 成本 |
|---|---|---|---|
| 石墨 | 59.77[ | 1~2月[ | 低 |
| Pt | 70[ | NM | 很高 |
| Ti/Pt | 67.9[ | 2年[ | 高 |
| Ti/Pt-Ir | 84.6[ | 3年[ | 高 |
| Ti/PbO2 | 68[ | 5~8月[ | 较低 |
| Ti/RuTiO x | 87[ | 2~3月[ | 中 |
| Ti/RuIrTiO x | 90[ | 2~3年[ | 较高 |
| Ti/RuIrSnTiO x | 90.67[ | >2年[ | 较高 |
| Ti/RuSnSbO x | 89.32[ | <1年[ | 中 |
| Ti/RuIrSnSbO x | 91.55[ | >2年[ | 较高 |
| Ti/RuMnTiO x | 84[ | >1年[ | 中 |
| Ti/RuIrSnCoTiO x | NM | 3~5年[ | 较高 |
| Ti/RuIrSnMnTiO x | NM | 5年[ | 较高 |
| Ti/TNTs/RuTiO x | NM | 4~5月[ | 中 |
| Ti/TNTs/RuIrTaO x | 90[ | 1年[ | 较高 |
表3 阳极材料
| 阳极材料 | 电流效率/% | 寿命 | 成本 |
|---|---|---|---|
| 石墨 | 59.77[ | 1~2月[ | 低 |
| Pt | 70[ | NM | 很高 |
| Ti/Pt | 67.9[ | 2年[ | 高 |
| Ti/Pt-Ir | 84.6[ | 3年[ | 高 |
| Ti/PbO2 | 68[ | 5~8月[ | 较低 |
| Ti/RuTiO x | 87[ | 2~3月[ | 中 |
| Ti/RuIrTiO x | 90[ | 2~3年[ | 较高 |
| Ti/RuIrSnTiO x | 90.67[ | >2年[ | 较高 |
| Ti/RuSnSbO x | 89.32[ | <1年[ | 中 |
| Ti/RuIrSnSbO x | 91.55[ | >2年[ | 较高 |
| Ti/RuMnTiO x | 84[ | >1年[ | 中 |
| Ti/RuIrSnCoTiO x | NM | 3~5年[ | 较高 |
| Ti/RuIrSnMnTiO x | NM | 5年[ | 较高 |
| Ti/TNTs/RuTiO x | NM | 4~5月[ | 中 |
| Ti/TNTs/RuIrTaO x | 90[ | 1年[ | 较高 |
| 1 | Dóra GERE, Eszter RÓKA, Gyula ZÁRAY, et al. Disinfection of therapeutic spa waters: Applicability of sodium hypochlorite and hydrogen peroxide-based disinfectants[J]. Water, 2022, 14(5): 690. |
| 2 | GUO Shaodong, WU Yuhang, WANG Zhangyu, et al. Effect of electrolytic zero-valent iron activated sodium hypochlorite on sludge dewatering performance[J]. Water Science & Technology, 2024, 89(4): 989-1002. |
| 3 | KAPES Tanya, QUINN Charles, CRAGUN Andrew Eli, et al. Differing susceptibilities to certain microbicidal chemistries among three representative enveloped viruses[J]. Microorganisms, 2024, 12(3): 535. |
| 4 | EVDOKIMOV S V. Electrochemical and corrosion behavior of dimensionally stable anodes in chlorate electrolysis: Efficiency of the sodium chlorate production at elevated temperatures[J]. Russian Journal of Electrochemistry, 2001, 37(4): 363-370. |
| 5 | 孔瑞, 韩建华. 用含氯废气生产次氯酸钠溶液[J]. 氯碱工业, 2002, 38(1): 38-39. |
| KONG Rui, HAN Jianhua. The production of chloros solution from waste gas containing chlorine[J]. Chlor-alkali Industry, 2002, 38(1): 38-39. | |
| 6 | 赵旭, 冒冉, 李昂臻, 等. 电解法用于消毒的原理、技术特点与主要应用方式: 电产次氯酸钠及电化学消毒[J]. 环境工程学报, 2020, 14(7): 1728-1734. |
| ZHAO Xu, MAO Ran, LI Angzhen, et al. Principle, technical characteristics and main applications of electrolysis for disinfection: Electrochemical generation of sodium hypochlorite and electrochemical disinfection[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1728-1734. | |
| 7 | 张招贤, 黄东. 涂层钛电极[M]. 北京: 冶金工业出版社, 2014: 1-460. |
| ZHANG Zhaoxian, HUANG Dong. Coated titanium electrode[M]. Beijing: Metallurgical Industry Press, 2014: 1-460. | |
| 8 | GIRENKO D V, VELICHENKO A B. Selection of the optimal cathode material to synthesize medical sodium hypochlorite solutions in a membraneless electrolyzer[J]. Surface Engineering and Applied Electrochemistry, 2018, 54(1): 88-95. |
| 9 | 方贤达. 氯酸盐生产工艺[M]. 北京: 化学工业出版社, 1988: 167-170. |
| FANG Xianda. Chlorate production process[M]. Beijing: Chemical Industry Press, 1988: 167-170. | |
| 10 | 汪红访, 张翠玲, 唐玉霖, 等. 次氯酸钠发生器及在水处理中的应用研究进展[J]. 当代化工研究, 2018(9): 16-18. |
| WANG Hongfang, ZHANG Cuiling, TANG Yulin, et al. Research progress on sodium hypochlorite generator and its application in water treatment[J]. Modern Chemical Research, 2018(9): 16-18. | |
| 11 | 刘蕊, 葛红花, 龚晓明, 等. 冷却水中杀菌剂次氯酸钠、异噻唑啉酮对不锈钢的侵蚀性比较[J]. 材料保护, 2011, 44(1): 60-61. |
| LIU Rui, GE Honghua, GONG Xiaoming, et al. Corrosion resistance of sodium hypochlorite and isothiazolone bactericides to stainless steel in cooling water[J]. Materials protection, 2011, 44(1): 60-61. | |
| 12 | 李晓琴, 刘文朝, 贾燕南, 等. 无隔膜电解次氯酸钠发生器阴极材料的改进研究[J]. 水利水电技术, 2011, 42(12): 77-80. |
| LI Xiaoqin, LIU Wenchao, JIA Yannan, et al. Study on improvement of cathode materials on non-diaphragm sodium hypochlorite generator[J]. Water Resources and Hydropower Engineering, 2011, 42(12): 77-80. | |
| 13 | 雷霆. 钛及钛合金[M]. 北京: 冶金工业出版社, 2018: 1-118. |
| LEI Ting. Titanium and titanium alloys[M]. Beijing: Metallurgical Industry Press, 2018: 1-118. | |
| 14 | SALEEM Muhammad. Biofouling management in the cooling circuit of a power industry using electrochemical process[J]. Journal of the Chemical Society of Pakistan, 2011, 33(6): 295. |
| 15 | 周正立, 张悦, 鲁战明. 污水处理剂与污水监测技术[M]. 北京: 中国建材工业出版社, 2007: 117-128. |
| ZHOU Zhengli, ZHANG Yue, LU Zhanming. Sewage treatment agent and sewage monitoring technology[M]. Beijing: China Building Material Industry Publishing House, 2007: 117-128. | |
| 16 | 苏占华. 石墨电极材料[M]. 哈尔滨: 哈尔滨工业大学出版社, 2020: 1-44. |
| SU Zhanhua. Graphite electrode materials[M]. Harbin: Harbin Institute of Technology Press, 2020: 1-44. | |
| 17 | 李海涛, 张帆, 李望乐. 电解低NaCl海水生产次氯酸钠的阳极材料[J]. 广东有色金属学报, 2001(1): 41-44. |
| LI Haitao, ZHANG Fan, LI Wangle. An anode material used in the electrolysis of low-NaCl-content sea water to produce NaClO[J]. Journal of Guangdong Non-Ferrous Metals, 2001(1): 41-44. | |
| 18 | 申莹. 原油中硫化氢脱除技术研究[D]. 青岛: 中国石油大学(华东), 2010. |
| SHEN Ying. Study on technology of removing hydrogen sulfide from crude oil[D]. Qingdao: China University of Petroleum (East China), 2010. | |
| 19 | 张招贤, 蔡天晓. 钛电极反应工程学[M]. 北京: 冶金工业出版社, 2009. |
| ZHANG Zhaoxian, CAI Tianxiao. Titanium electrode reaction engineering[M]. Beijing: Metallurgical Industry Press, 2009. | |
| 20 | PONZANO Gian Piero. Sodium hypochlorite: History, properties, electrochemical production[M]// Contributions to Nephrology. Basel: KARGER, 2006: 7-23. |
| 21 | BEER Henri Bernard. The invention and industrial development of metal anodes[J]. Journal of the Electrochemical Society, 1980, 127(8): 303C-307C. |
| 22 | HAYFIELD P C S. Anode materials for use in the generation of sodium hypoghlorite[C]// Local Generation and Use of Chlorine and Hypochlorite. London: Society of Chemical Industry Electrochemical Technology Group, 1980: 1-10. |
| 23 | KUMAGAI N, KAWASHIMA A, ASAMI K, et al. Anodic characteristics of amorphorous palladium-base alloys in sodium chloride solutions[J]. Journal of Applied Electrochemistry, 1986, 16(4): 565-574. |
| 24 | 张招贤, 赵国鹏, 胡耀红. 应用电极学[M]. 北京: 冶金工业出版社, 2005. |
| ZHANG Zhaoxian, ZHAO Guopeng, HU Yaohong. Applied electrodynamics[M]. Beijing: Metallurgical Industry Press, 2005. | |
| 25 | RAO Xufeng, SHAO Xiaolin, XU Jie, et al. Efficient nitrate removal from water using selected cathodes and Ti/PbO2 anode: Experimental study and mechanism verification[J]. Separation and Purification Technology, 2019, 216: 158-165. |
| 26 | 姬颖杰. 钛/铝电极外涂层掺杂改性与性能的关系研究[D]. 昆明: 昆明理工大学, 2014. |
| JI Yingjie. Study on the relationship between doping modification and properties of titanium/aluminum electrode outer coating[D]. Kunming: Kunming University of Science and Technology, 2014. | |
| 27 | 中国市政工程华北设计院. 给水排水设计手册-第10册-器材与装置[M]. 北京: 中国建筑工业出版社, 1986: 797-798. |
| North China Municipal Engineering Design Institute. Design manual for water supply and drainage-volume 10-equipment and devices[M]. Beijing: China Architecture & Building Press, 1986: 797-798. | |
| 28 | 张招贤. 钛基二氧化铅电极的改进和应用[J]. 氯碱工业, 1996, 32(8): 17-23. |
| ZHANG Zhaoxian. Improvement and application of titanium-based lead dioxide electrode[J]. Chlor-Alkali Industry, 1996, 32(8): 17-23. | |
| 29 | KUHN A T, LARTEY R B. The corrosion of lead dioxide on titanium anodes[J]. Corrosion, 1977, 33(2): 73-76. |
| 30 | 萧正辉, 马世豪. 医院污水处理技术[M]. 北京: 中国建筑工业出版社, 1993: 157. |
| XIAO Zhenghui, MA Shihao. Hospital sewage treatment technology[M]. Beijing: China Architecture & Building Press, 1993: 157. | |
| 31 | 乔庆东, 李琪, 于大勇, 等. 钛基二氧化铅电极的制备及其应用[J]. 应用化学, 2000, 17(5): 555-557. |
| QIAO Qingdong, LI Qi, YU Dayong, et al. Preparation and application of Ti-supported lead dioxide electrode[J]. Chinese Journal of Applied Chemistry, 2000, 17(5): 555-557. | |
| 32 | 贵金属研究所一室电镀组. 改性二氧化铅电极应用于氯碱工业的初步探讨[J]. 氯碱工业, 1979, 15(4): 19-22. |
| Group Electroplating, Ⅰ Room, Precious Metals Research Institute. Preliminary discussion on application of modified lead dioxide electrode in chlor-alkali industry[J]. Chlor-Alkali Industry, 1979, 15(4): 19-22. | |
| 33 | 张志军, 成鹏, 谢智翔, 等. 改性钛基二氧化铅电极催化氧化降解水中四环素[J]. 工业水处理, 2023, 43(3): 71-79. |
| ZHANG Zhijun, CHENG Peng, XIE Zhixiang, et al. Catalytic oxidation degradation of tetracycline in water by modified titanium-based lead dioxide electrode[J]. Industrial Water Treatment, 2023, 43(3): 71-79. | |
| 34 | CHEN Shouxian, HE Ping, WANG Xuejiao, et al. Co/Sm-modified Ti/PbO2 anode for atrazine degradation: Effective electrocatalytic performance and degradation mechanism[J]. Chemosphere, 2021, 268: 128799. |
| 35 | CHOI Seungwoo, CHOI Won Il, LEE Jun-Seo, et al. A reflection on sustainable anode materials for electrochemical chloride oxidation[J]. Advanced Materials, 2023, 35(43): e2300429. |
| 36 | 李海涛, 李金洋, 王新民, 等. 次氯酸钠发生器的研究[J]. 稀有金属, 1988, 12(3): 213-216. |
| LI Haitao, LI Jinyang, WANG Xinmin, et al. Study on sodium hypochlorite generator[J]. Chinese Journal of Rare Metals, 1988, 12(3): 213-216. | |
| 37 | SHMYCHKOVA Olesia B, GIRENKO Dmitry V, VELICHENKO Alexander B. Review on influence of electrode material nature on anodic processes in chloride solutions[J]. Journal of Chemistry and Technologies, 2022, 30(2): 312-332. |
| 38 | HINE Fumio. Proceedings of the symposium on performance of electrodes for industrial electrochemical processes[C]// Development of Anodes and Electrolytic Cells for On-site Hypochlorite Generation. Los Angeles: The Electrochemical Society, 1989: 161-176. |
| 39 | 唐电, 林萱. 贵金属被覆钛阳极的寿命预测[J]. 化工冶金, 1990(4): 347-349. |
| TANG Dian, LIN Xuan. Life-time prediction of titanium anodes coated with precious metals[J]. The Chinese Journal of Process Engineering, 1990(4): 347-349. | |
| 40 | 宫献章, 张业茂, 刘清林. 改性的锡锑钴系列金属阳极中的Sn、Sb、Co(Ir)阳极[J]. 氯碱工业, 1987, 23(11): 5-9. |
| GONG Xianzhang, ZHANG Yemao, LIU Qinglin. Sn, Sb and Co(Ir) anodes in modified Sn-Sb-Co series metal anodes[J]. Chlor-Alkali Industry, 1987, 23(11): 5-9. | |
| 41 | 刘坤. 涂层钛阳极抗锰离子污染性能研究[D]. 大连: 大连理工大学, 2007. |
| LIU Kun. The study on properties of preventing manganese depositing on coated titanium anodes[D]. Dalian: Dalian University of Technology, 2007. | |
| 42 | 张招贤. 涂层钛电极的研究和应用[J]. 稀有金属快报, 2004, 23(4): 1-7. |
| ZHANG Zhaoxian. Research and application of titanium anodes[J]. Rare Metals Letters, 2004, 23(4): 1-7. | |
| 43 | 张麟. 电催化产次氯酸钠用钛基阳极材料的研究[D]. 北京: 北京化工大学, 2022. |
| ZHANG Lin. Research of titanium-based anode materials for electrocatalytic production of sodium hypochlorite[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
| 44 | 王耀增, 杨仔杭, 杨嘉驹, 等. DSA电极电化学氧化处理工业废水的研究现状及展望[J]. 化工技术与开发, 2023, 52(11): 68-73. |
| WANG Yaozeng, YANG Zihang, YANG Jiaju, et al. Research status and prospect of electrochemical oxidation of DSA electrode for industrial wastewater treatment[J]. Technology & Development of Chemical Industry, 2023, 52(11): 68-73. | |
| 45 | DONG Heng, YU Weilai, HOFFMANN Michael R. Mixed metal oxide electrodes and the chlorine evolution reaction[J]. The Journal of Physical Chemistry C, 2021, 125(38): 20745-20761. |
| 46 | 陈康宁, 黄成富, 李勇明. 含铱阳极在次氯酸钠发生器中的应用[J]. 无机盐工业, 1990, 22(4): 6-9. |
| CHEN Kangning, HUANG Chengfu, LI Yongming. Application of iridium anode in sodium hypochlorite generator[J]. Inorganic Chemicals Industry, 1990, 22(4): 6-9. | |
| 47 | FESENKO L N, PCHELNIKOV I V, FEDOTOV R V. Comparative assessment of resistance of hardwearing anodes, ternary coated with iridium, ruthenium and titanium[J]. Solid State Phenomena, 2017, 265: 580-586. |
| 48 | ROBERT Osman Julian. Sol-gel processing of ruthenium and iridium dioxides[D]. St Andrews, Scotland, UK: University of St Andrews, 1998. |
| 49 | MOZOTA J, VUKOVIC M, CONWAY B E. Enhanced electrocatalysis for chlorine evolution on oxidized Ir and Ru anodes modified by potential cycling[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 114(1): 153-157. |
| 50 | 王志刚, 苏静, 张志国, 等. 电催化氧化处理化工污水技术现状及进展[J]. 化肥设计, 2022, 60(1): 1-5, 17. |
| WANG Zhigang, SU Jing, ZHANG Zhiguo, et al. Status and progress of electrocatalytic oxidation technology for treating chemical wastewater[J]. Chemical Fertilizer Design, 2022, 60(1): 1-5, 17. | |
| 51 | SPASOJEVIĆ M, KRSTAJIĆ N, JAKŠIĆ M. A selective catalyst for titanium anodes: Development and optimization: Ⅱ. Selectivity features[J]. Journal of the Research Institute for Catalysis Hokkaido University, 1984, 32(1): 29-36. |
| 52 | GAUDET J, TAVARES A C, TRASATTI S, et al. Physicochemical characterization of mixed RuO2-SnO2 solid solutions[J]. Chemistry of Materials, 2005, 17(6): 1570-1579. |
| 53 | IWAKURA Chiaki, SAKAMOTO Kenji. Effect of active layer composition on the service life of (SnO2 and RuO2)-coated Ti electrodes in sulfuric acid solution[J]. Journal of the Electrochemical Society, 1985, 132(10): 2420-2423. |
| 54 | POULADVAND Iman, Shahin Khameneh ASL, HOSEINI Mir Ghasem, et al. Characterization and electrochemical behavior of Ti/TiO2-RuO2-IrO2-SnO2 anodes prepared by sol-gel process[J]. Journal of Sol-Gel Science and Technology, 2019, 89(2): 553-561. |
| 55 | 上海师范大学, 上海桃浦化工厂. 金属阳极钌钛涂层丧失活性的原因探讨[J]. 氯碱工业, 1979, 15(S1): 114-117. |
| Shanghai Normal University, Shanghai Taopu Chemical Plant. Discussion on the causes of deactivation of ruthenium-titanium coating on metal anode[J]. Chlor-Alkali Industry, 1979, 15(S1): 114-117. | |
| 56 | 郭静如, 张雪娇, 廖帅, 等. Ti/RuO2-IrO2-SnO2-Sb2O5阳极在农村饮用水消毒中的应用[J]. 电化学, 2021, 27(5): 549-557. |
| GUO Jingru, ZHANG Xuejiao, LIAO Shuai, et al. Application of Ti/RuO2-IrO2-SnO2-Sb2O5 anode in rural drinking water disinfection[J]. Journal of Electrochemistry, 2021, 27(5): 549-557. | |
| 57 | CHEN Xueming, CHEN Guohua, YUE Po Lock. Stable Ti/IrO x -Sb2O5-SnO2 anode for O2 evolution with low Ir content[J]. The Journal of Physical Chemistry B, 2001, 105(20): 4623-4628. |
| 58 | 张帆, 李海涛. 次氯酸钠发生器用RuO2-MnO2涂层电极的研究[J]. 广东有色金属学报, 1994(1): 54-59. |
| ZHANG Fan, LI Haitao. Studies on RuO2-MnO2 coated DSA used in sodium hypochlorite generator[J]. Journal of Guangdong Non-Ferrous Metals, 1994(1): 54-59. | |
| 59 | 吴渴, 朱米家, 杨逸, 等. 电催化阳极材料在难降解有机废水处理中的研究进展[J]. 化学与生物工程, 2022, 39(9): 1-6. |
| WU Ke, ZHU Mijia, YANG Yi, et al. Research progress of electrocatalytic anode materials in treatment of refractory organic wastewater[J]. Chemistry & Bioengineering, 2022, 39(9): 1-6. | |
| 60 | 姚立广, 梁洁, 朱恩庆, 等. 涂层成分对IrO2(5)TiO2(60)Co3O4(x)RuO2(35-x)/Ti阳极材料析氯速率的影响[J]. 材料研究学报, 1994, 8(4): 322-325. |
| YAO Liguang, LIANG Jie, ZHU Enqing, et al. Effect of oxide-coating composition on the chlorine evolution rate of IrO2(5)TiO2(60)Co3O4(x)RuO2(35-x)/Ti anode[J]. Chinese Journal of Materials Research, 1994, 8(4): 322-325. | |
| 61 | 鞠鹤, 潘会波, 陈凤云. 添加Ir Sn Co元素对Ru-Ti阳极的显微结构及电化学行为的影响[J]. 稀有金属材料与工程, 1992, 21(1): 52-56. |
| JU He, PAN Huibo, CHEN Fengyun. Effect of the alloy additions—Ir, Sn and Co on the microstructure and galvano-chemical behaviours of RuTi anode[J]. Rare Metal Materials and Engineering, 1992, 21(1): 52-56. | |
| 62 | 刘晓军, 刘贵昌. IrO2-MnO2中间层Ti/RuO2-TiO2-SnO2电极制备及性能[J]. 稀有金属材料与工程, 2012, 41(1): 54-57. |
| LIU Xiaojun, LIU Guichang. Preparation and characterization of Ti/RuO2-TiO2-SnO2 electrode with IrO2-MnO2 interlayer[J]. Rare Metal Materials and Engineering, 2012, 41(1): 54-57. | |
| 63 | CAO Huazhen, ZHAO Guojun, HOU Guangya, et al. A study on the catalytic activity and service lifetime of RuO2-TiO2 composite electrode with TNTs as interlayer[J]. ChemistrySelect, 2019, 4(36): 10965-10971. |
| 64 | 俞益航, 王新令, 励蓉, 等. 基于TNTs中间层的钌铱钽氧化物阳极制备及强化寿命研究[J]. 表面技术, 2022, 51(2): 384-391. |
| YU Yihang, WANG Xinling, LI Rong, et al. Preparation and accelerating life testing of RuIrTa oxide anode with TNTs interlayer[J]. Surface Technology, 2022, 51(2): 384-391. | |
| 65 | 朱君秋, 吴允苗. RuO2五组元氧化物涂层的制备及电容性能表征[J]. 云南化工, 2021, 48(2): 30-32. |
| ZHU Junqiu, WU Yunmiao. Preparation and capacitance characterization of five-component oxides composite coating containing RuO2 [J]. Yunnan Chemical Technology, 2021, 48(2): 30-32. | |
| 66 | LIU Bao, WANG Shuo, WANG Chengyan, et al. Surface morphology and electrochemical properties of RuO2-doped Ti/IrO2-ZrO2 anodes for oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2019, 778: 593-602. |
| 67 | ROYAEI N, SHAHRABI T, YAGHOUBINEZHAD Y. Optimization the selectivity property of graphene oxide modified dimensionally stable anode (DSA) produced by the sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2019, 90(3): 547-564. |
| 68 | BOKOV Dmitry, TURKI JALIL Abduladheem, CHUPRADIT Supat, et al. Nanomaterial by sol-gel method: Synthesis and application[J]. Advances in Materials Science and Engineering, 2021, 2021: 5102014. |
| 69 | 王冰冰, 田林, 庄晓东, 等. Ru-Ir/Ti阳极的制备及性能[J]. 应用化工, 2021, 50(12): 3336-3339. |
| WANG Bingbing, TIAN Lin, ZHUANG Xiaodong, et al. Preparation and performance of Ru-Ir/Ti anode[J]. Applied Chemical Industry, 2021, 50(12): 3336-3339. | |
| 70 | XIONG Kun, PENG Lishan, WANG Yao, et al. In situ growth of RuO2-TiO2 catalyst with flower-like morphologies on the Ti substrate as a binder-free integrated anode for chlorine evolution[J]. Journal of Applied Electrochemistry, 2016, 46(8): 841-849. |
| 71 | 于鸿莉, 杨宏昊, 马张博, 等. 铁素体合金表面复合尖晶石涂层的研究进展[J]. 材料导报, 2022, 36(17): 149-156. |
| YU Hongli, YANG Honghao, MA Zhangbo, et al. Composite spinel protective coating for ferritic stainless steel: A review[J]. Materials Reports, 2022, 36(17): 149-156. | |
| 72 | DENG Yang, CHEN Wanglin, LI Bingxin, et al. Physical vapor deposition technology for coated cutting tools: A review[J]. Ceramics International, 2020, 46(11): 18373-18390. |
| 73 | WANG Yunting, XUE Yudong, ZHANG Chunhui. Rational surface and interfacial engineering of IrO2/TiO2 nanosheet arrays toward high-performance chlorine evolution electrocatalysis and practical environmental remediation[J]. Small, 2021, 17(17): 2006587. |
| 74 | FERRO S, DE BATTISTI A, DUO I, et al. Chlorine evolution at highly boron-doped diamond electrodes[J]. Journal of the Electrochemical Society, 2000, 147(7): 2614. |
| 75 | RAJAB Mohamad, HEIM Carolin, LETZEL Thomas, et al. Electrochemical disinfection using boron-doped diamond electrode—The synergetic effects of in situ ozone and free chlorine generation[J]. Chemosphere, 2015, 121: 47-53. |
| 76 | PCHELNIKOV I V, FEDOTOV R V, YU CHERKESOV A. To selection of low-wear anode coatings based on iridium, ruthenium, titanium and tantalum oxides for direct electrolysis of natural waters[J]. IOP Conference Series: Materials Science and Engineering, 2019, 687(6): 066050. |
| 77 | ZHU Xianglin, WANG Peng, WANG Zeyan, et al. Co3O4 nanobelt arrays assembled with ultrathin nanosheets as highly efficient and stable electrocatalysts for the chlorine evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6(26): 12718-12723. |
| 78 | 蒋玉思, 张建华, 黄奇书, 等. 钛基贵金属氧化物涂层电极的应用进展[J]. 化学与生物工程, 2015, 32(9): 16-18. |
| JIANG Yusi, ZHANG Jianhua, HUANG Qishu, et al. Application progress of noble metal oxide coated titanium electrodes[J]. Chemistry & Bioengineering, 2015, 32(9): 16-18. |
| [1] | 徐美玲, 汪宇, 邹娜, 姜会, 何美琪, 李风海, 邱介山. 基于聚四氟乙烯的干法电极性能[J]. 化工进展, 2025, 44(4): 2020-2027. |
| [2] | 罗小平, 贾梦帆, 李世珍. 电场和改性PVDF膜相分离结构协同作用下逆流微细通道压降特性[J]. 化工进展, 2025, 44(2): 646-659. |
| [3] | 张海兵, 刘云遏, 黄志昊, 沈蓉. Ti foam-Ni-Sn/Bi电极制备及其电还原NO3--N的性能[J]. 化工进展, 2025, 44(2): 1100-1109. |
| [4] | 洪思琦, 顾方伟, 郑金玉. PEM水电解制氢低铱催化剂发展现状及展望[J]. 化工进展, 2025, 44(1): 158-168. |
| [5] | 杜小聪, 辛春福, 赵钰. 路用复合相变材料及相变改性沥青性能评价[J]. 化工进展, 2024, 43(S1): 419-430. |
| [6] | 李一, 梁李斯, 张立兴, 乔江鱼, 崔忠宜, 陈进, 徐强, 赵晨. 次氯酸盐氧化剂同时脱硫脱硝一体化[J]. 化工进展, 2024, 43(9): 5282-5289. |
| [7] | 屈芸, 成丽媛, 代国亮, 王刚, 郭羽晴, 孙洁. PAN/MXene同轴纤维电极的制备及性能[J]. 化工进展, 2024, 43(9): 5113-5122. |
| [8] | 王正峰, 谢雨杭, 李伟科, 范永春, 康钟尹, 付乾. 多孔炭修饰的吸附催化一体化电极高效电解碳酸氢盐[J]. 化工进展, 2024, 43(9): 4892-4899. |
| [9] | 邵威, 马壮, 郑宏玮, 刘光举, 高翔, 谢健, 和庆钢. 有机电极材料在水系电池中的应用研究进展[J]. 化工进展, 2024, 43(7): 3872-3890. |
| [10] | 王宝山, 陈晓杰, 赵培宇, 张许. 基于三维生物膜电极的难生化有机化工废水处理研究进展[J]. 化工进展, 2024, 43(6): 3359-3373. |
| [11] | 朱连燕, 周幸福. 锰掺杂DSA电极及其对印染废水处理的过程优化[J]. 化工进展, 2024, 43(6): 3459-3467. |
| [12] | 王庆泰, 张赛, 王杰敏. 全钒液流电池多孔电极非均匀压缩的数值模拟[J]. 化工进展, 2024, 43(6): 2940-2949. |
| [13] | 丁嘉, 吴文琦, 李鹏程. 两电子水氧化反应抑制掺硼金刚石电极氧化有机物过程中氯酸盐和高氯酸盐的生成[J]. 化工进展, 2024, 43(4): 2183-2190. |
| [14] | 王晶晶, 姚金波, 谢东. 织物基电致变色电极[J]. 化工进展, 2024, 43(12): 6849-6854. |
| [15] | 张硕, 冯岩, 卢玉玉, 贾新强, 邱立平. 三维电催化破络Ni-EDTA性能及机制[J]. 化工进展, 2024, 43(11): 6573-6582. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |
