化工进展 ›› 2024, Vol. 43 ›› Issue (12): 6828-6837.DOI: 10.16085/j.issn.1000-6613.2023-2021
• 材料科学与技术 • 上一篇
收稿日期:
2023-11-20
修回日期:
2024-02-11
出版日期:
2024-12-15
发布日期:
2025-01-11
通讯作者:
王春梅
作者简介:
范婷婷(1998—),女,硕士研究生,研究方向为金属-有机框架材料。E-mail: 2408685503@qq.com。
基金资助:
FAN Tingting(), ZHANG Yangyang, WANG Chunmei(
)
Received:
2023-11-20
Revised:
2024-02-11
Online:
2024-12-15
Published:
2025-01-11
Contact:
WANG Chunmei
摘要:
采用原位生长法在室温下将铁基金属-有机框架材料[MIL-100(Fe)]负载在腈纶(PAN)上,然后通过光还原沉积法将Ag/AgCl纳米颗粒沉积于MIL-100(Fe)/PAN表面,制得Ag/AgCl/MIL-100(Fe)/PAN复合材料,并对复合材料结构、形貌及吸光性能等进行了表征。探讨了Cr(Ⅵ)初始浓度、初始pH、光照及H2O2等催化条件对复合材料光催化去除Cr(Ⅵ)性能的影响,并对光催化反应机理进行了分析。结果表明,Ag/AgCl的引入可显著提高复合材料对可见光的吸收能力。在15mg/L Cr(Ⅵ)溶液中加入0.32mL/L 30% H2O2,在溶液初始pH=3的条件下,用1000W氙灯光照下处理60min,6g/L复合材料对Cr(Ⅵ)去除率达到93%,重复使用5次后对Cr(Ⅵ)的去除率仍可达74%。光催化过程中e-和·O2-起到还原作用。
中图分类号:
范婷婷, 张洋洋, 王春梅. Ag/AgCl/MIL-100(Fe)/PAN复合材料的制备及其去除水中Cr(Ⅵ)的性能[J]. 化工进展, 2024, 43(12): 6828-6837.
FAN Tingting, ZHANG Yangyang, WANG Chunmei. Preparation of Ag/AgCl/MIL-100(Fe)/PAN composite and its performance of removing Cr(Ⅵ) in water[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6828-6837.
样品 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 孔径/nm |
---|---|---|---|
MP | 93.08 | 0.04 | 3.38 |
AAMP | 68.92 | 0.03 | 4.26 |
表1 复合材料的比表面积、孔容和孔径
样品 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 孔径/nm |
---|---|---|---|
MP | 93.08 | 0.04 | 3.38 |
AAMP | 68.92 | 0.03 | 4.26 |
1 | 李孟, 李炜, 张帅, 等. MOF及其复合材料吸附去除VOCs应用研究进展[J]. 化工进展, 2021, 40(1): 415-426. |
LI Meng, LI Wei, ZHANG Shuai, et al. Research progress on adsorption of VOCs by MOF and its composite[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 415-426. | |
2 | WANG Lu, YIN Guanglin, YANG Yiqiang, et al. Enhanced CO oxidation and toluene oxidation on CuCeZr catalysts derived from UiO-66 metal organic frameworks[J]. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128(1): 193-204. |
3 | ZHAO Fankang, FANG Shengqiong, GAO Yanxin, et al. Removal of aqueous pharmaceuticals by magnetically functionalized Zr-MOFs: Adsorption kinetics, isotherms, and regeneration[J]. Journal of Colloid and Interface Science, 2022, 615: 876-886. |
4 | XIONG Weiping, ZENG Guangming, YANG Zhaohui, et al. Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent[J]. Science of the Total Environment, 2018, 627: 235-244. |
5 | 戴婷, 杨廷海, 程庆霖, 等. 银系金属骨架化学物的制备及其性能研究[J]. 能源环境保护, 2020, 34(5): 6-11. |
DAI Ting, YANG Tinghai, CHENG Qinglin, et al. Study on preparation and properties of silver-based metal skeletal compounds[J]. Energy Environmental Protection, 2020, 34(5): 6-11. | |
6 | 刘淑芝, 赵福临, 郭齐, 等. 金属有机骨架MIL-101的合成、改性及在催化反应中的应用进展[J]. 化工进展, 2017, 36(3): 918-925. |
LIU Shuzhi, ZHAO Fulin, GUO Qi, et al. Progress in synthesis, modification and catalytic application of metal-organic frameworks MIL-101[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 918-925. | |
7 | LI Qi, LI Yanhui, MA Xiaomei, et al. Filtration and adsorption properties of porous calcium alginate membrane for methylene blue removal from water[J]. Chemical Engineering Journal, 2017, 316: 623-630. |
8 | 卞坤. 基于MIL101(Fe)的复合催化剂的制备及其光催化降解四环素的研究[D]. 镇江: 江苏科技大学, 2021. |
BIAN Kun. Preparation of composite catalyst based on MIL101(Fe) and its photocatalytic degradation of tetracycline[D]. Zhenjiang: Jiangsu University of Science and Technology, 2021. | |
9 | 李小娟, 廖凤珍, 叶兰妹, 等. 金属有机骨架及其衍生材料活化过硫酸盐在水处理中的应用进展[J]. 化工进展, 2019, 38(10): 4712-4721. |
LI Xiaojuan, LIAO Fengzhen, YE Lanmei, et al. Progress in the applications of metal-organic frameworks and derivatives activate persulfate in water treatment[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4712-4721. | |
10 | 罗紫芬. 金属有机骨架材料在水处理中的应用研究进展[J]. 中国资源综合利用, 2022, 40(10): 93-95. |
LUO Zifen. Research progress on the application of metal organic frameworks in water treatment[J]. China Resources Comprehensive Utilization, 2022, 40(10): 93-95. | |
11 | WANG Zhe, YANG Jian, LI Yongsheng, et al. In situ carbothermal synthesis of nanoscale zero-valent iron functionalized porous carbon from metal-organic frameworks for efficient detoxification of chromium(Ⅵ)[J]. European Journal of Inorganic Chemistry, 2018, 2018(1): 23-30. |
12 | XIA Qi, HUANG Binbin, YUAN Xingzhong, et al. Modified stannous sulfide nanoparticles with metal-organic framework: Toward efficient and enhanced photocatalytic reduction of chromium(Ⅵ) under visible light[J]. Journal of Colloid and Interface Science, 2018, 530: 481-492. |
13 | LI Mingmei, LI Deguan, ZHOU Zhiruo, et al. Plasmonic Ag as electron-transfer mediators in Bi2MoO6/Ag-AgCl for efficient photocatalytic inactivation of bacteria[J]. Chemical Engineering Journal, 2020, 382: 122762. |
14 | YU Xin, HUANG Jielin, ZHAO Jingjing, et al. Efficient visible light photocatalytic antibiotic elimination performance induced by nanostructured Ag/AgCl@Ti3+-TiO2 mesocrystals[J]. Chemical Engineering Journal, 2021, 403: 126359. |
15 | 张延. 基于Zr-MOF的复合材料对水中污染物的可见光催化去除及机理研究[D]. 武汉: 武汉纺织大学, 2022. |
ZHANG Yan. Study on visible photocatalytic removal of pollutants in water by Zr-MOF composite materials and its mechanism[D].Wuhan: Wuhan Textile University, 2022. | |
16 | 朱鹏飞, 娄晨思, 史雨翰, 等. Ag/AgCl/ZIF-8复合材料的制备及其对NO光催化氧化性能的研究[J]. 化学学报, 2022, 80(10): 1385-1393. |
ZHU Pengfei, LOU Chensi, SHI Yuhan, et al. Study on preparation of Ag/AgCl/ZIF-8 composite and photocatalytic NO oxidation performance[J]. Acta Chimica Sinica, 2022, 80(10): 1385-1393. | |
17 | 国家环境保护局. 水质 总铬的测定: [S]. 北京: 中国标准出版社, 1987. |
State Bureau of Environmental Protection of the People’s Republic of China. Water quality Determination of total chromium: [S]. Beijing: Standards Press of China, 1987. | |
18 | WANG Chongchen, DU Xuedong, LI Jin, et al. Photocatalytic Cr(Ⅵ) reduction in metal-organic frameworks: A mini-review[J]. Applied Catalysis B: Environmental, 2016, 193: 198-216. |
19 | 陈凤华, 梁娓娓, 石向东, 等. Ag@AgCl-Fe3O4/rGO复合材料对印染废水中染料和重金属离子的吸附和光催化降解性能[J]. 复合材料学报, 2021, 38(7): 2295-2304. |
CHEN Fenghua, LIANG Weiwei, SHI Xiangdong, et al. Adsorption and photocatalytic degradation of dyes and heavy metals in printing and dyeing wastewater by Ag@AgCl-Fe3O4/rGO composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2295-2304. | |
20 | LIU Bingkun, WU Yajun, HAN Xiaole, et al. Facile synthesis of g-C3N4/amine-functionalized MIL-101(Fe) composites with efficient photocatalytic activities under visible light irradiation[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(20): 17591-17601. |
21 | YUAN Binqin, WANG Xun, ZHOU Xin, et al. Novel room-temperature synthesis of MIL-100(Fe) and its excellent adsorption performances for separation of light hydrocarbons[J]. Chemical Engineering Journal, 2019, 355: 679-686. |
22 | YU Fengyang, JING Xu, WANG Yao, et al. Hierarchically porous metal-organic framework/MoS2 interface for selective photocatalytic conversion of CO2 with H2O into CH3COOH[J]. Angewandte Chemie International Edition, 2021, 60(47): 24849-24853. |
23 | Susan K TAM, DUSSEAULT Julie, POLIZU Stefania, et al. Physicochemical model of alginate-poly-L-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS[J]. Biomaterials, 2005, 26(34): 6950-6961. |
24 | LIU Ning, TANG Mengqi, WU Jinxing, et al. Boosting visible-light photocatalytic performance for CO2 reduction via hydroxylated graphene quantum dots sensitized MIL-101(Fe)[J]. Advanced Materials Interfaces, 2020, 7(17): 2000468. |
25 | XIE Liangcheng, YANG Zhaohui, XIONG Weiping, et al. Construction of MIL-53(Fe) metal-organic framework modified by silver phosphate nanoparticles as a novel Z-scheme photocatalyst: Visible-light photocatalytic performance and mechanism investigation[J]. Applied Surface Science, 2019, 465: 103-115. |
26 | QIU Wulin, LEISEN Johannes E, LIU Zhongyun, et al. Key features of polyimide-derived carbon molecular sieves[J]. Angewandte Chemie International Edition, 2021, 60(41): 22322-22331. |
27 | ZHANG Xiaodong, YANG Yang, SONG Liang, et al. High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation[J]. Molecular Catalysis, 2018, 447: 80-89. |
28 | ZHANG Fumin, SHI Jing, JIN Yan, et al. Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols[J]. Chemical Engineering Journal, 2015, 259: 183-190. |
29 | 马超, 余飞, 孙翼飞, 等. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 46-53. |
MA Chao, YU Fei, SUN Yifei, et al. Synthesis, characterization and photocatalytic mechanism of Ag decorated Sm∶ZnO nanocomposite with high photocatalytic activity[J]. Materials Reports, 2022, 36(8): 46-53. | |
30 | SHI Zhixiong, CHEN Zhuo, ZHANG Yan, et al. COF TzDa/Ag/AgBr Z-scheme heterojunction photocatalyst for efficient visible light driven elimination of antibiotics tetracycline and heavy metal ion Cr(Ⅵ)[J]. Separation and Purification Technology, 2022, 288: 120717. |
31 | DING Kai, WANG Wei, YU Dan, et al. Facile formation of flexible Ag/AgCl/polydopamine/cotton fabric composite photocatalysts as an efficient visible-light photocatalysts[J]. Applied Surface Science, 2018, 454: 101-111. |
32 | LI Shijie, WANG Chunchun, LIU Yanping, et al. Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism[J]. Chemical Engineering Journal, 2021, 415: 128991. |
33 | QIU Jianhao, LI Ming, WANG Huanting, et al. Integration of plasmonic effect into MIL-125-NH2: An ultra-efficient photocatalyst for simultaneous removal of ternary system pollutants[J]. Chemosphere, 2020, 242: 125197. |
34 | YI Xiaohong, MA Siqi, DU Xuedong, et al. The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(Ⅵ) reduction performance under white light[J]. Chemical Engineering Journal, 2019, 375: 121944. |
35 | DONG Guohui, ZHANG Lizhi. Synthesis and enhanced Cr(Ⅵ) photoreduction property of formate anion containing graphitic carbon nitride[J]. The Journal of Physical Chemistry C, 2013, 117(8): 4062-4068. |
36 | WANG Jichao, REN Juan, YAO Hongchang, et al. Synergistic photocatalysis of Cr(Ⅵ) reduction and 4-Chlorophenol degradation over hydroxylated α-Fe2O3 under visible light irradiation[J]. Journal of Hazardous Materials, 2016, 311: 11-19. |
37 | DONG Haoran, DENG Junmin, XIE Yankai, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(Ⅵ) removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332: 79-86. |
38 | BELHOUCHET Nassima, HAMDI Boualem, CHENCHOUNI Haroun, et al. Photocatalytic degradation of tetracycline antibiotic using new calcite/titania nanocomposites[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 372: 196-205. |
[1] | 林梅洁, 米烁东, 包成. 金属-掺杂氧化铈体系H2/CO电化学反应机理研究进展[J]. 化工进展, 2024, 43(S1): 209-224. |
[2] | 李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242. |
[3] | 熊磊, 丁飞燕, 李聪, 王群乐, 吕起, 翟晓娜, 刘峰. 金属Pt负载型非均相催化剂研究进展[J]. 化工进展, 2024, 43(S1): 295-304. |
[4] | 宋财城, 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 碳基载体负载加氢脱硫催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 305-314. |
[5] | 韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324. |
[6] | 胡兴, 刘易, 杜泽学. 3-氯丙烯直接合成环氧氯丙烷催化剂研究进展[J]. 化工进展, 2024, 43(S1): 325-334. |
[7] | 于梦洁, 吴语童, 罗发祥, 豆义波. 低浓度二氧化碳还原光催化剂结构设计的研究进展[J]. 化工进展, 2024, 43(S1): 335-350. |
[8] | 张浩, 刘世钰, 沈卫华, 方云进. Ca-ZSM-5催化尿素脱水制备单氰胺[J]. 化工进展, 2024, 43(S1): 365-373. |
[9] | 何世坤, 张荣花, 李昊阳, 潘晖, 冯君锋. 脱铝分子筛固体酸催化葡萄糖制备5-羟甲基糠醛[J]. 化工进展, 2024, 43(S1): 374-381. |
[10] | 张日东, 吕建华, 刘继东, 郭豹, 李文松. Ru-K-NaY催化草酸二甲酯脱羰基制备碳酸二甲酯[J]. 化工进展, 2024, 43(S1): 382-390. |
[11] | 杜小聪, 辛春福, 赵钰. 路用复合相变材料及相变改性沥青性能评价[J]. 化工进展, 2024, 43(S1): 419-430. |
[12] | 周渝, 夏太阳, 韦奇, 唐甜, 田磊. 微通道耦合反渗透膜串联处理甲醇制烯烃废水工艺优化[J]. 化工进展, 2024, 43(S1): 43-51. |
[13] | 马桂璇, 徐子桐, 肖志华, 宁国庆, 魏强, 徐春明. 氧硫双掺杂CNTs水系导电剂辅助构筑高性能石墨/SiO负极[J]. 化工进展, 2024, 43(S1): 443-456. |
[14] | 高觊兴, 丁玉梅, 张超, 谭晶, 丁熙, 李好义, 杨卫民. 熔体微分电纺PLA/PCL微纳米纤维膜的制备及其性能[J]. 化工进展, 2024, 43(S1): 457-468. |
[15] | 高聪志, 张雅萱, 林璐, 邓晓婷, 殷霞, 丁一刚, 肖艳华, 杜治平. 新戊二醇的合成工艺[J]. 化工进展, 2024, 43(S1): 469-478. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 21
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 62
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |