化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5685-5694.DOI: 10.16085/j.issn.1000-6613.2021-2658

• 资源与环境化工 • 上一篇    

基于深度时间序列特征融合的西安市2015—2020年供暖季雾霾重污染过程预警

王英1(), 冉进业2, 张今1, 杨鑫3(), 张浩1()   

  1. 1.西南大学化学化工学院,重庆 400715
    2.西南大学计算机与信息科学学院,重庆 400715
    3.重庆理工大学 化学化工学院,重庆 400054
  • 收稿日期:2021-12-30 修回日期:2022-05-13 出版日期:2022-10-20 发布日期:2022-10-21
  • 通讯作者: 杨鑫,张浩
  • 作者简介:王英(1997—),女,硕士研究生,研究方向为环境化学大数据。E-mail:18375964485@163.com
  • 基金资助:
    国家自然基金(21806131)

Prediction of heavy haze pollution episodes based on deep feature fusion of pollutant and meteorological time series in Xi’an during 2015—2020 heating season

WANG Ying1(), RAN Jinye2, ZHANG Jin1, YANG Xin3(), ZHANG Hao1()   

  1. 1.School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
    2.College of Computer and Information Science, Southwest University, Chongqing 400715, China
    3.School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
  • Received:2021-12-30 Revised:2022-05-13 Online:2022-10-20 Published:2022-10-21
  • Contact: YANG Xin, ZHANG Hao

摘要:

为准确预测雾霾重污染演变过程,本文提出深度时间序列特征融合模型(long short-term memory and multivariate linear regression,LSTM-MLR)并对西安市PM2.5浓度进行了临近预测。该模型利用不同超参数长短期记忆网络(long short-term memory,LSTM)提取PM2.5前体和气象因素时间序列中的深度特征;采用多元线性回归(multivariate linear regression,MLR)形式融合LSTM单元输出的深度时间序列特征,最终输出PM2.5浓度预测值。为评估模型性能,采用西安市2015年1月至2020年3月采暖季数据进行建模并计算未来3h、6h、12h、24h的PM2.5浓度预测精度。结果表明:LSTM-MLR模型对雾霾严重污染样本的准确预测率分别为94.12%、85.29%、77.57%和51.10%,显著高于随机森林(random forest,RF)、支持向量回归(support vector regression,SVR)、MLR、单变量LSTM(LSTM_PM2.5)、多变量LSTM(M_LSTM)和LSTM-RF(long short-term memory and random forest);融合系数显示当前PM2.5浓度对未来PM2.5浓度的影响随预测步长的增加从80.89%(t+3)急剧降低至16.34%(t+24),前体浓度影响力从5.23%(t+3)上升至29.43%(t+24),说明提前控制前体物排放强度对雾霾重污染事件消峰降速效果具有显著影响。

关键词: 雾霾重污染, LSTM-MLR模型, 预测, 多尺度, 神经网络

Abstract:

To achieve accurate prediction of PM2.5 concentrations during heavy haze pollution events, the model of deep feature fusion (long short-term memory and multivariate linear regression, LSTM-MLR) was proposed in this paper to predict PM2.5 concentrations in 3h, 6h, 12h and 24h of Xi’an and to explain the relationship between the main meteorological factors precursors and haze concentration. In the proposed model, a series of long short-term memory (LSTM) with different hyper-parameter were used to extract the deep features of PM2.5 precursors and meteorological time series, and a full connect layer was used to adjust the dimensions of LSTM outputs. Then, a feature fusion model with the structure of multivariable linear regression (MLR) was used to obtain the predicted PM2.5 concentrations. Data from January 2015 to March 2020 in Xi’an were used to determine parameters of the proposed model, and model performances for PM2.5 concentration prediction in 3h, 6h, 12h and 24h were also evaluated. Results showed that LSTM-MLR, which was based on deep feature fusion of time series, can predict heavy haze pollution samples correctly with the accuracy of 94.12%, 85.29%, 77.57% and 51.10% in 3h, 6h, 12h and 24h, respectively. The true positive rate (TPR) of the proposed model outperforms random forest (RF), support vector regression (SVR), MLR, LSTM_PM2.5 (PM2.5 used only), multivariable LSTM (M_LSTM) and long short-term memory-random forest (LSTM-RF) which had the same input as LSTM-MLR. The fusion coefficients showed that the influence of current PM2.5 concentrations on that in the future decreased from 80.89% (t + 3) to 16.34% (t + 24), and the influence of precursor concentration increased from 5.23% (t + 3) to 29.43% (t + 24), which illustrated the importance of time for taking emergency measures to reduce the peak value and decrease the pollution duration.

Key words: heavy haze pollution event, LSTM-MLR model, prediction, multiscale, neural networks

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn