化工进展 ›› 2024, Vol. 43 ›› Issue (4): 2049-2062.DOI: 10.16085/j.issn.1000-6613.2023-0641
• 资源与环境化工 • 上一篇
收稿日期:
2023-04-19
修回日期:
2023-06-08
出版日期:
2024-04-15
发布日期:
2024-05-13
作者简介:
李凌波(1969—),男,教授级高级工程师,研究方向为石油石化环境监测。E-mail:lilingbo.fshy@sinopec.com。
基金资助:
Received:
2023-04-19
Revised:
2023-06-08
Online:
2024-04-15
Published:
2024-05-13
摘要:
美国环保署(EPA)在世界上最早推行泄漏检测与修复技术(LDAR),控制石化企业设备泄漏挥发性有机物(VOCs)排放,发展至今经历了初级(1983—1999年)和高级(2000—2020年前后)阶段,目前处于技术革新初期,其发展历程和经验对中国LDAR政策、法规、标准制定和技术发展有借鉴意义。本文简要介绍了美国LDAR的创建、发展、技术进步及质量升级的历程,评述了LDAR等效减排的机制及相关进展,以及传感器在线检测、红外气体成像(OGI)检测、低排放密封等LDAR革新技术进展,展望了LDAR未来发展趋势。文章提出,总体上,美国的传感器在线检测、OGI检测和低排放密封等LDAR新技术研发应用世界领先,传感器网络智能在线检测技术可能是LDAR技术革新或下一代LDAR研发的主方向,设备低排放密封技术是LDAR的重要辅助手段,OGI是重要的LDAR非常规检测技术。
中图分类号:
李凌波. 美国石化工业泄漏检测与修复技术进展[J]. 化工进展, 2024, 43(4): 2049-2062.
LI Lingbo. Practice and development of leak detection and repair technology in petroleum refining and petrochemical industry in the United States[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2049-2062.
项目 | 主要规定或要求 |
---|---|
检测频次 | 增加某些阀门、连接件、泵和搅拌器的检测频次,定期检测开口管线封闭设备;泵和搅拌器每月1次,阀和开口管线封闭设备每季度1次,连接件每年1次;如果联邦、州和地方性法规有更高的检测频次要求,则执行更高的检测频次;如果连续2年(或以上)无泄漏,阀和开口管线封闭设备可选择每年1次,连接件可选择每2年1次,一旦发现泄漏,接下来12个月每月1次 |
检测仪器 | 应配置电子数据记录仪,实时记录检测数据、检测时间、仪器和检测人员编号 |
泄漏认定 | 阀、连接件和开口管线封闭设备250μmol/mol、泵500μmol/mol、搅拌器1000μmol/mol、聚合物单体泵(或搅拌器)2000μmol/mol |
泄漏修复 | 泄漏浓度≥200μmol/mol进行修复尝试;应用钻孔并注入密封剂修复技术以减少延迟修复设备数量;修复泄漏或安装新的阀门和连接件时使用经过认证的低排放技术或填料;严格限制延迟修复设备数量 |
设备升级 | 泄漏浓度≥250μmol/mol的阀更换为低排放阀或低排放填料,泄漏浓度在100~250μmol/mol之间的阀填料也须按规定比例修复或更换为低排放规格;法兰等连接件泄漏≥250μmol/mol须修复或更换;3个连续检测周期中有2次检测≥250μmol/mol的连接件须更换 |
审核整改 | 每1~2年1次内审/外审,第1、3、5次应选外审,第2、4次可选外审或内审,审核内容主要包括LDAR记录、组件识别与建档、检测校准及现场操作等,审核确定LDAR存在缺陷或抽检泄漏率与报告泄漏率的比值≥3.0(且抽检泄漏率≥0.5%),应采取整改措施 |
违规细则 | 文件、计划或报告上报超期、检测违规(检测频次、检测方法、电子记录、数据上传等违规)、修复违规(首次修复尝试超期、修复超期、未按要求钻孔并注入密封剂修复、记录违规、延迟修复管理违规)、阀和连接件更换/改进违规(未按要求更换低排放阀及低排放填料、超期更换低排放阀及低排放填料、未按要求在计划检修期间更换低排放阀及低排放填料、未按要求及时更换/改进安装连接件、未按要求在检修期间更换/改进安装连接件)等 |
违规罚款 | 一般以每个设备每次违规计费或每个设备每个违规事件按天计费,如每个工艺装置检测方法违规5000~25000USD、记录违规250~37500USD、报告违规250~37500USD、每个设备每次未按要求更换低排放阀或低排放填料20000USD、设备识别错误250~5000USD/密封点、未标识泄漏设备250~5000USD/密封点、设备执行标准违规750~2000USD/密封点、校准不合规250USD/次、检测漏测100~2000USD/密封点、延迟上传数据库每天150USD/数据、检测电子数据记录违规每次100USD/密封点、未及时修复泄漏或根本未修每天100~3000USD/密封点、1200USD/个、阀或连接件延迟修复清单管理违规每天300USD/个…… |
表1 美国炼化企业LDAR相关CD及ELP的主要内容
项目 | 主要规定或要求 |
---|---|
检测频次 | 增加某些阀门、连接件、泵和搅拌器的检测频次,定期检测开口管线封闭设备;泵和搅拌器每月1次,阀和开口管线封闭设备每季度1次,连接件每年1次;如果联邦、州和地方性法规有更高的检测频次要求,则执行更高的检测频次;如果连续2年(或以上)无泄漏,阀和开口管线封闭设备可选择每年1次,连接件可选择每2年1次,一旦发现泄漏,接下来12个月每月1次 |
检测仪器 | 应配置电子数据记录仪,实时记录检测数据、检测时间、仪器和检测人员编号 |
泄漏认定 | 阀、连接件和开口管线封闭设备250μmol/mol、泵500μmol/mol、搅拌器1000μmol/mol、聚合物单体泵(或搅拌器)2000μmol/mol |
泄漏修复 | 泄漏浓度≥200μmol/mol进行修复尝试;应用钻孔并注入密封剂修复技术以减少延迟修复设备数量;修复泄漏或安装新的阀门和连接件时使用经过认证的低排放技术或填料;严格限制延迟修复设备数量 |
设备升级 | 泄漏浓度≥250μmol/mol的阀更换为低排放阀或低排放填料,泄漏浓度在100~250μmol/mol之间的阀填料也须按规定比例修复或更换为低排放规格;法兰等连接件泄漏≥250μmol/mol须修复或更换;3个连续检测周期中有2次检测≥250μmol/mol的连接件须更换 |
审核整改 | 每1~2年1次内审/外审,第1、3、5次应选外审,第2、4次可选外审或内审,审核内容主要包括LDAR记录、组件识别与建档、检测校准及现场操作等,审核确定LDAR存在缺陷或抽检泄漏率与报告泄漏率的比值≥3.0(且抽检泄漏率≥0.5%),应采取整改措施 |
违规细则 | 文件、计划或报告上报超期、检测违规(检测频次、检测方法、电子记录、数据上传等违规)、修复违规(首次修复尝试超期、修复超期、未按要求钻孔并注入密封剂修复、记录违规、延迟修复管理违规)、阀和连接件更换/改进违规(未按要求更换低排放阀及低排放填料、超期更换低排放阀及低排放填料、未按要求在计划检修期间更换低排放阀及低排放填料、未按要求及时更换/改进安装连接件、未按要求在检修期间更换/改进安装连接件)等 |
违规罚款 | 一般以每个设备每次违规计费或每个设备每个违规事件按天计费,如每个工艺装置检测方法违规5000~25000USD、记录违规250~37500USD、报告违规250~37500USD、每个设备每次未按要求更换低排放阀或低排放填料20000USD、设备识别错误250~5000USD/密封点、未标识泄漏设备250~5000USD/密封点、设备执行标准违规750~2000USD/密封点、校准不合规250USD/次、检测漏测100~2000USD/密封点、延迟上传数据库每天150USD/数据、检测电子数据记录违规每次100USD/密封点、未及时修复泄漏或根本未修每天100~3000USD/密封点、1200USD/个、阀或连接件延迟修复清单管理违规每天300USD/个…… |
项目 | CWP | AWP(OGI) |
---|---|---|
适用标准 | EPA方法21 | EPA AWP(未配套标准检测方法) |
检测仪器 | 便携式有机气体分析仪 | 红外气体相机 |
检测原理 | 火焰离子化检测(FID) | 被动式红外气体成像 |
检测能力 | 检测限0.3~1.0μmol/mol[ | 检测限约为1~16g/h[ |
检测速度 | 250~600个设备密封/(人·天)[ | 1500~2000个设备密封/(2人·天)[ |
技术特点 | 探头距密封点1~2cm检测,结果为泄漏浓度,检测灵敏,但速度较慢,在一定区域内将发现更多泄漏,适合定期全面检测泄漏 | 几米外扫描烟羽,结果为烟羽视频,检测速度快,但灵敏度不高,在一定时段内可能发现更多泄漏,适合高频次检测较大泄漏以及不可达密封泄漏检测 |
排放定量 | EPA相关方程[ | 泄漏/不泄漏排放因子[ |
检测操作 | 较为简单 | 操作技能要求较高,通常需约200h的专业培训和考核 |
仪器重量 | 约6kg | 2~3kg |
仪器价格 | 0.6~2.2万美元/台[ | 8~11万美元/台[ |
表2 CWP与AWP检测对比
项目 | CWP | AWP(OGI) |
---|---|---|
适用标准 | EPA方法21 | EPA AWP(未配套标准检测方法) |
检测仪器 | 便携式有机气体分析仪 | 红外气体相机 |
检测原理 | 火焰离子化检测(FID) | 被动式红外气体成像 |
检测能力 | 检测限0.3~1.0μmol/mol[ | 检测限约为1~16g/h[ |
检测速度 | 250~600个设备密封/(人·天)[ | 1500~2000个设备密封/(2人·天)[ |
技术特点 | 探头距密封点1~2cm检测,结果为泄漏浓度,检测灵敏,但速度较慢,在一定区域内将发现更多泄漏,适合定期全面检测泄漏 | 几米外扫描烟羽,结果为烟羽视频,检测速度快,但灵敏度不高,在一定时段内可能发现更多泄漏,适合高频次检测较大泄漏以及不可达密封泄漏检测 |
排放定量 | EPA相关方程[ | 泄漏/不泄漏排放因子[ |
检测操作 | 较为简单 | 操作技能要求较高,通常需约200h的专业培训和考核 |
仪器重量 | 约6kg | 2~3kg |
仪器价格 | 0.6~2.2万美元/台[ | 8~11万美元/台[ |
项目 | CWP | LDSN |
---|---|---|
减排原理 | 建立受控设备密封点电子档案,采用便携式仪器以一定频次检测密封点,发现泄漏,在规定时间内修复,实现VOCs减排 | 通过部署连续在线检测传感器网络,高时空分辨监测和溯源泄漏,及时/尽早发现并修复泄漏,缩短泄漏排放时间,实现VOCs减排 |
执行标准 | 美国HON等设备泄漏控制标准、美国EPA与石化企业谈判达成的CD | EPA AMEL,2023年1月美国 EPA批准首个基于传感器网络在线检测的AMEL |
技术规范 | 美国EPA方法21、EPA AWP (OGI) | 尚未规范化 |
检测方法 | 人工便携式 FID逐点检测每个受控设备密封,或人工OGI扫描受控设备密封 | 传感器网络在线检测一定空间范围内的设备密封泄漏,人工检测辅助定位密封点 |
管理平台 | 集成密封点建档、检测、维修、核算及质控全流程管理及手持端应用的信息化平台 | 集成场地及传感器空间部署、传感器健康与质控、检测数据可视化、移动端应用及泄漏扩散迁移、泄漏溯源、机器学习和深度学习等模型的智能化平台 |
发现泄漏 | 检测时发现泄漏,但不同类别设备密封检测周期为30~180d,发现泄漏时间估计为15~90d(泄漏发生平均按检测周期中点估算) | 传感器检测到区块泄漏,智能平台引导人工检测精确定位泄漏,发现泄漏的时间一般≤1~3d |
应用进展 | 美国1983—1999年常规LDAR,2000年至今强化LDAR | 2021年在美国两套炼油装置完成工业试验,2023年获美国EPA批准AMEL,可替代这两套装置的常规LDAR |
技术优点 | 建档、检测、平台等成套技术及标准规范成熟,能检测中小泄漏,直接定位泄漏源,检测数据可用于估算无组织排放清单 | 连续在线检测,智能高效,通过优化传感器选型、部署密度及位置、溯源模型及平台智能算法,可实现等效或优于传统LDAR的泄漏控制效果,能同步实现厂区VOCs及异味网格化在线监测,以及相关安全监控 |
技术局限 | 周期性检测发现泄漏不及时、检测效率低、劳动密集、人为因素影响大、检测人员潜在安全隐患等 | 仅能检测较大泄漏,不能直接定位泄漏源,传感器、空间部署、泄漏溯源、智能平台及技术规范尚在发展 |
表3 LDSN与CWP的技术对比
项目 | CWP | LDSN |
---|---|---|
减排原理 | 建立受控设备密封点电子档案,采用便携式仪器以一定频次检测密封点,发现泄漏,在规定时间内修复,实现VOCs减排 | 通过部署连续在线检测传感器网络,高时空分辨监测和溯源泄漏,及时/尽早发现并修复泄漏,缩短泄漏排放时间,实现VOCs减排 |
执行标准 | 美国HON等设备泄漏控制标准、美国EPA与石化企业谈判达成的CD | EPA AMEL,2023年1月美国 EPA批准首个基于传感器网络在线检测的AMEL |
技术规范 | 美国EPA方法21、EPA AWP (OGI) | 尚未规范化 |
检测方法 | 人工便携式 FID逐点检测每个受控设备密封,或人工OGI扫描受控设备密封 | 传感器网络在线检测一定空间范围内的设备密封泄漏,人工检测辅助定位密封点 |
管理平台 | 集成密封点建档、检测、维修、核算及质控全流程管理及手持端应用的信息化平台 | 集成场地及传感器空间部署、传感器健康与质控、检测数据可视化、移动端应用及泄漏扩散迁移、泄漏溯源、机器学习和深度学习等模型的智能化平台 |
发现泄漏 | 检测时发现泄漏,但不同类别设备密封检测周期为30~180d,发现泄漏时间估计为15~90d(泄漏发生平均按检测周期中点估算) | 传感器检测到区块泄漏,智能平台引导人工检测精确定位泄漏,发现泄漏的时间一般≤1~3d |
应用进展 | 美国1983—1999年常规LDAR,2000年至今强化LDAR | 2021年在美国两套炼油装置完成工业试验,2023年获美国EPA批准AMEL,可替代这两套装置的常规LDAR |
技术优点 | 建档、检测、平台等成套技术及标准规范成熟,能检测中小泄漏,直接定位泄漏源,检测数据可用于估算无组织排放清单 | 连续在线检测,智能高效,通过优化传感器选型、部署密度及位置、溯源模型及平台智能算法,可实现等效或优于传统LDAR的泄漏控制效果,能同步实现厂区VOCs及异味网格化在线监测,以及相关安全监控 |
技术局限 | 周期性检测发现泄漏不及时、检测效率低、劳动密集、人为因素影响大、检测人员潜在安全隐患等 | 仅能检测较大泄漏,不能直接定位泄漏源,传感器、空间部署、泄漏溯源、智能平台及技术规范尚在发展 |
1 | 刘炳江. 开展挥发性有机物治理攻坚 着力补齐大气污染治理短板——《2020 年挥发性有机物治理攻坚方案》解读[J]. 环境保护, 2020, 48(15): 9-14. |
LIU Bingjiang. Carrying out VOCs treatment to make up for the shortcomings of air pollution control: Interpretation of the 2020 VOCs governance strategy[J]. Environmental Protection, 2020, 48(15): 9-14. | |
2 | 李凌波, 宫超, 程梦婷, 等. 红外掩日遥感监测炼油厂非甲烷烷烃排放通量[J]. 中国环境科学, 2022, 42(7): 3046-3057. |
LI Lingbo, GONG Chao, CHENG Mengting, et al. Measurement of emission fluxes of total non-methane alkanes from refineries using solar occultation flux remote sensing technique[J]. China Environmental Science, 2022, 42(7): 3046-3057. | |
3 | 生态环境部. 环大气〔2021〕65号关于加快解决当前挥发性有机物治理突出问题的通知[EB/OL]. (2021-08-04)[2023-04-13]. . |
Ministry of Ecology and Environment of the People’s Republic of China. Huan Da Qi [2021]No. 65 Notice on accelerating the solution of the current outstanding problems in the control of volatile organic compounds[EB/OL]. (2021-08-04) [2023-04-13]. . | |
4 | BARTHE P, CHAUGNY M, ROUDIER S, et al. Best available techniques (BAT) reference document for the refining of mineral oil and gas[R/OL]. (2015) [2023.04.13]. . |
5 | 李凌波, 李龙, 程梦婷, 等. 石化企业挥发性有机物无组织排放监测技术进展[J]. 化工进展, 2020, 39(3): 1196-1208. |
LI Lingbo, LI Long, CHENG Mengting, et al. Current status and future developments in monitoring of fugitive VOC emissions from petroleum refining and petrochemical industry[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1196-1208. | |
6 | U.S.EPA Office of Enforcement and Compliance Assurance. EPA-305-D-07-001 Leak detection and repair-A best practices guide[R/OL]. (2007-10) [2023-04-13]. . |
7 | 40 CFR Part 63 National emission standards for hazardous air pollutants for source categories Subpart H National emission standards for organic hazardous air pollutants for equipment leaks [S/OL]. (2023-04) [2023-04-13]. . |
8 | U.S.EPA. Air Emission Measurement Center. Method 21-Determination of volatile organic compound leaks [S/OL]. (2023-04) [2023-04-13]. . |
9 | U.S.EPA Office of air quality planning and standards. EPA-453/R-95-017 Protocol for equipment leak emission estimates [R/OL]. (1995-11) [2023-04-13]. . |
10 | U.S.EPA. Alternative work practice to detect leaks from equipment [S]. Federal Register, 2008, 73(246): 78199-78219. |
11 | U.S.EPA. EPA issues final requirements for using optical gas imaging in leak detection (Appendix K)[EB/OL]. (2023-12)[2024-03-21]. |
12 | U.S.EPA Office of air quality planning and standards updates. MTG and MPG Highlights 2023 [EB/OL]. (2023-04) [2023-06-03]. |
13 | HUNSICKER S. Keeping fugitive emissions costs down with low-E valves[J]. Hydrocarbon Processing. August 2021. Special focus: Valves, pumps and turbomachinery. |
14 | DARRAT I. EPA Priority: Leak detection and repair (LDAR) a brief overview of the established U.S. leak detection and repair (LDAR) program[EB/OL]. (2014-11) [2023-04-13]. . |
15 | U.S.EPA. Notice of final for approval of alternative means of emission limitation[R]. Federal Register, 2023, 88(28): 8844-8860. |
16 | U.S.EPA. New source performance standards for the synthetic organic chemical manufacturing industry and national emission standards for hazardous air pollutants for the synthetic organic chemical manufacturing industry and group Ⅰ & Ⅱ polymers and resins industry (proposed rule)[EB/OL].(2023-04-25)[2023-06-06]. |
17 | DRAGO J. Enhanced leak detection and repair programs for the chemical processing industries[C]//ChemInnovations 2010 Conferencen & Expro. Houston: Chemical Engineering, 2010. |
18 | HEBERT M. Solving the LDAR problem: Trust but verify squared[C]//3rd Annual LDAR/BWON/Tanks/Flares Conference. Austin: 4C Marketplace, 2013. |
19 | PATTERSON C. Using the “electronic crumb trail” to assure compliance[C]//3rd Annual LDAR/BWON/Tanks/Flares Conference. Austin: 4C Marketplace, 2013. |
20 | LOUKERIS K. Leak detection and repair (LDAR): Past, present, future [C]//2nd Annual LDAR/BWON/Tanks/Flares Conference. Austin: 4C Marketplace, 2012. |
21 | US EPA Office of Enforcement and Compliance Assurance. EPA 300-N-99-014 Proper monitoring essential to reducing ‘fugitive emissions’ under leak detection and repair programs[R/OL]. (1999-10) [2023-04-13]. . |
22 | U.S.EPA. Dow chemical company consent degree [EB/OL]. (2011-11) [2023-04-13]. . |
23 | WILSON L, KLING S E. What it takes to implement an ELP: Successes, challenges, and lessons learned from BP Whiting’s ELP[C]//3rd Annual LDAR/BWON/Tanks/Flares Conference. Austin: 4C Marketplace, 2013. |
24 | HARRIS G B. Fugitive emissions from valves and pipe fittings (aka fugitive emissions and me)[EB/OL]. (2015-02) [2023-04-13]. . |
25 | DEVINE D. Successfully completing an enhanced leak detection & repair program[EB/OL]. (2018-10-30) [2023-04-13]. . |
26 | 40 CFR Part 60 Subpart VVa standards of performance for equipment leaks of VOC in the synthetic organic chemicals manufacturing industry for which construction, reconstruction, or modification commenced after November 7, 2006 § 60.484a equivalence of means of emission limitation [S/OL]. (2023-04) [2023-04-13]. . |
27 | PENG W, MASSNER D, LIN L-Y, et al. An automated sensor network system and innovative approach for VOC leak detection[EB/OL]. (2019-10) [2023-05-16]. . |
28 | The LDAR innovation CRADA team. EPA/600/R-20/422 Progress on LDAR innovation report on research under CRADA # 914-16[R/OL]. (2021-01-28) [2023-05-16]. . |
29 | U.S.EPA. Notice of request for approval of alternative means of emission limitation[R]. Federal Register, 2021, 86(195): 56934-56949. |
30 | CARDOSO-SALDANA F J. Tiered leak detection and repair programs at simulated oil and gas production facilities: Increasing emission reduction by targeting high-emitting sources[J]. Environ. Sci. Technol., 2023, 57: 7382-7390 |
31 | Eastern Research Group Inc. Technical support document—Optical gas imaging protocol (40 CFR Part 60, Appendix K) [EB/OL].(2021-08-02).[2023-06-06]. . |
32 | Teledyne FLIR LLC. How optical gas imaging benefits a low-carbon economy and corporate ESG reporting[EB/OL].(2021-02-15).[2023-06-06]. . |
33 | CONCAWE. Techniques for detecting and quantifying fugitive emissions—Results of comparative field studies[R/OL]. (2015-10) [2023-05-17]. . |
34 | ZENG Y, MORRIS J. Detection limits of optical gas imaging[EB/OL]. (2020-11) [2023-05-20]. . |
35 | TREFIAK T. LDAR case study comparison of conventional method 21 vs alternative work practice (Optical Gas Imaging) [EB/OL]. (2016-04) [2023-05-21]. . |
36 | CONCAWE. Results of a comparative pilot field test study of a first generation quantitative optical gas imaging (QOGI) system[EB/OL]. (2020-10) [2023-05-17]. . |
37 | WILWERDING J. LDAR program cost-effectiveness: Past, present, and future[C]//InfraMation 2011 Infrared Camera Users Conference. Las Vegas: FLIR, 2011. |
38 | European Committee for Standardization (CEN). EN 17628:2022 Fugitive and diffuse emissions of common concern to industry sectors-standard method to determine diffuse emissions of volatile organic compounds into the atmosphere [S]. April 2022. |
39 | SAUGER E, FILY S, LEJEUNE H, et al. Investigating the use of infrared cameras to detect VOCs[J]. Sealing Technology, 2013(4): 8-12. |
40 | ZIMMERLE D, VAUGHN T, BELL C, et al. Detection limits of optical gas imaging for natural gas leak detection in realistic controlled conditions[J]. Environ. Sci. Technol., 2020, 54:11506-11514. |
41 | ZENG Y, MORRIS J. Detection limits of optical gas imagers as a function of temperature differential and distance[J]. Journal of the Air & Waste Management Association, 2019, 69(3): 351-361. |
42 | KANG R, LIATSIS P, KYRITSIS D C. Emission quantification via passive infrared optical gas imaging: A review[J]. Energies, 2022, 15(9): 3304. |
43 | CONCAWE. An evaluation of an optical gas imaging system for the quantification of fugitive hydrocarbon emissions[R/OL]. (2017-01) [2023-05-17]. . |
44 | PACSI A P, FERRARA T, SCHWAN K, et al. Equipment leak detection and quantification at 67 oil and gas sites in the Western United States[J]. Elem. Sci. Anth., 2019, 7: 29. |
45 | HAGEN N. Survey of autonomous gas leak detection and quantification with snapshot infrared spectral imaging[J]. Journal of Optics, 2020, 22(10): 103001. |
46 | REESE J D, MCGREGOR D R. Optical gas imaging leak/no-leak emissions factor development using site-specific method 21 leak detection and repair data[C]//2019 Air Quality Measurement Methods and Technology Conference Proceedings. Pittsburgh: The Air & Waste Management Association, 2019: ME09 |
47 | LEV-ON M, EPPERSON D, SIEGELL J, et al. Derivation of new emission factors for quantification of mass emissions when using optical gas imaging for detecting leaks[J]. Journal of the Air & Waste Management Association, 2007, 57: 1061-1070. |
48 | LDAR rule modernization team. Leak detection and repair rule modernization-proactive approach for pollution prevention and minimization[EB/OL]. (2017-11) [2023-04-13]. . |
49 | U.S.EPA. 40 CFR Part 60 Appendix K(proposal). Determination of volatile organic compound and greenhouse gas leaks using optical gas imaging [S/OL]. (2021-11) [2023-04-13]. . |
50 | The American Petroleum Institute (API). Attachment A API comments on prepublication draft Appendix K-protocol for using optical gas imaging to detect volatile organic compound and greenhouse gas leaks [EB/OL]. (2022-01) [2023-04-13]. . |
51 | METCALF J. Appendix K: Restricting the benefits of optical gas imaging[EB/OL]. (2022-04) [2023-04-13]. |
52 | ABDEL-MOATI H M, MORRIS J M. IntelliRed™ system for autonomous detection of hydrocarbon [EB/OL]. (2016-05) [2023-05-17]. . |
53 | SOTOODEH H. 2-Fugitive emissions from piping and valves[M]//Prevention of Valve Fugitive Emissions in the Oil and Gas Industry. Cambridge: Gulf Professional Publishing, 2021:37-65. |
54 | SOTOODEH H. 3-Valve sealing and packing[M]//Prevention of Valve Fugitive Emissions in the Oil and Gas Industry. Cambridge: Gulf Professional Publishing, 2021: 67-91. |
55 | SOTOODEH H. 4-Valve fugitive emission test standards, specifications, and laws[M]//Prevention of Valve Fugitive Emissions in the Oil and Gas Industry. Cambridge: Gulf Professional Publishing, 2021: 93-133. |
56 | 胡庭逢, 金大仁. 以低泄漏型设备元件强化LDAR军用于石化业VOCs减排成效探讨[J]. 工业安全卫生月刊, 2021, (3): 19-36. |
HU Tingfeng, JIN Daren. LDAR enhanced using low-leakage equipment components and the effectiveness of VOCs emission reduction in petrochemical industry[J]. Industrial Health and Safety Monthly, 2021, (3): 19-36. | |
57 | RANUM D. OGI through the years 2007—2020. [EB/OL]. (2020-11) [2023-04-13]. . |
58 | VEIGA J C. Industrial gaskets[EB/OL]. (2020-06) [2023-05-20]. . |
59 | GAI H L, BEATH J, FANG J, et al. Alternative emission monitoring technologies and industrial internet of things-based process monitoring technologies for achieving operational excellence[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 23: 31-37. |
60 | CHRAIM F, BUGRA EROL Y, PISTER K. Wireless gas leak detection and localization[J]. IEEE Transactions on Industrial Informatics, 2016, 12(2): 768-779. |
61 | MANES G, COLLODI G, FUSCO R, et al. A wireless sensor network for precise volatile organic compound monitoring[J]. International Journal of Distributed Sensor Networks, 2012, 8(4): 820716. |
62 | THOMA E D, CHERNYSHOV A S, PENG W F, et al. Systems and methods for placing networked sensors within a facility for fugitive emissions monitoring: US20220205967A1[P]. 2022-06-30. |
63 | Koch Industries Inc. Paradigm shift: Industry veterans harness cutting-edge technology to identify leaks[EB/OL]. (2020-10)[2024-03-03]. . |
64 | PENG W F, LIN L Y, NEDOSSEKINA A. Computer systems and methods for estimating changes in fugitive emissions: US20230003705A1[P]. 2023-01-05. |
65 | SPINELLE L, GERBOLES M, KOK G, et al. Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds[J]. Sensors, 2017, 17: 1520. |
66 | EPPING R, KOCH M. On-site detection of volatile organic compounds (VOCs) [J]. Molecules, 2023, 28: 1598. |
67 | PATHAK A K, VIPHAVAKIT C. A review on all-optical fiber-based VOC sensors: Heading towards the development of promising technology[J]. Sensors and Actuators A: Physical, 2022, 338: 113455. |
68 | WANG L, CHENG Y, GOPALAN S, et al. Review and perspective: Gas separation and discrimination technologies for current gas sensors in environmental applications[J]. ACS Sensors, 2023, 8: 1373-1390. |
69 | KHATIB M, HAICK H. Sensors for volatile organic compounds[J]. ACS Nano, 2022, 16(5): 7080-7115. |
70 | KUMAR Y R, DESHMUKH K, KOVARIK T, et al. A systematic review on 2D materials for volatile organic compound sensing[J]. Coordination Chemistry Reviews, 2022, 461: 214502. |
71 | DI GILIO A, PALMISANI J, PETRACCONE S, et al. A sensing network involving citizens for high spatio-temporal resolution monitoring of fugitive emissions from a petroleum pre-treatment plant[J]. Science of the Total Environment, 2021, 791:148135. |
72 | KLISE K A, NICHOLSON B L, LAIRD C D, et al. Sensor placement optimization software applied to site-scale methane-emissions monitoring[J]. Journal of Environmental Engineering, 2020, 146(7): 04020054. |
73 | WANG S, MALVAR S, NUNES L O, et al. Unsupervised machine learning framework for sensor placement optimization: Analyzing methane leaks [EB/OL]. (2021-12) [2023-06-04]. . |
74 | 王东方. 工业园区典型VOCs污染过程精细化溯源[J]. 中国环境科学, 2022, 42(2): 585-592. |
WANG Dongfang. Fine source tracing of typical VOCs pollution episodes around industrial park[J]. China Environmental Science, 2022, 42(2): 585-592. | |
75 | VIANNA S S V. The set covering problem applied to optimisation of gas detectors in chemical process plants[J]. Computers & Chemical Engineering, 2019, 121:388-395. |
76 | 周成龙, 陈涛. 基于小波熵的化工园区流场不稳定性[J]. 清华大学学报(自然科学版), 2021,61(2):135-143. |
ZHOU Chenglong, CHEN Tao. Instability of flow field in chemical industry park based on wavelet entropy[J]. J. Tsinghua. Univ. (Sci. & Technol.), 2021, 61(2): 135-143. | |
77 | KIM H, PARK M, KIM C W, et al. Source localization for hazardous material release in an outdoor chemical plant via a combination of LSTM-RNN and CFD simulation[J]. Computers & Chemical Engineering, 2019,125:476-489. |
78 | TRAVIS B, DUBEY M, SAUER J. Neural networks to locate and quantify fugitive natural gas leaks for a MIR detection system[J]. Atmospheric Environment X, 2020, 8: 100092. |
79 | KWAK D, JEONG J, SHIN Y, et al. Sensor placement optimization for fenceline monitoring of toxic gases considering spatiotemporal risk of the plant-urban interface[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 130: 103858. |
80 | ZHOU C C, ZHANG Bo, MU C, et al. Multi-objective optimization considering cost-benefit ratio for the placement of gas detectors in oil refinery installations[J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103956. |
81 | SUN L, CHEN X, ZHANG B, et al. Optimization of gas detector placement considering scenario probability and detector reliability in oil refinery installation[J]. Journal of Loss Prevention in the Process Industries, 2020, 65: 104131. |
82 | 40 CFR Part 60 Standards of Performance for New Stationary Sources Subpart OOOOa. Standards of performance for crude oil and natural gas facilities for which construction, modification or reconstruction commenced after September 18, 2015 [S/OL]. (2023-04) [2023-04-13]. . |
83 | FOX T A, RAVIKUMAR A P, HUGENHOLTZ C H, et al. A methane emissions reduction equivalence framework for alternative leak detection and repair programs[J]. Elem. Sci. Anth., 2019, 7: 30. |
84 | FOX T A, BARCHYN T E, RISK D, et al. A review of close-range and screening technologies for mitigating fugitive methane emissions in upstream oil and gas[J]. Environ. Res. Lett., 2019,14: 053002. |
85 | RAVIKUMAR, AP, SREEDHARA S, WANG Jet al. Single-blind inter-comparison of methane detection technologies-results from the Stanford/EDF mobile monitoring challenge[J]. Elem. Sci. Anth., 2019, 7: 37. |
86 | BELL C S, VAUGHN T, ZIMMERLE D. Evaluation of next generation emission measurement technologies under repeatable test protocols[J]. Elem. Sci. Anth., 2020, 8: 32. |
87 | SCHWIETZKE S, HARRISON M, LAUDERDALE T, et al. Aerially guided leak detection and repair: A pilot field study for evaluating the potential of methane emission detection and cost-effectiveness[J]. Journal of the Air & Waste Management Association, 2019, 69(1): 71-88. |
88 | ASADZADEH S, DE OLIVEIRA W J, DE SOUZA FILHO C R. UAV-based remote sensing for the petroleum industry and environmental monitoring: State-of-the-art and perspectives[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109633. |
89 | KLEIN L J, RAMACHANDRAN M, VAN KESSEL T, et al. Wireless sensor networks for fugitive methane emissions monitoring in oil and gas industry[EB/OL]. (2018-07) [2023-05-23]. . |
90 | ARMITAGE D L. Apparatus and methods for reducing fugitive gas emissions at oil facilities: US11215593B2[P]. 2022-01-04. |
91 | LIU M J, IZQUIERDO K N, PRINCE D S. Intelligent monitoring of fugitive emissions-comparison of continuous monitoring with intelligent analytics to other emissions monitoring technologies[J]. The APPEA Journal, 2022, 62(1): 56-65. |
92 | BENKO T, ENERGY E, MACGREGOR A, et al. SPE-209973-MS continuous methane measurement: Equivalency evaluation of regulator-approved alternative leak detection and repair program in Alberta, Canada. [EB/OL]. (2022-10) [2023-05-23]. . |
93 | PIERCE G. Implementation of a new regulation for air monitoring around oil and gas development in Colorado[EB/OL]. (2021-05) [2023-04-13]. . |
94 | FOX T A, HUGENHOLTZ C H, BARCHYN T E, et al. Can new mobile technologies enable fugitive methane reductions from the oil and gas industry[J]. Environmental Research Letters, 2021, 16: 064077. |
95 | SEYMOUR S P, XIE D L, LI H Z, et al. Sources and reliability of reported methane reductions from the oil and gas industry in Alberta, Canada[J]. Elem. Sci. Anth., 2022, 10(1): 00073. |
96 | BELL C, RUTHERFORD J, BRANDT A, et al. Single-blind determination of methane detection limits and quantification accuracy using aircraft-based LiDAR[J]. Elem. Sci. Anth., 2022, 10(1): 00080. |
97 | EXXONMOBIL. Tracking methane from above [EB/OL]. (2021-07-29) [2023-04-13]. . |
98 | CAHIR B. Methane: Developing new technologies for regulatory compliance [EB/OL]. (2021-04-08) [2023-04-13]. . |
99 | BOZEMAN M T. Bridger Photonics’ LiDAR technology selected by ExxonMobil for EPA methane detection[EB/OL]. (2021-04-08) [2023-04-13].. |
100 | EMERSON. The right technologies for gas leak detection[EB/OL]. (2019-01) [2023-05-15]. . |
101 | SIZELAND E. Ultrasonic devices improve gas leak detection in challenging environments[EB/OL]. (2014-10) [2023-05-15]. . |
102 | EMERSON. Ultrasonic gas leak detection- your first line of defense[EB/OL]. (2019-10) [2023-05-15]. . |
103 | HONEYWELL. Ultrasonic gas leak detection a critical component of a layered flammable gas detection strategy[EB/OL]. [2023-05-15]. . |
104 | GUTIÉRREZ-GONZÁLEZ A, PERRODIN F. Acoustic leak imaging (ALI) technology on compressor stations and pressure reducing stations [EB/OL]. (2021-03) [2023-05-15]. . |
105 | FLUKE. Innovative use of acoustic imaging in petrochemical turnaround[EB/OL]. (2022-05) [2023-05-15]. . |
106 | WICTOR J. Ultrasound cameras: A versatile gas leak detection method for the oil & gas industry[EB/OL]. (2022-11) [2023-05-20]. . |
[1] | 钱志广, 王世学, 朱禹, 岳利可. 基于平板热管的高温质子交换膜燃料电池堆启动特性[J]. 化工进展, 2024, 43(4): 1754-1763. |
[2] | 王红妍, 马子然, 李歌, 马静, 赵春林, 周佳丽, 王磊, 彭胜攀. 燃煤耦合可再生燃料烟气多污染物协同催化脱除研究进展[J]. 化工进展, 2024, 43(4): 1783-1795. |
[3] | 侯立凯, 范旭, 包福兵. 微小液体流量校准技术[J]. 化工进展, 2024, 43(2): 579-585. |
[4] | 周骛, 龚文超, 徐日辛. 离焦图像法颗粒多参数在线测量技术[J]. 化工进展, 2024, 43(2): 586-592. |
[5] | 张世玮, 李玉宇, 孟磊, 宁翔, 苏明旭. 基于超声的高浓度浆液两相流粒径在线测量[J]. 化工进展, 2024, 43(2): 593-601. |
[6] | 史雪薇, 谭超, 董峰. 基于环形电导传感器的气液两相流流型识别与过程参数测量[J]. 化工进展, 2024, 43(2): 637-648. |
[7] | 边汉青, 张兴凯, 廖锐全, 王栋, 李锐, 罗晓矗, 侯耀东, 白晓弘, 甘庆明. 管内相分隔状态下湿气两相流双参数测量方法[J]. 化工进展, 2024, 43(2): 722-733. |
[8] | 陈俊先, 刘震, 焦文磊, 张天钰, 吕家孟, 姬忠礼. 基于微波谐振原理的天然气管道内液滴浓度测量方法[J]. 化工进展, 2024, 43(2): 734-742. |
[9] | 盛稳, 余波, 郭晗, 周怀春. 基于横向剪切干涉系统的液膜厚度分布检测[J]. 化工进展, 2024, 43(2): 743-751. |
[10] | 王超, 曹辉, 马国纪, 叶佳敏, 纪学玲. 基于EMD的螺旋输送机叶片运动速度静电检测方法[J]. 化工进展, 2024, 43(2): 752-759. |
[11] | 王一笑, 张丹, 涂茂萍, 周文博, 赵冰超. 双膜量子点表面热流密度场测量技术[J]. 化工进展, 2024, 43(2): 872-881. |
[12] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[13] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
[14] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[15] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |