化工进展 ›› 2024, Vol. 43 ›› Issue (10): 5569-5580.DOI: 10.16085/j.issn.1000-6613.2023-1629
• 材料科学与技术 • 上一篇
徐壮壮1(), 季程程2(), 于斌1, 程思远3, 艾小茜4, 杨双春1
收稿日期:
2023-09-14
修回日期:
2023-12-05
出版日期:
2024-10-15
发布日期:
2024-10-29
通讯作者:
季程程
作者简介:
徐壮壮(1998—),男,硕士研究生,研究方向为油气井工程。E-mail:15668554951@163.com。
基金资助:
XU Zhuangzhuang1(), JI Chengcheng2(), YU Bin1, CHENG Siyuan3, AI Xiaoxi4, YANG Shuangchun1
Received:
2023-09-14
Revised:
2023-12-05
Online:
2024-10-15
Published:
2024-10-29
Contact:
JI Chengcheng
摘要:
油砂作为一种储量丰富的非常规石油资源,越来越受到世界各国的广泛关注,油砂处理行业和生态环境的协调可持续发展也已成为亟需解决的热点问题。因此,为了建构清洁低碳、节能高效的工艺流程体系,促进油砂处理行业的高质量发展,对CO2在油砂处理中的工艺发展形成全局性的认识,本文重点总结了国内外研究CO2在油砂处理中的应用现状以及对CO2在油砂处理上的数值模拟和动力学模拟概况进行了综述。其中,重点论述了CO2响应作用下分离油砂、超临界CO2萃取油砂以及CO2在其他工艺中的应用现状。但是,目前的研究仅限于室内,而且工业化试验的数据相对较少,这限制了我国油砂处理行业的工业化应用。因此还需要对CO2在油砂处理中的工艺进行更加深入的研究,以满足工业化应用的要求。最后,对CO2在油砂处理的应用进行了总结与展望。
中图分类号:
徐壮壮, 季程程, 于斌, 程思远, 艾小茜, 杨双春. CO2应用于油砂处理的工艺进展[J]. 化工进展, 2024, 43(10): 5569-5580.
XU Zhuangzhuang, JI Chengcheng, YU Bin, CHENG Siyuan, AI Xiaoxi, YANG Shuangchun. Research progress of CO2 application on oil sands treatment[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5569-5580.
1 | 科兴华. 加拿大阿尔伯塔省的油砂资源和油砂工业[J]. 全球科技经济瞭望, 2004, 19(5): 58. |
KE Xinghua. Oil sands resources and oil sands industry in Alberta, Canada[J]. Quanqiu Keji Jingji Liaowang, 2004, 19(5): 58. | |
2 | 郝俊辉, 田原宇, 张金弘, 等. 油砂沥青分离技术研究进展[J]. 化工进展, 2018, 37(9): 3337-3345. |
HAO Junhui, TIAN Yuanyu, ZHANG Jinhong, et al. Research progress on separation technologies of oil sand bitumen[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3337-3345. | |
3 | 李冰, 令狐松, 包鑫, 等. 加拿大油砂储层测井评价关键技术[J]. 测井技术, 2019, 43(4): 391-397. |
LI Bing, LINGHU Song, BAO Xin, et al. Key technologies for log evaluation of oil sand reservoirs in Canada[J]. Well Logging Technology, 2019, 43(4): 391-397. | |
4 | DEL VALLE José M, DE LA FUENTE Juan C. Supercritical CO2 extraction of oilseeds: Review of kinetic and equilibrium models[J]. Critical Reviews in Food Science and Nutrition, 2006, 46(2): 131-160. |
5 | 陈欢庆. CO2驱油与埋存技术新进展[J]. 油气地质与采收率, 2023, 30(2): 18-26. |
CHEN Huanqing. New progress of CO2 flooding and storage technology[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 18-26. | |
6 | 武杨青, 翟亮, 鲁守飞, 等. 碳中和背景下CO2驱油技术研究进展[J]. 山东化工, 2023, 52(1): 109-111. |
WU Yangqing, ZHAI Liang, LU Shoufei, et al. Progress of CO2 flooding technology in the context of carbon neutrality[J]. Shandong Chemical Industry, 2023, 52(1): 109-111. | |
7 | 郑德温, 方朝合, 李剑, 等. 油砂开采技术和方法综述[J]. 西南石油大学学报(自然科学版), 2008, 30(6): 105-108, 212. |
ZHENG Dewen, FANG Chaohe, LI Jian, et al. Summary on oil sand exploitation technologies and methods[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2008, 30(6): 105-108, 212. | |
8 | ODEBUNMI Ezekiel Oluyemi, OLAREMU Abimbola George. Extraction of chemical constituents of bitumen using a mixed solvent system[J]. Open Journal of Applied Sciences, 2015, 5(8): 485-494. |
9 | NIE Fan, HE Demin, GUAN Jun, et al. Influence of temperature on the product distribution during the fast pyrolysis of Indonesian oil sands and the relationships of the products to the oil sand organic structure[J]. Energy & Fuels, 2017, 31(2): 1318-1328. |
10 | ZHANG Zisheng, BEI Hongfei, LI Hong, et al. Understanding the co-pyrolysis behavior of Indonesian oil sands and corn straw[J]. Energy & Fuels, 2017, 31(3): 2538-2547. |
11 | WANG Tong, ZHANG Chao, ZHAO Ruiyu, et al. Solvent extraction of bitumen from oil sands[J]. Energy & Fuels, 2014, 28(4): 2297-2304. |
12 | 许耀辉, 马国东, 李云, 等. 哈萨克斯坦油砂溶剂抽提的实验研究[J]. 辽宁石油化工大学学报, 2012, 32(3): 6-8. |
XU Yaohui, MA Guodong, LI Yun, et al. The solvent extraction investigation on Kazakhstan oil sand[J]. Journal of Liaoning Shihua University, 2012, 32(3): 6-8. | |
13 | SUBRAMANIAN M, HANSON F V. Supercritical fluid extraction of bitumens from Utah oil sands[J]. Fuel Processing Technology, 1998, 55(1): 35-53. |
14 | JESSOP Philip G, KOZYCZ Lisa, RAHAMI Zahra Ghoshouni, et al. Tertiary aminesolvents having switchable hydrophilicity[J]. Green Chemistry, 2011, 13(3): 619-623. |
15 | JESSOP Philip G, PHAN Lam, CARRIER Andrew, et al. A solvent having switchable hydrophilicity[J]. Green Chemistry, 2010, 12(5): 809-814. |
16 | LI Xiaojiang, LU Hongsheng, LIU Dongfang, et al. Preparation of composite switchable water with hydrophobic tertiary amine for washing oil sands[J]. Journal of CO2 Utilization, 2019, 29: 254-261. |
17 | LI Xiaojiang, LU Hongsheng, LIU Dongfang, et al. Cleaner and sustainable approach of washing oil sands using CO2-responsive composite switchable water (CSW) with lower volatility[J]. Journal of Cleaner Production, 2019, 236: 117554. |
18 | TOSUAI Teerapat, THANASAKSUKTHAWEE Vorasate, LU Yi, et al. Enhanced bitumen extraction from oil sands using CO2-responsive surfactant combined with low-salinity brine: Toward cleaner production via CO2 utilization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670: 131617. |
19 | LU Yi, LI Rui, MANICA Rogerio, et al. CO2-responsive surfactants for greener extraction of heavy oil: A bench-scale demonstration[J]. Journal of Cleaner Production, 2022, 338: 130554. |
20 | LU Yi, ZHU Yeling, XU Zhenghe, et al. Pseudo-gemini biosurfactants with CO2 switchability for enhanced oil recovery (EOR)[J]. Tenside Surfactants Detergents, 2019, 56(5): 407-416. |
21 | ZHANG Yongmin, FENG Yujun. Stimuli-responsive microemulsions: State-of-the-art and future prospects[J]. Current Opinion in Colloid & Interface Science, 2020, 49: 27-41. |
22 | 刘旭, 鲁红升. CO2刺激响应SFME萃取油砂应用研究[J]. 广东化工, 2022, 49(8): 63-67. |
LIU Xu, LU Hongsheng. Application of CO2-responsive SFME for extraction of oil sands[J]. Guangdong Chemical Industry, 2022, 49(8): 63-67. | |
23 | 黄曼, 李灿琪, 刘雪锋. CO2/N2开关微乳液及其油污洗涤和分离性能[J]. 日用化学工业, 2016, 46(6): 328-333. |
HUANG Man, LI Canqi, LIU Xuefeng. CO2/N2-switchable microemulsion as well as its oil dirt washing and separation performance[J]. China Surfactant Detergent & Cosmetics, 2016, 46(6): 328-333. | |
24 | 黄曼. CO2/N2开关型微乳液的设计、性能及应用研究[D]. 无锡: 江南大学, 2016. |
HUANG Man. Design, performance and application of CO2/N2 switchable microemulsions[D]. Wuxi: Jiangnan University, 2016. | |
25 | Mustafa AL-SABAWI, SETH Deepyaman, DE BRUIJN Theo. Effect of modifiers in n-pentane on the supercritical extraction of Athabasca bitumen[J]. Fuel Processing Technology, 2011, 92(10): 1929-1938. |
26 | Helen LA, GUIGARD Selma E. Extraction of hydrocarbons from Athabasca oil sand slurry using supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2015, 100: 146-154. |
27 | MU Xiaoya, MA Jun, LIU Fei, et al. The solvent extraction is a potential choice to recover asphalt from unconventional oil ores[J]. Arabian Journal of Chemistry, 2023, 16(5): 104650. |
28 | 宋飞. 固体颗粒中挥发性溶剂的CO2鼓泡分离过程的强化研究[D]. 天津: 天津大学, 2021. |
SONG Fei. Study on strengthening CO2 bubble separation process of volatile solvents in solid particles[D].Tianjin: Tianjin University, 2021. | |
29 | HOLLAND Amy, WECHSLER Dominik, PATEL Anjali, et al. Separation of bitumen from oil sands using a switchable hydrophilicity solvent[J]. Canadian Journal of Chemistry, 2012, 90(10): 805-810. |
30 | 王君妍. 非常规重质油矿溶剂萃取过程关键问题研究[D]. 天津: 天津大学, 2020. |
WANG Junyan. Research on the key problems of solvent extraction process to separate unconventional heavy oil ores[D]. Tianjin: Tianjin University, 2020. | |
31 | 周书青. 超临界CO2协同溶剂萃取加拿大油砂沥青基础研究[D]. 北京: 中国石油大学(北京), 2011. |
ZHOU Shuqing. Basic study on supercritical CO2 synergistic solvent extraction of Canadian oil sands asphalt[D]. Beijing: China University of Petroleum (Beijing), 2011. | |
32 | 吴保玉, 李志航, 金祥哲. 超临界CO2萃取法处理含油钻屑实验研究[J]. 钻采工艺, 2019, 42(4): 13-15, 39, 6-7. |
WU Baoyu, LI Zhihang, JIN Xiangzhe. Experimental study on supercritical co2 extraction method for oil-containing cuttings disposal[J]. Drilling & Production Technology, 2019, 42(4): 13-15, 39, 6-7. | |
33 | 王思凡, 胡东锋, 李前春. 超临界CO2萃取法处理油基钻屑工艺实验[J]. 石油钻采工艺, 2019, 41(5): 597-602. |
WANG Sifan, HU Dongfeng, LI Qianchun. Experimental study on the oil-based drilling cuttings treatment technology based on supercritical CO2 extraction method[J]. Oil Drilling & Production Technology, 2019, 41(5): 597-602. | |
34 | 陈德军, 赵锁奇, 许志明, 等. 油砂沥青溶剂提取回收组合工艺[J]. 化学工程, 2010, 38(5): 1-4. |
CHEN Dejun, ZHAO Suoqi, XU Zhiming, et al. Solvent extraction for bitumen from oil sands followed by solvent recovery[J]. Chemical Engineering (China), 2010, 38(5): 1-4. | |
35 | RUDYK Svetlana, SPIROV Pavel, HUSSAIN Shahid. Effect of co-solvents on SC-CO2 extraction of crude oil by consistency test[J]. The Journal of Supercritical Fluids, 2014, 91: 15-23. |
36 | RUDYK Svetlana, SPIROV Pavel. Upgrading and extraction of bitumen from Nigerian tar sand by supercritical carbon dioxide[J]. Applied Energy, 2014, 113: 1397-1404. |
37 | RUDYK Svetlana, SPIROV Pavel, JIMOH Ismaila, et al. The bitumen upgrading of Nigerian oil sand by supercritical carbon dioxide modified with alcohols[J]. Energy & Fuels, 2014, 28(7): 4714-4724. |
38 | RUDYK Svetlana, HUSSAIN Shahid, SPIROV Pavel. Supercritical extraction of crude oil by methanol-and ethanol-modified carbon dioxide[J]. The Journal of Supercritical Fluids, 2013, 78: 63-69. |
39 | 王树众, 王玉珍, 李艳辉, 等. 微波辅助超临界CO2萃取油砂中原油的系统及方法: CN104046375A[P]. 2014-09-17. |
WANG Shuzhong, WANG Yuzhen, LI Yanhui, et al. Microwave-assisted supercritical CO extraction system and microwave-assisted supercritical CO extraction method for crude oil in oil sand: CN104046375A[P]. 2014-09-17. | |
40 | 杜新锋, 袁崇亮, 王正喜, 等. 窑街矿区浅层煤系气储层特征及勘探开发关键技术[J]. 煤田地质与勘探, 2021, 49(6): 58-66, 73. |
DU Xinfeng, YUAN Chongliang, WANG Zhengxi, et al. Characteristics of shallow coal measure gas reservoir and key technologies of exploration and development in Yaojie mining area[J]. Coal Geology & Exploration, 2021, 49(6): 58-66, 73. | |
41 | BAKSHI Amarjit Singh. Method of gas and oil production from shale, oil sands and biomass using proppants and well safety options: US8733439[P]. 2014-05-27. |
42 | 何勇, 陈建标, 户昶昊, 等. N2和CO2气氛下辽河稠油热解过程及产物性质[J]. 石油学报(石油加工), 2019, 35(1): 128-135. |
HE Yong, CHEN Jianbiao, HU Changhao, et al. Pyrolysis process and product properties of Liaohe heavy oil under N2 and CO2 atmosphere[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(1): 128-135. | |
43 | 李哲伟, 尹晟薰, 柳欄淑, 等. 改善的油砂回收及改性方法: CN102977907A[P]. 2013-03-20. |
LI Zhewei, YIN Shengxun, LIU Lanshu, et al. Improved method for recovery and modification of oil sand: CN102977907A[P]. 2013-03-20. | |
44 | 王俊衡, 王健, 周志伟, 等. 稠油油藏CO2辅助蒸汽驱油机理实验研究[J]. 油气藏评价与开发, 2021, 11(6): 852-857, 863. |
WANG Junheng, WANG Jian, ZHOU Zhiwei, et al. Experimental study on mechanism of CO2 assisted steam flooding in heavy oil reservoir[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 852-857, 863. | |
45 | 薛刚, 郭梦炎, 姜鹏飞, 等. 浅层稠油油藏CO2辅助蒸汽开发机理与效果研究[J]. 四川化工, 2023, 26(2): 31-36. |
XUE Gang, GUO Mengyan, JIANG Pengfei, et al. Study on mechanism and performance of carbon dioxide assisted steam in shallow heavy oil reservoir[J]. Sichuan Chemical Industry, 2023, 26(2): 31-36. | |
46 | CHEN Ting, YANG Zhengming, LUO Yutian, et al. Evaluation of displacement effects of different injection media in tight oil sandstone by online nuclear magnetic resonance[J]. Energies, 2018, 11(10): 2836. |
47 | OKAWA Hirokazu, SAITO Tomonao, YASUDA Shohei, et al. Enhancement of bitumen recovery from the oil sand in an alkaline solution using ultrasound irradiation and carbon dioxide[J]. Japanese Journal of Applied Physics, 2020, 59: SKKD02. |
48 | Mohammed AL-MURAYRI, HARDING Thomas G, MAINI Brij B. Solubility of methane, nitrogen, and carbon dioxide in bitumen and water for SAGD modelling[J]. Journal of Canadian Petroleum Technology, 2011, 50(7): 34-45. |
49 | BUTLER R M, JIANG Q, YEE C T. Steam and gas push (SAGP)-3: Recent theoretical developments and laboratory results[J]. Journal of Canadian Petroleum Technology, 2000, 39(8): 11-20. |
50 | BUTLER R. The steam and gas push(SAGP)[J]. Journal of Canadian Petroleum Technology, 1999, 38(3): 38-43. |
51 | JIANG Q, BUTLER R, YEE C T. The steam and gas push (SAGP)-2: Mechanism analysis and physical model testing[C]//Annual Technical Meeting. Calgary, Alberta. Petroleum Society of Canada, 1998. |
52 | 陈隽. 油砂沥青非凝析气体辅助SAGD开发数值模拟研究[D]. 北京: 中国石油大学(北京), 2018. |
CHEN Jun. Study on numerical simulation of non-condensable gases assisted SAGD technology for oil sand bitumen[D]. Beijing: China University of Petroleum (Beijing), 2018. | |
53 | 张艳玉, 王欣, 孙晓飞, 等. 加拿大油砂非凝析气体辅助SAGD开采特征及影响因素研究[J]. 河南理工大学学报(自然科学版), 2023, 42(3): 10-17. |
ZHANG Yanyu, WANG Xin, SUN Xiaofei, et al. Research on development characteristics and influencing factors of non-condensable gas assisted SAGD for Canadian oil sand[J]. Journal of Henan Polytechnic University (Natural Science), 2023, 42(3): 10-17. | |
54 | 晁力. SiO2-TiO2基复合絮凝剂的制备及其絮凝性能的优化[D]. 沈阳: 东北大学, 2020. |
CHAO Li. Preparation of SiO2-TiO2 based composite flocculants and optimization of its flocculation performance[D]. Shenyang: Northeastern University, 2020. | |
55 | 王海华. 油砂尾矿综合治理概述[J]. 矿物学报, 2015, 35(S1): 824-825. |
WANG Haihua. Overview of comprehensive treatment of oil sands tailings[J]. Acta Mineralogica Sinica, 2015, 35(S1): 824-825. | |
56 | FAMAKINWA Temilola E, SU Yi, WANG Jingyi, et al. An in situ process to consolidate oil sands mine tailings[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 3295-3305. |
57 | NITTALA Atreya K, GUMFEKAR Sarang P, SOARES João B P. Multifunctional CO2-switchable polymers for the flocculation of oil sands tailings[J]. Journal of Applied Polymer Science, 2019, 136(22): 47578-47578. |
58 | 李淑霞, 谷建伟. 油藏数值模拟基础[M]. 东营: 中国石油大学出版社, 2009. |
LI Shuxia, GU Jianwei. Fundamentals of reservoir numerical simulation[M]. Dongying: China University of Petroleum Press, 2009. | |
59 | David LAW. Disposal of carbon dioxide, a greenhouse gas, for pressure maintenance in a steam-based thermal process for recovery of heavy oil and bitumen[C]//SPE. International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting. Bakersfield, California: OnePetro, 2004: SPE-86958-MS. |
60 | 宋飞, 王君妍, 何林, 等. 表面活性剂强化重质油矿溶剂萃取残渣中残留溶剂鼓泡分离[J]. 化工进展, 2022, 41(4): 2007-2014. |
SONG Fei, WANG Junyan, HE Lin, et al. Surfactant enhancement of bubbling for separation of residual solvent from oil sands residue after solvent extraction[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2007-2014. | |
61 | WANG Zhichao, WANG Qing, PAN Shuo, et al. The chemical structure and thermal evolution of oil Sands bitumen: Experimental and molecular simulation study[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105271. |
62 | SONG Fei, WANG Junyan, SUI Hong, et al. Kinetics of CO2 gas bubbling for the separation of residual solvent from waste solids: Effects of bubble size[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107981. |
63 | MARTÍNEZ L, ANDRADE R, BIRGIN E G, et al. PACKMOL: A package for building initial configurations for molecular dynamics simulations[J]. Journal of Computational Chemistry, 2009, 30(13): 2157-2164. |
64 | VAN DER SPOEL David, LINDAHL Erik, HESS Berk, et al. GROMACS: Fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718. |
65 | RANJBAR Ehsan, GHADERI Seyyed M, NOUROZIEH Hossein, et al. Two-phase and three-phase equilibrium K-values for modelling of non-condensable gas co-injection processes[J]. Journal of Petroleum Science and Engineering, 2019, 173: 525-535. |
66 | Maureen AUSTIN-ADIGIO, GATES Ian. Non-condensable gas co-injection with steam for oil sands recovery[J]. Energy, 2019, 179: 736-746. |
67 | GAO Yongrong, LIU Shangqi, SHEN Dehuang, et al. Improving oil recovery by adding N2 in SAGD process for super-heavy crude reservoir with top-water (russian)[C]//SPE Russian Oil and Gas Technical Conference and Exhibition. Moscow, Russia. Society of Petroleum Engineers, 2008: SPE-114590-MS. |
68 | 栾健. 超稠油砂岩油藏SAGD参数优选及SAGP方案设计[D]. 成都: 西南石油大学, 2016. |
LUAN Jian. Optimization of SAGD parameters and SAGD scheme design in super heavy oil sandstone reservoir[D]. Chengdu: Southwest Petroleum University, 2016. |
[1] | 廖旭, 周骏, 罗杰, 曾瑞琳, 王泽宇, 李尊华, 林金清. 多孔离子聚合物催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2024, 43(9): 4925-4940. |
[2] | 潘涵婷, 徐洪涛, 许多, 罗祝清. 低温条件下基于相变材料的锂离子电池保温特性分析[J]. 化工进展, 2024, 43(8): 4333-4341. |
[3] | 马永丽, 李沐阳, 马子皓, 王浩然, 王茂隆, 费瑶寒, 张露滨, 刘明言. 火星上的气固流态化模拟实验[J]. 化工进展, 2024, 43(8): 4203-4209. |
[4] | 蒋静智, 邵国伟, 崔海亭, 李洪涛, 杨奇. 三套管式加肋相变蓄热单元的强化传热特性[J]. 化工进展, 2024, 43(8): 4210-4221. |
[5] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 蔡萌, 李新亚. 堵塞工况下水力旋流器流场特性及性能分析[J]. 化工进展, 2024, 43(7): 3776-3786. |
[6] | 罗丛佳, 豆义波, 卫敏. 水滑石光催化剂结构调控用于二氧化碳还原的研究进展[J]. 化工进展, 2024, 43(7): 3891-3909. |
[7] | 马佳慧, 王毅斌, 冯敬武, 谭厚章, 林翅. 工业含钙固废矿化CO2的实验[J]. 化工进展, 2024, 43(6): 3440-3449. |
[8] | 刘克峰, 刘陶然, 蔡勇, 胡雪生, 董卫刚, 周华群, 高飞. 二氧化碳捕集技术研究和工程示范进展[J]. 化工进展, 2024, 43(6): 2901-2914. |
[9] | 周爱国, 郑家乐, 杨川箬, 杨小艺, 赵俊德, 李兴春. 直接空气二氧化碳捕集技术工业化进展[J]. 化工进展, 2024, 43(6): 2928-2939. |
[10] | 王庆泰, 张赛, 王杰敏. 全钒液流电池多孔电极非均匀压缩的数值模拟[J]. 化工进展, 2024, 43(6): 2940-2949. |
[11] | 智远, 马吉亮, 陈晓平, 刘道银, 梁财. 流化床喷雾浸渍制备负载型钠基CO2吸附剂脱碳性能[J]. 化工进展, 2024, 43(6): 2961-2967. |
[12] | 张真, 张凡, 云祉婷. 绿氢在石化和化工行业的减碳经济性分析[J]. 化工进展, 2024, 43(6): 3021-3028. |
[13] | 陈富强, 仲兆平, 戚仁志. 铜基催化剂电还原二氧化碳为甲酸研究进展[J]. 化工进展, 2024, 43(6): 3051-3060. |
[14] | 曾壮, 李柯志, 苑志伟, 杜金涛, 李卓师, 王悦. CO/CO2 加氢制低碳醇改性费托合成催化剂研究进展[J]. 化工进展, 2024, 43(6): 3061-3079. |
[15] | 闫哲, 刘畅, 王丰旭, 周宏旺, 刘樨, 赵雪冰. 耦合生物质氧化转化的CO2电化学还原[J]. 化工进展, 2024, 43(6): 3310-3321. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |