1 |
LI Chen, XIANG Yong, SONG Chicheng, et al. Assessing the corrosion product scale formation characteristics of X80 steel in supercritical CO2-H2O binary systems with flue gas and NaCl impurities relevant to CCUS technology[J]. The Journal of Supercritical Fluids, 2019, 146: 107-119.
|
2 |
刘畅, 陈旭, 杨江. CO2腐蚀及其缓蚀剂应用研究进展[J]. 化工进展, 2021, 40(11): 6305-6314.
|
|
LIU Chang, CHEN Xu, YANG Jiang. Corrosion inhibitors and its application in CO2 corrosion[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6305-6314.
|
3 |
张明, 李安学, 张春华. 天然气集输管道高效泡排缓释剂的研究[J]. 化工进展, 2012, 31(S2): 211-215.
|
|
ZHANG Ming, LI Anxue, ZHANG Chunhua. Study on high-efficiency foam-discharging slow-release agent for natural gas gathering and transportation pipeline[J]. Chemical Industry and Engineering Progress, 2012, 31(S2): 211-215.
|
4 |
CHOI Yoon-Seok, COLAHAN Martin, Srdjan NEŠIĆ. Effect of flow on the corrosion behavior of pipeline steel in supercritical CO2 environments with impurities[J]. Corrosion, 2023, 79(5): 497-508.
|
5 |
王伟志, 扈俊颖, 钟显康. 油气生产与输送过程中冲刷腐蚀的研究进展[J]. 材料保护, 2021, 54(9): 123-132.
|
|
WANG Weizhi, HU Junying, ZHONG Xiankang. Research progress of the erosion-corrosion in oil and gas production and transmission process[J]. Materials Protection, 2021, 54(9): 123-132.
|
6 |
WANG Zhijie, ZHAO Yanlin, LIU Min, et al. Investigation of the effects of small flow rate and particle impact on high temperature CO2 corrosion of N80 steel[J]. Corrosion Science, 2022, 209: 110735.
|
7 |
叶福相, 姚军, 刘玉发, 等. 多因素影响下的X80管道钢两相流冲蚀腐蚀特性[J]. 化工进展, 2021, 40(12): 6450-6459.
|
|
YE Fuxiang, YAO Jun, LIU Yufa, et al. Erosion corrosion characteristics of X80 pipeline steel in two-phase flow under the influence of multiple factors[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6450-6459.
|
8 |
LIU Yufa, ZHAO Yanlin, YAO Jun. Synergistic erosion-corrosion behavior of X80 pipeline steel at various impingement angles in two-phase flow impingement[J]. Wear, 2021, 466/467: 203572.
|
9 |
肖卓楠, 白冬晓, 张天睿, 等. 孔板管道流动加速腐蚀受温度影响的数值模拟[J]. 化工进展, 2019, 38(S1): 27-32.
|
|
XIAO Zhuonan, BAI Dongxiao, ZHANG Tianrui, et al. Numerical simulation of effect of temperature on flow accelerated corrosion in orifice pipeline[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 27-32.
|
10 |
AJMAL T S, ARYA Shashi Bhushan, Rajendra UDUPA K. Effect of hydrodynamics on the flow accelerated corrosion (FAC) and electrochemical impedance behavior of line pipe steel for petroleum industry[J]. International Journal of Pressure Vessels and Piping, 2019, 174: 42-53.
|
11 |
王凯, 南翠红, 卢金玲. 流体动力学过程在流动腐蚀行为中的作用机制[J]. 化工进展, 2020, 39(S2): 8-18.
|
|
WANG Kai, Cuihong NAN, LU Jinling. Mechanism of hydrodynamic process in flow corrosion behavior[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 8-18.
|
12 |
HOSSEINI Seyed Mohammad Kazem. Robust prediction of CO2 corrosion rate in extraction and production hydrocarbon industry[J]. Anti-Corrosion Methods and Materials, 2017, 64(1): 36-42.
|
13 |
郑度奎, 李昊燃, 程远鹏, 等. 油气管道的CO2腐蚀预测模型和预测方法[J]. 腐蚀与防护, 2020, 41(3): 48-53.
|
|
ZHENG Dukui, LI Haoran, CHENG Yuanpeng, et al. CO2 corrosion prediction model and prediction method for oil and gas pipeline[J]. Corrosion & Protection, 2020, 41(3): 48-53.
|
14 |
KAHYARIAN Aria, SINGER Marc, NESIC Srdjan. Modeling of uniform CO2 corrosion of mild steel in gas transportation systems: A review[J]. Journal of Natural Gas Science and Engineering, 2016, 29: 530-549.
|
15 |
KAHYARIAN Aria, NESIC Srdjan. A new narrative for CO2 corrosion of mild steel[J]. Journal of the Electrochemical Society, 2019, 166(11): C3048-C3063.
|
16 |
KAHYARIAN Aria, NESIC Srdjan. On the mechanism of carbon dioxide corrosion of mild steel: Experimental investigation and mathematical modeling at elevated pressures and non-ideal solutions[J]. Corrosion Science, 2020, 173: 108719.
|
17 |
雍兴跃, 张雅琴, 李栋梁, 等. 近壁处流体力学参数对流动腐蚀的影响[J]. 腐蚀科学与防护技术, 2011, 23(3): 245-250.
|
|
YONG Xingyue, ZHANG Yaqin, LI Dongliang, et al. Effect of near-wall hydrodynamic parameters on flow induced corrosion[J]. Corrosion Science and Protection Technology, 2011, 23(3): 245-250.
|
18 |
WANG Kai, MA Xiaobin, WANG Yueshe, et al. Study on the time-dependent evolution of pitting corrosion in flowing environment[J]. Journal of the Electrochemical Society, 2017, 164(7): C453-C463.
|
19 |
KAHYARIAN Aria, BROWN Bruce, Srdjan NEŠIĆ. The unified mechanism of corrosion in aqueous weak acids solutions: A review of the recent developments in mechanistic understandings of mild steel corrosion in the presence of carboxylic acids, carbon dioxide, and hydrogen sulfide[J]. Corrosion, 2020, 76(3): 268-278.
|
20 |
ALSALEM Mustafa M, RYAN Mary P, CAMPBELL Alasdair N, et al. Modelling of CO2 corrosion and FeCO3 formation in NaCl solutions[J]. Chemical Engineering Journal, 2023, 451: 138966.
|
21 |
NAGANO Y, TAGAWA M. An improved k-ε model for boundary layer flows[J]. Journal of Fluids Engineering, 1990, 112(1): 33-39.
|
22 |
ABE K, KONDOH T, NAGANO Y. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—Ⅰ. Flow field calculations[J]. International Journal of Heat and Mass Transfer, 1994, 37(1): 139-151.
|
23 |
XIONG Jinbiao, KOSHIZUKA Seiichi, SAKAI Mikio. Turbulence modeling for mass transfer enhancement by separation and reattachment with two-equation eddy-viscosity models[J]. Nuclear Engineering and Design, 2011, 241(8): 3190-3200.
|
24 |
K-T KIGER, PAN C. Suspension and turbulence modification effects of solid particulates on a horizontal turbulent channel flow[J]. Journal of Turbulence, 2002, 3(1): N19.
|
25 |
KIM Sin-Yeob, KIM Chan-Soo, CHO Hyoung Kyu. Local flow structure and turbulence quantities inside a heated rectangular riser in turbulent forced and mixed convection heat transfers[J]. Experimental Thermal and Fluid Science, 2021, 122: 110297.
|
26 |
Srdjan NEŠIĆ, KAHYARIAN Aria, CHOI Yoon Seok. Implementation of a comprehensive mechanistic prediction model of mild steel corrosion in multiphase oil and gas pipelines[J]. Corrosion, 2019, 75(3): 274-291.
|
27 |
李银然, 陈芳园, 李仁年, 等. 风沙环境对翼型边界层厚度的影响研究[J]. 太阳能学报, 2022, 43(1): 6-10.
|
|
LI Yinran, CHEN Fangyuan, LI Rennian, et al. Investigation on impact of sand-wind environment on airfoil boundary layer thickness[J]. Acta Energiae Solaris Sinica, 2022, 43(1): 6-10.
|
28 |
Srdjan NEŠIĆ, SOLVI Geir T, ENERHAUG J. Comparison of the rotating cylinder and pipe flow tests for flow-sensitive carbon dioxide corrosion[J]. Corrosion, 1995, 51(10): 773-787.
|