化工进展 ›› 2023, Vol. 42 ›› Issue (11): 5920-5928.DOI: 10.16085/j.issn.1000-6613.2022-2313
• 资源与环境化工 • 上一篇
赵东升1(), 宋基瑜1, 林治全2, 刘贵彩2(), 吴怡波1, 黄立1
收稿日期:
2022-12-13
修回日期:
2023-02-13
出版日期:
2023-11-20
发布日期:
2023-12-15
通讯作者:
刘贵彩
作者简介:
赵东升(1984—),男,博士,副教授,研究方向为膜分离技术。E-mail:zds123123@yeah.net。
基金资助:
ZHAO Dongsheng1(), SONG Jiyu1, LIN Zhiquan2, LIU Guicai2(), WU Yibo1, HUANG Li1
Received:
2022-12-13
Revised:
2023-02-13
Online:
2023-11-20
Published:
2023-12-15
Contact:
LIU Guicai
摘要:
硅结垢会导致纳滤/反渗透(NF/RO)膜渗透通量不可逆下降,严重限制膜系统的产水率,被广泛认为是水处理过程的难题。本文首先介绍了NF/RO膜硅垢的2种类型,即无机垢和无机-有机复合垢;然后重点综述了进水水质、膜表面化学性质和拓扑结构对膜表面硅结垢的影响,以及进水预处理、阻垢剂添加、膜表面化学改性和形貌调控的硅结垢控制策略;最后总结了目前NF/RO膜表面硅垢控制存在的问题及未来的研究方向,主要包括采用表面性质可控的模型基底进行硅结垢行为研究,深入探索膜表面化学性质与硅结垢潜力之间的关系,在分子水平上深入研究高分子阻垢剂的延迟和抑制机制,研制同步抑制硅结垢和有机污染的新型膜材料,以及建立不同进水水质条件下膜表面性质与硅结垢相关联的综合数据库等,对开发高效硅垢控制策略具有重要指导意义。
中图分类号:
赵东升, 宋基瑜, 林治全, 刘贵彩, 吴怡波, 黄立. 纳滤/反渗透膜硅垢形成影响因素及控制策略研究进展[J]. 化工进展, 2023, 42(11): 5920-5928.
ZHAO Dongsheng, SONG Jiyu, LIN Zhiquan, LIU Guicai, WU Yibo, HUANG Li. Research progress on influencing factors and control strategies of silica scale formation in nanofiltration/reverse osmosis membranes[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5920-5928.
1 | 王志伟, 戴若彬, 张星冉, 等. 膜法污水处理技术研究应用动态与未来可持续发展思考[J]. 土木与环境工程学报(中英文), 2022, 44(3): 86-103. |
WANG Zhiwei, DAI Ruobin, ZHANG Xingran, et al. Recent advances and overview on sustainable development of membrane-based wastewater treatment technology[J]. Journal of Civil and Environmental Engineering, 2022, 44(3): 86-103. | |
2 | ZHAO Yang, GU Yuna, LIU Bin, et al. Pulsed hydraulic-pressure-responsive self-cleaning membrane[J]. Nature, 2022, 608(7921): 69-73. |
3 | 王志伟. 膜法污水处理技术的绿色低碳化发展思考[J]. 给水排水, 2022, 58(7): 1-10. |
WANG Zhiwei. Thoughts on the green and low-carbon development of membrane-based wastewater treatment technology[J]. Water & Wastewater Engineering, 2022, 58(7): 1-10. | |
4 | THOMPSON John, RAHARDIANTO Anditya, KIM Soomin, et al. Real-time direct detection of silica scaling on RO membranes[J]. Journal of Membrane Science, 2017, 528: 346-358. |
5 | MATIN Asif, RAHMAN Faizur, SHAFI Hafiz Zahid, et al. Scaling of reverse osmosis membranes used in water desalination: Phenomena, impact, and control; future directions[J]. Desalination, 2019, 455: 135-157. |
6 | MI Baoxia, ELIMELECH Menachem. Silica scaling and scaling reversibility in forward osmosis[J]. Desalination, 2013, 312: 75-81. |
7 | SAHACHAIYUNTA P, KOO T, SHEIKHOLESLAMI R. Effect of several inorganic species on silica fouling in RO membranes[J]. Desalination, 2002, 144(1/2/3): 373-378. |
8 | QI Yarong, TONG Tiezheng, LIU Xitong. Mechanisms of silica scale formation on organic macromolecule-coated surfaces[J]. ACS ES&T Water, 2021, 1(8): 1826-1836. |
9 | WU Zhihua, CHEN Hongbing, DONG Yaming, et al. Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles[J]. Journal of Colloid and Interface Science, 2008, 328(1): 10-14. |
10 | LIU Guangming, CRAIG Vincent S J. Improved cleaning of hydrophilic protein-coated surfaces using the combination of nanobubbles and SDS[J]. ACS Applied Materials & Interfaces, 2009, 1(2): 481-487. |
11 | Walter DEN, WANG Chia-Jung. Removal of silica from brackish water by electrocoagulation pretreatment to prevent fouling of reverse osmosis membranes[J]. Separation and Purification Technology, 2008, 59(3): 318-325. |
12 | LU Kaige, LI Mengya, HUANG Haiou. Silica scaling of reverse osmosis membranes preconditioned by natural organic matter[J]. Science of the Total Environment, 2020, 746: 141178. |
13 | ALAMMAR Abdulaziz, PARK Sang-Hee, WILLIAMS Craig J, et al. Oil-in-water separation with graphene-based nanocomposite membranes for produced water treatment[J]. Journal of Membrane Science, 2020, 603: 118007. |
14 | DEMADIS K D. Water treatment’s ‘Gordian Knot’[J]. Chemical Processing, 2003, 66(5): 29-34. |
15 | BUSH John A, VANNESTE Johan, GUSTAFSON Emily M, et al. Prevention and management of silica scaling in membrane distillation using pH adjustment[J]. Journal of Membrane Science, 2018, 554: 366-377. |
16 | SALVADOR COB S, BEAUPIN C, HOFS B, et al. Silica and silicate precipitation as limiting factors in high-recovery reverse osmosis operations[J]. Journal of Membrane Science, 2012, 423/424: 1-10. |
17 | PEÑA N, GALLEGO S, DEL VIGO F, et al. Evaluating impact of fouling on reverse osmosis membranes performance[J]. Desalination and Water Treatment, 2013, 51(4/5/6): 958-968. |
18 | KIMURA Katsuki, OKAZAKI Saaya, OHASHI Takeya, et al. Importance of the co-presence of silica and organic matter in membrane fouling for RO filtering MBR effluent[J]. Journal of Membrane Science, 2016, 501: 60-67. |
19 | QUAY Amanda N, TONG Tiezheng, HASHMI Sara M, et al. Combined organic fouling and inorganic scaling in reverse osmosis: Role of protein-silica interactions[J]. Environmental Science & Technology, 2018, 52(16): 9145-9153. |
20 | ABADA Bilal, SAFARIK Jana, ISHIDA Kenneth P, et al. Surface characterization of end-of-life reverse osmosis membranes from a full-scale advanced water reuse facility: Combined role of bioorganic materials and silicon on chemically irreversible fouling[J]. Journal of Membrane Science, 2022, 653: 120511. |
21 | LI Danyang, LIN Weichen, SHAO Ruipeng, et al. Interaction between humic acid and silica in reverse osmosis membrane fouling process: A spectroscopic and molecular dynamics insight[J]. Water Research, 2021, 206: 117773. |
22 | WANG Shu, HUANG Xia, ELIMELECH Menachem. Complexation between dissolved silica and alginate molecules: Implications for reverse osmosis membrane fouling[J]. Journal of Membrane Science, 2020, 605: 118109. |
23 | MELIÁN-MARTEL N, SADHWANI ALONSO J Jaime, RUIZ-GARCÍA A. Combined silica and sodium alginate fouling of spiral-wound reverse osmosis membranes for seawater desalination[J]. Desalination, 2018, 439: 25-30. |
24 | HIGGIN Roslyn, HOWE Kerry J, MAYER Thomas M. Synergistic behavior between silica and alginate: Novel approach for removing silica scale from RO membranes[J]. Desalination, 2010, 250(1): 76-81. |
25 | TONG Tiezheng, WALLACE Adam F, ZHAO Song, et al. Mineral scaling in membrane desalination: mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes[J]. Journal of Membrane Science, 2019, 579: 52-69. |
26 | MAKRIDES Alkis C, TURNER Maryjane, SLAUGHTER John. Condensation of silica from supersaturated silicic acid solutions[J]. Journal of Colloid and Interface Science, 1980, 73(2): 345-367. |
27 | BRAUN Gerd, HATER Wolfgang, KOLK Christian zum, et al. Investigations of silica scaling on reverse osmosis membranes[J]. Desalination, 2010, 250(3): 982-984. |
28 | ROLF Julianne, CAO Tianchi, HUANG Xiaochuan, et al. Inorganic scaling in membrane desalination: Models, mechanisms, and characterization methods[J]. Environmental Science & Technology, 2022, 56(12): 7484-7511. |
29 | TONG Tiezheng, ZHAO Song, Chanhee BOO, et al. Relating silica scaling in reverse osmosis to membrane surface properties[J]. Environmental Science & Technology, 2017, 51(8): 4396-4406. |
30 | LU Kaige, HUANG Haiou. Dependence of initial silica scaling on the surface physicochemical properties of reverse osmosis membranes during bench-scale brackish water desalination[J]. Water Research, 2019, 150: 358-367. |
31 | RATHINAM Karthik, ABRAHAM Shiju, OREN Yoram, et al. Surface-induced silica scaling during brackish water desalination: The role of surface charge and specific chemical groups[J]. Environmental Science & Technology, 2019, 53(9): 5202-5211. |
32 | XIE Ming, GRAY Stephen R. Silica scaling in forward osmosis: from solution to membrane interface[J]. Water Research, 2017, 108: 232-239. |
33 | WALLACE Adam F, DEYOREO James J, DOVE Patricia M. Kinetics of silica nucleation on carboxyl- and amine-terminated surfaces: Insights for biomineralization[J]. Journal of the American Chemical Society, 2009, 131(14): 5244-5250. |
34 | SHANG Chuning, PRANANTYO Dicky, ZHANG Sui. Understanding the roughness-fouling relationship in reverse osmosis: Mechanism and implications[J]. Environmental Science & Technology, 2020, 54(8): 5288-5296. |
35 | LIN Nancy H, COHEN Yoram. QCM study of mineral surface crystallization on aromatic polyamide membrane surfaces[J]. Journal of Membrane Science, 2011, 379(1/2): 426-433. |
36 | YAQUB Muhammad, NGUYEN Mai Ngoc, LEE Wontae. Treating reverse osmosis concentrate to address scaling and fouling problems in zero-liquid discharge systems: A scientometric review of global trends[J]. Science of the Total Environment, 2022, 844: 157081. |
37 | SUBRAMANI Arun, JACANGELO Joseph G. Treatment technologies for reverse osmosis concentrate volume minimization: A review[J]. Separation and Purification Technology, 2014, 122: 472-489. |
38 | SALVADOR COB S, HOFS B, MAFFEZZONI C, et al. Silica removal to prevent silica scaling in reverse osmosis membranes[J]. Desalination, 2014, 344: 137-143. |
39 | GUAN Yanfang, MARIANA Marcos-Hernández, LU Xinglin, et al. Silica removal using magnetic iron-aluminum hybrid nanomaterials: Measurements, adsorption mechanisms, and implications for silica scaling in reverse osmosis[J]. Environmental Science & Technology, 2019, 53(22): 13302-13311. |
40 | IKEHATA Keisuke, ZHAO Yuanyuan, KULKARNI Harshad V, et al. Water recovery from advanced water purification facility reverse osmosis concentrate by photobiological treatment followed by secondary reverse osmosis[J]. Environmental Science & Technology, 2018, 52(15): 8588-8595. |
41 | IKEHATA Keisuke, ZHAO Yuanyuan, MALEKY Nima, et al. Aqueous silica removal from agricultural drainage water and reverse osmosis concentrate by brackish water diatoms in semi-batch photobioreactors[J]. Journal of Applied Phycology, 2017, 29(1): 223-233. |
42 | KULKARNI Harshad V, ZHAO Yuanyuan, IKEHATA Keisuke. Factors influencing photobiological treatment process to remove reactive silica from brackish groundwater reverse osmosis concentrate[J]. Desalination, 2019, 452: 114-122. |
43 | ZHANG Xin, LU Mengjia, IDRUS Mohd Amzar Mohamed, et al. Performance of precipitation and electrocoagulation as pretreatment of silica removal in brackish water and seawater[J]. Process Safety and Environmental Protection, 2019, 126: 18-24. |
44 | PEYDAYESH Mohammad, MOHAMMADI Toraj, BAKHTIARI Omid. Water desalination via novel positively charged hybrid nanofiltration membranes filled with hyperbranched polyethyleneimine modified MWCNT[J]. Journal of Industrial and Engineering Chemistry, 2019, 69: 127-140. |
45 | SUBRAMANI Arun, CRYER Edwin, LIU Li, et al. Impact of intermediate concentrate softening on feed water recovery of reverse osmosis process during treatment of mining contaminated groundwater[J]. Separation and Purification Technology, 2012, 88: 138-145. |
46 | Ben SIK ALI M, HAMROUNI B, BOUGUECHA S, et al. Silica removal using ion-exchange resins[J]. Desalination, 2004, 167: 273-279. |
47 | GABELICH Christopher J, WILLIAMS Mark D, RAHARDIANTO Anditya, et al. High-recovery reverse osmosis desalination using intermediate chemical demineralization[J]. Journal of Membrane Science, 2007, 301(1/2): 131-141. |
48 | ZHANG Bingru, CHEN Yuning, LI Fengting. Inhibitory effects of poly(adipic acid/amine-terminated polyether D230/diethylenetriamine) on colloidal silica formation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385(1/2/3): 11-19. |
49 | GOH P S, LAU W J, OTHMAN M H D, et al. Membrane fouling in desalination and its mitigation strategies[J]. Desalination, 2018, 425: 130-155. |
50 | Gökhan TOPÇU, Aslı ÇELIK, BABA Alper, et al. Design of polymeric antiscalants based on functional vinyl monomers for (Fe, Mg) silicates[J]. Energy & Fuels, 2017, 31(8): 8489-8496. |
51 | NEOFOTISTOU Eleftheria, DEMADIS Konstantinos D. Use of antiscalants for mitigation of silica (SiO2) fouling and deposition: Fundamentals and applications in desalination systems[J]. Desalination, 2004, 167: 257-272. |
52 | NEOFOTISTOU Eleftheria, DEMADIS Konstantinos D. Silica scale inhibition by polyaminoamide STARBURST® dendrimers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 242(1/2/3): 213-216. |
53 | ZHANG Bingru, SUN Peidi, CHEN Fang, et al. Synergistic inhibition effect of polyaminoamide dendrimers and polyepoxysuccinic acid on silica polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 410: 159-169. |
54 | TAN Mingyue, FANG Li, ZHANG Bingru, et al. Synergistic inhibition effect and mechanism of polycation and polyanion on colloidal silica[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125701. |
55 | DEMADIS Konstantinos D, STATHOULOPOULOU Aggeliki. Solubility enhancement of silicate with polyamine/polyammonium cationic macromolecules: Relevance to silica-laden process waters[J]. Industrial & Engineering Chemistry Research, 2006, 45(12): 4436-4440. |
56 | KETSETZI Antonia, STATHOULOPOULOU Aggeliki, DEMADIS Konstantinos D. Being “green” in chemical water treatment technologies: Issues, challenges and developments[J]. Desalination, 2008, 223(1/2/3): 487-493. |
57 | Vu H DAO, CAMERON Neil R, SAITO Kei. Synthesis, properties and performance of organic polymers employed in flocculation applications[J]. Polymer Chemistry, 2016, 7(1): 11-25. |
58 | YANG Ran, LI Haijiang, HUANG Mu, et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research, 2016, 95: 59-89. |
59 | KEMPTER Andreas, GAEDT Torben, BOYKO Volodymyr, et al. New insights into silica scaling on RO-membranes[J]. Desalination and Water Treatment, 2013, 51(4/5/6): 899-907. |
60 | MELINA Preari, KATRIN Spinde, Lazic JOËLLE, et al. Bioinspired insights into silicic acid stabilization mechanisms: The dominant role of polyethylene glycol-induced hydrogen bonding[J]. Journal of the American Chemical Society, 2014, 136(11): 4236-4244. |
61 | SWEITY Amer, OREN Yoram, RONEN Zeev, et al. The influence of antiscalants on biofouling of RO membranes in seawater desalination[J]. Water Research, 2013, 47(10): 3389-3398. |
62 | SWEITY Amer, ZERE Tesfalem Rezene, DAVID Inbal, et al. Side effects of antiscalants on biofouling of reverse osmosis membranes in brackish water desalination[J]. Journal of Membrane Science, 2015, 481: 172-187. |
63 | MANKOL Vladimir, HAO Zhan, ZHAO Song, et al. Sulfonated reverse osmosis membrane fabricated with comonomer having excellent scaling and fouling resistance[J]. Industrial & Engineering Chemistry Research, 2021, 60(7): 3095-3104. |
64 | HAO Zhan, ZHAO Song, LI Qinghua, et al. Reverse osmosis membranes with sulfonate and phosphate groups having excellent anti-scaling and anti-fouling properties[J]. Desalination, 2021, 509: 115076. |
65 | QI Yunlong, TONG Tiezheng, ZHAO Song, et al. Reverse osmosis membrane with simultaneous fouling- and scaling-resistance based on multilayered metal-phytic acid assembly[J]. Journal of Membrane Science, 2020, 601: 117888. |
66 | GUAN Yanfang, Chanhee BOO, LU Xinglin, et al. Surface functionalization of reverse osmosis membranes with sulfonic groups for simultaneous mitigation of silica scaling and organic fouling[J]. Water Research, 2020, 185: 116203. |
67 | WANG Shu, MU Changjun, XIAO Kang, et al. Surface charge regulation of reverse osmosis membrane for anti-silica and organic fouling[J]. Science of the Total Environment, 2020, 715: 137013. |
68 | LIN Yili. In situ concentration-polarization-enhanced radical graft polymerization of NF270 for mitigating silica fouling and improving pharmaceutical and personal care product rejection[J]. Journal of Membrane Science, 2018, 552: 387-395. |
69 | TAN Zhe, CHEN Shengfu, PENG Xinsheng, et al. Polyamide membranes with nanoscale Turing structures for water purification[J]. Science, 2018, 360(6388): 518-521. |
70 | GU Joung-Eun, LEE Seunghye, STAFFORD Christopher M, et al. Molecular layer-by-layer assembled thin-film composite membranes for water desalination[J]. Advanced Materials (Deerfield Beach, Fla), 2013, 25(34): 4778-4782. |
71 | WANSUK Choi, Gu JOUNG-Eun, Park SANG-Hee, et al. Tailor-made polyamide membranes for water desalination[J]. ACS Nano, 2015, 9(1): 345-355. |
72 | MARUF Sajjad H, GREENBERG Alan R, PELLEGRINO John, et al. Fabrication and characterization of a surface-patterned thin film composite membrane[J]. Journal of Membrane Science, 2014, 452: 11-19. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[3] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[4] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[5] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[6] | 陆诗建, 刘苗苗, 杨菲, 张俊杰, 陈思铭, 刘玲, 康国俊, 李清方. 改良型CO2湿壁塔内气液两相流动规律及传质特性[J]. 化工进展, 2023, 42(7): 3457-3467. |
[7] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[8] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[9] | 任重远, 何金龙, 袁清. 分子筛膜晶间缺陷控制与修复技术研究进展[J]. 化工进展, 2023, 42(5): 2454-2463. |
[10] | 王林, 辛梅华, 李明春, 陈琦, 毛扬帆. 季铵化/磺化壳聚糖的制备及其抗生物被膜活性[J]. 化工进展, 2023, 42(5): 2577-2585. |
[11] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[12] | 赵珍珍, 郑喜, 王雪琪, 王涛, 冯英楠, 任永胜, 赵之平. 聚酰胺复合膜微孔支撑基底的研究进展[J]. 化工进展, 2023, 42(4): 1917-1933. |
[13] | 叶海星, 陈宇昊, 陈仪, 孙海翔, 牛青山. 镁锂分离复合纳滤膜研究进展[J]. 化工进展, 2023, 42(4): 1934-1943. |
[14] | 常晓青, 彭东来, 李东洋, 张延武, 王景, 张亚涛. MOFs基丙烯/丙烷高效分离混合基质膜研究进展[J]. 化工进展, 2023, 42(4): 1961-1973. |
[15] | 王林, 辛梅华, 李明春, 张涛, 毛扬帆. 烷基季铵化壳聚糖的制备及其抗生物被膜的活性[J]. 化工进展, 2023, 42(4): 1995-2002. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |