1 |
张英. 联用地下水年龄和稳定同位素解析硝酸盐污染源的演变[D]. 北京: 中国地质大学(北京), 2020.
|
|
ZHANG Ying. Combined use of groundwater dating and stable isotopes to resolve the changes of nitrate sources[D].Beijing: China University of Geosciences, 2020.
|
2 |
李圣品, 李文鹏, 殷秀兰, 等. 全国地下水质分布及变化特征[J]. 水文地质工程地质, 2019, 46(6): 1-8.
|
|
LI Shengpin, LI Wenpeng, YIN Xiulan, et al. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 1-8.
|
3 |
涂春霖,陈庆松,尹林虎, 等. 我国地下水硝酸盐污染及源解析研究进展[J]. 环境科学, 2024, 45(6): 3129-3141.
|
|
TU Chunlin, CHEN Qingsong, YIN Linhu, et al. Research progress on nitrate pollution and source apportionment in groundwater in China[J] Environmental Science, 2024, 45(6): 3129-3141.
|
4 |
MEKONNEN Mesfin M, HOEKSTRA Arjen Y. Four billion people facing severe water scarcity[J]. Science Advances, 2016, 2(2): e1500323.
|
5 |
SU Li, HAN Dandan, ZHU Guanjia, et al. Tailoring the assembly of iron nanoparticles in carbon microspheres toward high-performance electrocatalytic denitrification[J]. Nano Letters, 2019, 19(8): 5423-5430.
|
6 |
HABER F, LE ROSSIGNOL R. Über die technische Darstellung von Ammoniak aus den elementen[J]. Zeitschrift Für Elektrochemie und Angewandte Physikalische Chemie, 1913, 19(2): 53-72.
|
7 |
BOUMEDIENE M, ACHOUR D. Denitrification of the underground waters by specific resin exchange of ion[J]. Desalination, 2004, 168: 187-194.
|
8 |
DUAN Weijian, CHEN Yanyan, MA Huanxin, et al. In situ reconstruction of metal oxide cathodes for ammonium generation from high-strength nitrate wastewater: Elucidating the role of the substrate in the performance of Co3O4- x [J]. Environmental Science & Technology, 2023, 57(9): 3893-3904.
|
9 |
Francisco FABREGAT-SANTIAGO, BAREA Eva M, BISQUERT Juan, et al. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping[J]. Journal of the American Chemical Society, 2008, 130(34): 11312-11316.
|
10 |
YANG Yang, HOFFMANN Michael R. Synthesis and stabilization of blue-black TiO2 nanotube arrays for electrochemical oxidant generation and wastewater treatment[J]. Environmental Science & Technology, 2016, 50(21): 11888-11894.
|
11 |
LU Chun, LU Shigang, QIU Weihua, et al. Electroreduction of nitrate to ammonia in alkaline solutions using hydrogen storage alloy cathodes[J]. Electrochimica Acta, 1999, 44(13): 2193-2197.
|
12 |
MAO Ran, HUANG Chao, ZHAO Xu, et al. Dechlorination of triclosan by enhanced atomic hydrogen-mediated electrochemical reduction: Kinetics, mechanism, and toxicity assessment[J]. Applied Catalysis B: Environmental, 2019, 241: 120-129.
|
13 |
LIU Gejun, BAI Haipeng, JI Yujin, et al. A highly efficient alkaline HER Co-Mo bimetallic carbide catalyst with an optimized Mo d-orbital electronic state[J]. Journal of Materials Chemistry A, 2019, 7(20): 12434-12439.
|
14 |
时永斌. 钴、铁基催化剂的制备及其电化学合成氨的研究[D]. 大连: 大连理工大学, 2022.
|
|
SHI Yongbin. Preparation of cobalt and iron based catalysts and research on electrochemical synthesis of ammonia[D]. Dalian: Dalian University of Technology, 2022.
|
15 |
DESLOOVER Joachim, DE VRIEZE Jo, VAN DE VIJVER Maarten, et al. Electrochemical nutrient recovery enables ammonia toxicity control and biogas desulfurization in anaerobic digestion[J]. Environmental Science & Technology, 2015, 49(2): 948-955.
|
16 |
GAO Jianan, SHI Ning, LI Yifan, et al. Electrocatalytic upcycling of nitrate wastewater into an ammonia fertilizer via an electrified membrane[J]. Environmental Science & Technology, 2022, 56(16): 11602-11613.
|
17 |
GAO Jianan, SHI Ning, GUO Xiaobin, et al. Electrochemically selective ammonia extraction from nitrate by coupling electron- and phase-transfer reactions at a three-phase interface[J]. Environmental Science & Technology, 2021, 55(15): 10684-10694.
|
18 |
RODRIGUES Mariana, DE MATTOS Thiago T, SLEUTELS Tom, et al. Minimal bipolar membrane cell configuration for scaling up ammonium recovery[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17359-17367.
|