化工进展 ›› 2022, Vol. 41 ›› Issue (8): 4241-4253.DOI: 10.16085/j.issn.1000-6613.2021-2176
收稿日期:
2021-10-25
修回日期:
2021-11-29
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
董鑫
作者简介:
冯颖(1975—),女,博士,教授,研究方向为非均相分离技术。E-mail:基金资助:
FENG Ying(), ZHAO Mengjie, CUI Qian, XIE Yuju, ZHANG Jianwei, DONG Xin()
Received:
2021-10-25
Revised:
2021-11-29
Online:
2022-08-25
Published:
2022-08-22
Contact:
DONG Xin
摘要:
壳聚糖因其优良的生物相容性、可再生性、生物降解性以及絮凝、吸附性而被广泛应用于医药、能源、环保等领域。随着统计力学和计算机科学的快速发展,应用分子模拟研究壳聚糖材料的开发和应用已成为热点。本文综述了近年来分子模拟技术在该领域的研究进展,归纳了分子模拟的基本方法及特点,详述了以量子化学为基础的分子模拟软件Materials Studio在壳聚糖研究中的常用模块以及应用。在此基础上,介绍了利用分子模拟对壳聚糖分子结构、微观反应机理、相容性的分析与预测,以及壳聚糖在生物医用材料、燃料电池、缓蚀剂、水处理应用领域的分子模拟研究进展,总结分析了分子模拟方法在壳聚糖功能材料开发和应用中的优势以及在微观机理探索方面的不足,提出了采用多尺度模拟、与机器学习相结合等提高模拟结果准确性和计算速度的研究方法,为未来设计开发新型壳聚糖材料提供新的思路。
中图分类号:
冯颖, 赵孟杰, 崔倩, 解玉鞠, 张建伟, 董鑫. 分子模拟技术在壳聚糖功能材料开发和应用中的研究进展[J]. 化工进展, 2022, 41(8): 4241-4253.
FENG Ying, ZHAO Mengjie, CUI Qian, XIE Yuju, ZHANG Jianwei, DONG Xin. Research progress of molecular simulation technology in the development and application of chitosan functional materials[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4241-4253.
方法 | 应用 | 优缺点 |
---|---|---|
蒙特卡洛法 | 应用于薄膜的生长、相变、缺陷行为、材料共混等过程的研究 | 计算量相对较小,误差范围易确认,但其计算结果比较粗糙,难以在原子水平上解释问题的相关过程 |
分子动力学 | 广泛用于生物大分子、纳米材料和有机高分子物质等方面的研究 | 计算时可以对温度、压力等外部因素进行模拟,更加逼近实际状态,且程序计算量小,计算简单 |
分子力学 | 计算众多类化合物的热力学性质、谱学参数、分子构象、确定有机物的稳定性等 | 计算过程借助大量经验参数,使计算过程得到简化,从而节省时间,但无法获取电子分布等微观性质 |
量子力学 | 通常用于处理较小的体系,得到分子的热力学函数及电荷密度等性质 | 计算精度高,但计算量大,对计算设备要求高,计算的原子通常不超过几百个,应用于大分子体系的极少 |
表1 四种分子模拟方法简介
方法 | 应用 | 优缺点 |
---|---|---|
蒙特卡洛法 | 应用于薄膜的生长、相变、缺陷行为、材料共混等过程的研究 | 计算量相对较小,误差范围易确认,但其计算结果比较粗糙,难以在原子水平上解释问题的相关过程 |
分子动力学 | 广泛用于生物大分子、纳米材料和有机高分子物质等方面的研究 | 计算时可以对温度、压力等外部因素进行模拟,更加逼近实际状态,且程序计算量小,计算简单 |
分子力学 | 计算众多类化合物的热力学性质、谱学参数、分子构象、确定有机物的稳定性等 | 计算过程借助大量经验参数,使计算过程得到简化,从而节省时间,但无法获取电子分布等微观性质 |
量子力学 | 通常用于处理较小的体系,得到分子的热力学函数及电荷密度等性质 | 计算精度高,但计算量大,对计算设备要求高,计算的原子通常不超过几百个,应用于大分子体系的极少 |
软件名 | 用途介绍 | 适用范围 | 软件特色 |
---|---|---|---|
Hyperchem | 支持半经验算法、从头算法和密度泛函理论,预测可见-紫外光谱,进行分子轨道分析、几何优化等 | 应用于蛋白质、酶、核酸等生物大分子,分析材料的分子构造、电子结构、轨道等 | 灵活性高、易操作、图形美观、初学者易操作 |
Gaussian | 基于半经验、从头算法和密度泛函理论预测光谱特性、晶体结构、周期性体系的结构和性质 | 研究各种有机物、金属等体系的化学反应机理、取代效应、势能面和激发能等 | 集成过渡态能量和结构、分子结构和能量、原子电荷和电势、化学键和反应能量、红外和拉曼光谱模拟等多种重要功能 |
Materials Studio | 有Universial、Compass、Forcite、Castep、Dmol3等多种力场和模块可模拟聚合、催化、结晶与衍射等多种化学过程 | 应用于半导体、金属及陶瓷等多种材料,分析晶体的结构及性质,能开展X射线衍射模拟 | 唯一可以模拟溶液、气相、固体及表面的过程及性质,同时还可以考虑溶剂化 效应 |
LAMMPS | 利用不同边界条件和势函数来模拟全原子、金属、聚合物体系,实现分子动力学计算 | 应用于分子动力学所涉及的领域,如金属、聚合物、全原子、生物、粗粒化体系的模拟 | 提供支持多种势函数、应用范围广且具有良好的并行扩展性 |
表2 常用模拟软件简介
软件名 | 用途介绍 | 适用范围 | 软件特色 |
---|---|---|---|
Hyperchem | 支持半经验算法、从头算法和密度泛函理论,预测可见-紫外光谱,进行分子轨道分析、几何优化等 | 应用于蛋白质、酶、核酸等生物大分子,分析材料的分子构造、电子结构、轨道等 | 灵活性高、易操作、图形美观、初学者易操作 |
Gaussian | 基于半经验、从头算法和密度泛函理论预测光谱特性、晶体结构、周期性体系的结构和性质 | 研究各种有机物、金属等体系的化学反应机理、取代效应、势能面和激发能等 | 集成过渡态能量和结构、分子结构和能量、原子电荷和电势、化学键和反应能量、红外和拉曼光谱模拟等多种重要功能 |
Materials Studio | 有Universial、Compass、Forcite、Castep、Dmol3等多种力场和模块可模拟聚合、催化、结晶与衍射等多种化学过程 | 应用于半导体、金属及陶瓷等多种材料,分析晶体的结构及性质,能开展X射线衍射模拟 | 唯一可以模拟溶液、气相、固体及表面的过程及性质,同时还可以考虑溶剂化 效应 |
LAMMPS | 利用不同边界条件和势函数来模拟全原子、金属、聚合物体系,实现分子动力学计算 | 应用于分子动力学所涉及的领域,如金属、聚合物、全原子、生物、粗粒化体系的模拟 | 提供支持多种势函数、应用范围广且具有良好的并行扩展性 |
研究者 | 共混物 | 模拟结果 | 实验结果 |
---|---|---|---|
Rakkapao等[ | 壳聚糖、聚环氧乙烷 | 当聚环氧乙烷质量分数小于0.58时,二者可混溶,且相容性最大值在质量分数为0.2时模拟结果与实验结果吻合较好 | 最大混溶性出现在质量分数为0.2时,且聚环氧乙烷质量分数小于0.6时可得到共混物 |
Jawalkar等[ | 壳聚糖、聚乙烯醇 | 聚乙烯醇质量分数0.5~0.9时共混物不混溶,在0.1~0.4时混溶性较好 | 聚乙烯醇质量分数为0.2~0.4时与壳聚糖的共混物是可混溶的 |
Zhang等[ | 壳聚糖、聚己内酯 | 共混物的性能可通过改变聚己内酯与壳聚糖的比例来调节,比例为9∶1时,共混物会出现完全无序和均匀的相 | 共混物的热稳定性和机械性能随着壳聚糖含量的增加而降低,比例为9∶1时,共混物具有均匀的形态和优异的延展性 |
表3 分子模拟在壳聚糖共混中的应用
研究者 | 共混物 | 模拟结果 | 实验结果 |
---|---|---|---|
Rakkapao等[ | 壳聚糖、聚环氧乙烷 | 当聚环氧乙烷质量分数小于0.58时,二者可混溶,且相容性最大值在质量分数为0.2时模拟结果与实验结果吻合较好 | 最大混溶性出现在质量分数为0.2时,且聚环氧乙烷质量分数小于0.6时可得到共混物 |
Jawalkar等[ | 壳聚糖、聚乙烯醇 | 聚乙烯醇质量分数0.5~0.9时共混物不混溶,在0.1~0.4时混溶性较好 | 聚乙烯醇质量分数为0.2~0.4时与壳聚糖的共混物是可混溶的 |
Zhang等[ | 壳聚糖、聚己内酯 | 共混物的性能可通过改变聚己内酯与壳聚糖的比例来调节,比例为9∶1时,共混物会出现完全无序和均匀的相 | 共混物的热稳定性和机械性能随着壳聚糖含量的增加而降低,比例为9∶1时,共混物具有均匀的形态和优异的延展性 |
研究者 | 载体药物 | 模拟结论 |
---|---|---|
Razmimanesh等[ | 吉西他滨 | 药物的最大负载量出现在药物浓度为40%时,并且在没有水分子的情况下,药物分子位于壳聚糖链较近的位置 |
Moradi等[ | 干扰素 | 低脱乙酰壳聚糖和聚乳酸-羟基乙酸共聚物是用于该药物传递系统的优选共聚物 |
Salar等[ | 胰岛素 | 壳聚糖聚合物比胆固醇改性的壳聚糖聚合物更适合作为胰岛素的载体,控制胰岛素包封过程的主要因素是范德华力、静电作用和CH-π相互作用 |
Wang等[ | 紫杉醇 | 水杨酸接枝壳聚糖负载紫杉醇时,范德华力和疏水相互作用被认为是药物封装的主要驱动力,氢键和静电相互作用也有着重要作用,且最佳载药量为10% |
表4 分子模拟在壳聚糖药物传递系统中的应用
研究者 | 载体药物 | 模拟结论 |
---|---|---|
Razmimanesh等[ | 吉西他滨 | 药物的最大负载量出现在药物浓度为40%时,并且在没有水分子的情况下,药物分子位于壳聚糖链较近的位置 |
Moradi等[ | 干扰素 | 低脱乙酰壳聚糖和聚乳酸-羟基乙酸共聚物是用于该药物传递系统的优选共聚物 |
Salar等[ | 胰岛素 | 壳聚糖聚合物比胆固醇改性的壳聚糖聚合物更适合作为胰岛素的载体,控制胰岛素包封过程的主要因素是范德华力、静电作用和CH-π相互作用 |
Wang等[ | 紫杉醇 | 水杨酸接枝壳聚糖负载紫杉醇时,范德华力和疏水相互作用被认为是药物封装的主要驱动力,氢键和静电相互作用也有着重要作用,且最佳载药量为10% |
研究者 | 吸附剂 | 吸附物 | 模拟结论 |
---|---|---|---|
Chanajaree等[ | 交联壳聚糖珠 | 孔雀石绿、靛蓝胭脂红 | 交联壳聚糖与孔雀石绿的结合能大于与靛蓝胭脂红的结合能,有效预测了交联壳聚糖对孔雀石绿的吸附优于靛蓝胭脂红 |
Udoetok等[ | 壳聚糖、海藻酸盐和铝基交联剂组成的杂化无机-生物聚合物聚电解质复合物 | 磷酸盐 | 杂化无机-生物聚合物聚电解质复合物中铝络合物的羟基位点是磷酸盐阴离子物种的关键活性吸附位点 |
Rezakazemi等[ | 木质素壳聚糖共混物 | 亚甲基蓝 | 羟基和氨基积极参与了吸附过程,且疏水作用和氢键是亚甲基蓝分子和木质素壳聚糖共混物的主要驱动力 |
表5 分子模拟在壳聚糖水处理中的应用
研究者 | 吸附剂 | 吸附物 | 模拟结论 |
---|---|---|---|
Chanajaree等[ | 交联壳聚糖珠 | 孔雀石绿、靛蓝胭脂红 | 交联壳聚糖与孔雀石绿的结合能大于与靛蓝胭脂红的结合能,有效预测了交联壳聚糖对孔雀石绿的吸附优于靛蓝胭脂红 |
Udoetok等[ | 壳聚糖、海藻酸盐和铝基交联剂组成的杂化无机-生物聚合物聚电解质复合物 | 磷酸盐 | 杂化无机-生物聚合物聚电解质复合物中铝络合物的羟基位点是磷酸盐阴离子物种的关键活性吸附位点 |
Rezakazemi等[ | 木质素壳聚糖共混物 | 亚甲基蓝 | 羟基和氨基积极参与了吸附过程,且疏水作用和氢键是亚甲基蓝分子和木质素壳聚糖共混物的主要驱动力 |
图6 不同模拟时间Mt-(CT-PAM)、Mt-(CT-MF)系统的吸附构型[83](a)~(d)—Mt-(CT-PAM)系统在0ns、3ns、31ns、80ns的构型,0ns时右边为CT,左边为PAM;(e)~(h)—Mt-(CT-MF)系统在0ns、10ns、40ns、80ns的构型,0ns时右边为CT,左边为MF
图7 不同模拟时间(Mt-CT)-PAM、(Mt-PAM)-CT系统的吸附构型[83](a)~(d)—(Mt-CT)-PAM系统在0ns、3ns、20ns、80ns的构型,0ns时靠近Mt的为CT,最上方为PAM;(e)~(h)—(Mt-PAM)-CT系统在0ns、0.2ns、0.6ns、80n的构型,0ns时靠近Mt的为PAM,最上方为CT
1 | FAN Z Q, QIN Y K, LIU S, et al. Synthesis, characterization, and antifungal evaluation of diethoxyphosphoryl polyaminoethyl chitosan derivatives[J]. Carbohydrate Polymers, 2018, 190: 1-11. |
2 | KHAN G, YADAV S K, PATEL R R, et al. Tinidazole functionalized homogeneous electrospun chitosan/poly(ε-caprolactone) hybrid nanofiber membrane: development, optimization and its clinical implications[J]. International Journal of Biological Macromolecules, 2017, 103: 1311-1326. |
3 | 刘其海, 谢婉婷, 贾振宇, 等. 壳聚糖胶囊材料的制备及其缓释性能[J]. 化工进展, 2021, 40(1): 339-345. |
LIU Qihai, XIE Wanting, JIA Zhenyu, et al. Preparation of chitosan capsule materials and its sustained release properties[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 339-345. | |
4 | SHARIATINIA Z, ZAHRAEE Z. Controlled release of metformin from chitosan-based nanocomposite films containing mesoporous MCM-41 nanoparticles as novel drug delivery systems[J]. Journal of Colloid and Interface Science, 2017, 501: 60-76. |
5 | FAZLI Y, SHARIATINIA Z. Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous Mats[J]. Materials Science and Engineering C, 2017, 71: 641-652. |
6 | 赵海田, 李旭东, 曹凤芹, 等. 基于壳聚糖纳米粒子载药体系的制备与应用研究进展[J]. 化工进展, 2019, 38(11): 5057-5065. |
ZHAO Haitian, LI Xudong, CAO Fengqin, et al. Advances in preparation and application of chitosan-based nanoparticles for drug delivery system[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5057-5065. | |
7 | SHARIATINIA Z, NIKFAR Z. Synthesis and antibacterial activities of novel nanocomposite films of chitosan/phosphoramide/Fe3O4 NPs[J]. International Journal of Biological Macromolecules, 2013, 60: 226-234. |
8 | SHARIATINIA Z, MAZLOOM-JALALI A. Chitosan nanocomposite drug delivery systems designed for the ifosfamide anticancer drug using molecular dynamics simulations[J]. Journal of Molecular Liquids, 2019, 273: 346-367. |
9 | DE MORAES CRIZEL T, DE OLIVEIRA RIOS A, ALVES V D, et al. Active food packaging prepared with chitosan and olive pomace[J]. Food Hydrocolloids, 2018, 74: 139-150. |
10 | SHARIATINIA Z, FAZLI M. Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch[J]. Food Hydrocolloids, 2015, 46: 112-124. |
11 | MU R H, LIU B, CHEN X, et al. Adsorption of Cu (Ⅱ) and Co (Ⅱ) from aqueous solution using lignosulfonate/chitosan adsorbent[J]. International Journal of Biological Macromolecules, 2020, 163: 120-127. |
12 | SUN Y J, CHEN A W, PAN S Y, et al. Novel chitosan-based flocculants for chromium and nickle removal in wastewater via integrated chelation and flocculation[J]. Journal of Environmental Management, 2019, 248: 109241. |
13 | 赵世鹏, 冯宗财, 袁爽, 等. 乙二胺丙酰化交联壳聚糖微球对甲基橙的吸附性能[J]. 化工学报, 2017, 68(3): 1253-1261. |
ZHAO Shipeng, FENG Zongcai, YUAN Shuang, et al. Adsorption performance of ethylenediamine propionyl crosslinked chitosan microspheres to methyl orange[J]. CIESC Journal, 2017, 68(3): 1253-1261. | |
14 | MOUADEN K E, CHAUHAN D S, QURAISHI M A, et al. Thiocarbohydrazide-crosslinked chitosan as a bioinspired corrosion inhibitor for protection of stainless steel in 3.5% NaCl[J]. Sustainable Chemistry and Pharmacy, 2020, 15: 100213. |
15 | CHAUHAN D S, MOUADEN K E, QURAISHI M A, et al. Aminotriazolethiol-functionalized chitosan as a macromolecule-based bioinspired corrosion inhibitor for surface protection of stainless steel in 3.5% NaCl[J]. International Journal of Biological Macromolecules, 2020, 152: 234-241. |
16 | HOLDER S L, LEE C H, POPURI S R, et al. Enhanced surface functionality and microbial fuel cell performance of chitosan membranes through phosphorylation[J]. Carbohydrate Polymers, 2016, 149: 251-262. |
17 | VIJAYALEKSHMI V, KHASTGIR D. Fabrication and comprehensive investigation of physicochemical and electrochemical properties of chitosan-silica supported silicotungstic acid nanocomposite membranes for fuel cell applications[J]. Energy, 2018, 142: 313-330. |
18 | KATIYAR R S, JHA P K. Phase behavior of aqueous polyacrylic acid solutions using atomistic molecular dynamics simulations of model oligomers[J]. Polymer, 2017, 114: 266-276. |
19 | WEI Q H, ZHANG Y F, WANG Y N, et al. A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends[J]. Journal of Materials Science, 2017, 52(21): 12889-12901. |
20 | 杨帆. 离子液体对生物大分子结构稳定性影响的分子模拟研究[D]. 济南: 山东大学, 2021. |
YANG Fan. The molecular simulation of the effects of ionic liquids on the structural stability of biological macromolecules[D]. Jinan: Shandong University, 2021. | |
21 | 唐赟, 李卫华, 盛亚运. 计算机分子模拟——2013年诺贝尔化学奖简介[J]. 自然杂志, 2013, 35(6): 408-415. |
TANG Yun, LI Weihua, SHENG Yayun. Computer molecular modeling: a brief introduction to the Nobel Prize in Chemistry 2013[J]. Chinese Journal of Nature, 2013, 35(6): 408-415. | |
22 | RAYCHAUDHURI S. Introduction to Monte Carlo simulation[C]//2008 Winter Simulation Conference. December 7-10, 2008, Miami, FL, USA. IEEE, 2008: 91-100. |
23 | ALEXANDER F J, GARCIA A L. The direct simulation Monte Carlo method[J]. Computers in Physics, 1997, 11(6): 588-593. |
24 | KIM H, ABEYSIRIGUNAWARDEN S C, CHEN K, et al. Protein-guided RNA dynamics during early ribosome assembly[J]. Nature, 2014, 506(7488): 334-338. |
25 | COHEN-TANUGI D, GROSSMAN J C. Water desalination across nanoporous graphene[J]. Nano Letters, 2012, 12(7): 3602-3608. |
26 | REN H, SHEN X, DAI J H, et al. On the mechanism of graphene quantum dot encapsulation by chitosan: a molecular dynamics study[J]. Journal of Molecular Liquids, 2020, 320: 113453. |
27 | 李嘉辰, 俞斌, 王琦, 等. 分子模拟研究壳聚糖-氮化硼纳米管封装及输运阿霉素[J]. 化工学报, 2020, 71(1): 354-360. |
LI Jiachen, YU Bin, WANG Qi, et al. Molecular simulation on doxorubicin encapsulation and transport by chitosanboron nitride nanotubes[J]. CIESC Journal, 2020, 71(1): 354-360. | |
28 | SOUSA C P, DE OLIVEIRA R C, FREIRE T M, et al. Chlorhexidine digluconate on chitosan-magnetic iron oxide nanoparticles modified electrode: electroanalysis and mechanistic insights by computational simulations[J]. Sensors and Actuators B: Chemical, 2017, 240: 417-425. |
29 | 卢曦. 羧甲基壳聚糖的量子化学研究[D]. 西安: 西安建筑科技大学, 2011. |
LU Xi. Quantum chemical study of carboxymethyl chitosan[D]. Xi’an: Xi’an University of Architecture and Technology, 2011. | |
30 | WANG X S, LIN Q, PAN H Y, et al. Oxidation modification of chitosan-based mesoporous carbon by soft template method and the adsorption and release properties of hydroxycamptothecin[J]. Scientific Reports, 2020, 10: 15772. |
31 | WANG X S, PAN H Y, LIN Q, et al. One-step synthesis of nitrogen-doped hydrophilic mesoporous carbons from chitosan-based triconstituent system for drug release[J]. Nanoscale Research Letters, 2019, 14(1): 259. |
32 | ZHANG Y, CHU T J, SUN L, et al. Study on the transfection efficiency of chitosan-based gene vectors modified with poly-l-arginine peptides[J]. Journal of Biomedical Materials Research Part A, 2020, 108(12): 2409-2420. |
33 | YANG J Y, CHEN Y, ZHAO L, et al. Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing[J]. Composites B: Engineering, 2020, 197: 108139. |
34 | ZHANG H P, LUO X G, LIN X Y, et al. The molecular understanding of interfacial interactions of functionalized graphene and chitosan[J]. Applied Surface Science, 2016, 360: 715-721. |
35 | YU R, RAN M F, WEN J, et al. The effect of hydroxylation on CNT to form chitosan-CNT composites: a DFT study[J]. Applied Surface Science, 2015, 359: 643-650. |
36 | ZHAO J, XING T, LI Q, et al. Preparation of chitosan and carboxymethylcellulose-based polyelectrolyte complex hydrogel via SD-A-SGT method and its adsorption of anionic and cationic dye[J]. Journal of Applied Polymer Science, 2020, 137(34): 48980. |
37 | ZHANG H P, LUO X G, LIN X Y, et al. Polycaprolactone/chitosan blends: simulation and experimental design[J]. Materials & Design, 2016, 90: 396-402. |
38 | LIU Y, WONG C W, CHANG S W, et al. An injectable, self-healing phenol-functionalized chitosan hydrogel with fast gelling property and visible light-crosslinking capability for 3D printing[J]. Acta Biomaterialia, 2021, 122: 211-219. |
39 | SHIROLKAR M M, ATHAVALE R, RAVINDRAN S, et al. Antibiotics functionalization intervened morphological, chemical and electronic modifications in chitosan nanoparticles[J]. Nano-Structures & Nano-Objects, 2021, 25: 100657. |
40 | DOMARD A. A perspective on 30 years research on chitin and chitosan[J]. Carbohydrate Polymers, 2011, 84(2): 696-703. |
41 | FRANCA E F, FREITAS L C G, LINS R D. Chitosan molecular structure as a function of N-acetylation[J]. Biopolymers, 2011, 95(7): 448-460. |
42 | TSERETELI L, GRAFMÜLLER A. An accurate coarse-grained model for chitosan polysaccharides in aqueous solution[J]. PLoS One, 2017, 12(7): e0180938. |
43 | TAYYEM M T, ZUGHUL M B, ALMATARNEH M H. Molecular dynamics simulation of N-octyl-N-quaternized chitosan derivatives as a drug carrier[J]. Journal of Theoretical and Computational Chemistry, 2018, 17(4): 1850025. |
44 | 代俊明, 孙秀花, 高昌录. 共混改性法对有机分离膜影响进展[J]. 化工进展, 2019, 38(S1): 159-165. |
DAI Junming, SUN Xiuhua, GAO Changlu. Advances on effects of blending modification on organic separation membranes[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 159-165. | |
45 | 吴勰, 薛照明, 周莉, 等. 共混改性的PEO/TPU/PVDF-HFP基聚合物电解质的制备及性能[J]. 精细化工, 2021, 38(1): 155-161. |
WU Xie, XUE Zhaoming, ZHOU Li, et al. Preparation and properties of blend modified PEO/TPU/PVDF-HFP-based polymer electrolyte[J]. Fine Chemicals, 2021, 38(1): 155-161. | |
46 | SUKNUNTHA K, TANTISHAIYAKUL V, VAO-SOONGNERN V, et al. Molecular modeling simulation and experimental measurements to characterize chitosan and poly(vinyl pyrrolidone) blend interactions[J]. Journal of Polymer Science B: Polymer Physics, 2008, 46(12): 1258-1264. |
47 | RAKKAPAO N, VAO-SOONGNERN V. Molecular simulation and experimental studies of the miscibility of chitosan/poly(ethylene oxide) blends[J]. Journal of Polymer Research, 2014, 21(12): 1-10. |
48 | RAKKAPAO N, VAO-SOONGNERN V, MASUBUCHI Y, et al. Miscibility of chitosan/poly(ethylene oxide) blends and effect of doping alkali and alkali earth metal ions on chitosan/PEO interaction[J]. Polymer, 2011, 52(12): 2618-2627. |
49 | TIAN Y, SHI C J, SUN Y J, et al. Designing micellar nanocarriers with improved drug loading and stability based on solubility parameter[J]. Molecular Pharmaceutics, 2015, 12(3): 816-825. |
50 | JAWALKAR S S, RAJU K V S N, HALLIGUDI S B, et al. Molecular modeling simulations to predict compatibility of poly(vinyl alcohol) and chitosan blends: a comparison with experiments[J]. The Journal of Physical Chemistry B, 2007, 111(10): 2431-2439. |
51 | JAFARI F, MORADI S, NOWROOZI A, et al. Exploring the binding mechanism of paraquat to DNA by a combination of spectroscopic, cellular uptake, molecular docking and molecular dynamics simulation methods[J]. New Journal of Chemistry, 2017, 41(23): 14188-14198. |
52 | MORADI S, TARAN M, SHAHLAEI M. Investigation on human serum albumin and Gum Tragacanth interactions using experimental and computational methods[J]. International Journal of Biological Macromolecules, 2018, 107: 2525-2533. |
53 | NOWROOZI A, SHAHLAEI M. A coupling of homology modeling with multiple molecular dynamics simulation for identifying representative conformation of GPCR structures: a case study on human bombesin receptor subtype-3[J]. Journal of Biomolecular Structure & Dynamics, 2017, 35(2): 250-272. |
54 | ESLAMI M, NIKKHAH S J, HASHEMIANZADEH S M, et al. The compatibility of Tacrine molecule with poly(n-butylcyanoacrylate) and Chitosan as efficient carriers for drug delivery: a molecular dynamics study[J]. European Journal of Pharmaceutical Sciences, 2016, 82: 79-85. |
55 | KHEZRI A, KARIMI A, YAZDIAN F, et al. Molecular dynamic of curcumin/chitosan interaction using a computational molecular approach: emphasis on biofilm reduction[J]. International Journal of Biological Macromolecules, 2018, 114: 972-978. |
56 | RAZMIMANESH F, AMJAD-IRANAGH S, MODARRESS H. Molecular dynamics simulation study of chitosan and gemcitabine as a drug delivery system[J]. Journal of Molecular Modeling, 2015, 21(7): 165. |
57 | MORADI S, HOSSEINI E, ABDOLI M, et al. Comparative molecular dynamic simulation study on the use of chitosan for temperature stabilization of interferon αII[J]. Carbohydrate Polymers, 2019, 203: 52-59. |
58 | SALAR S, JAFARI M, KABOLI S F, et al. The role of intermolecular interactions on the encapsulation of human insulin into the chitosan and cholesterol-grafted chitosan polymers[J]. Carbohydrate Polymers, 2019, 208: 345-355. |
59 | WANG X Y, ZHANG L, WEI X H, et al. Molecular dynamics of paclitaxel encapsulated by salicylic acid-grafted chitosan oligosaccharide aggregates[J]. Biomaterials, 2013, 34(7): 1843-1851. |
60 | 刘莉, 高亚男, 纪宏宇, 等. 壳聚糖类水凝胶在组织工程中的应用[J]. 医药导报, 2016, 35(9): 982-986. |
LIU Li, GAO Yanan, JI Hongyu, et al. Application of chitosan hydrogels in tissue engineering[J]. Herald of Medicine, 2016, 35(9): 982-986. | |
61 | LING Z X, DENG J, ZHANG Z R, et al. Spatiotemporal manipulation of L-arginine release from bioactive hydrogels initiates rapid skin wound healing accompanied with repressed scar formation[J]. Applied Materials Today, 2021, 24: 101116. |
62 | KUMAR P, PILLAY V, CHOONARA Y E. Macroporous chitosan/methoxypoly(ethylene glycol) based cryosponges with unique morphology for tissue engineering applications[J]. Scientific Reports, 2021, 11: 3104. |
63 | FUSTER M G, MONTALBÁN M G, CARISSIMI G, et al. Antibacterial effect of chitosan–gold nanoparticles and computational modeling of the interaction between chitosan and a lipid bilayer model[J]. Nanomaterials, 2020, 10(12): 2340. |
64 | MALEKSHAH R E, SHAKERI F, AALLAEI M, et al. Biological evaluation, proposed molecular mechanism through docking and molecular dynamic simulation of derivatives of chitosan[J]. International Journal of Biological Macromolecules, 2021, 166: 948-966. |
65 | KRAYTSBERG A, EIN-ELI Y. Review of advanced materials for proton exchange membrane fuel cells[J]. Energy & Fuels, 2014, 28(12): 7303-7330. |
66 | PEIGHAMBARDOUST S J, ROWSHANZAMIR S, AMJADI M. Review of the proton exchange membranes for fuel cell applications[J]. International Journal of Hydrogen Energy, 2010, 35(17): 9349-9384. |
67 | IKRAM S, AHMED S, WAZED ALI S, et al. Chitosan-based polymer electrolyte membranes for fuel cell applications[M]//Organic-Inorganic Composite Polymer Electrolyte Membranes. Cham: Springer International Publishing, 2017: 381-398. |
68 | CHÁVEZ E L, OVIEDO-ROA R, CONTRERAS-PÉREZ G, et al. Theoretical studies of ionic conductivity of crosslinked chitosan membranes[J]. International Journal of Hydrogen Energy, 2010, 35(21): 12141-12146. |
69 | SRINOPHAKUN T, MARTKUMCHAN S. Ionic conductivity in a chitosan membrane for a PEM fuel cell using molecular dynamics simulation[J]. Carbohydrate Polymers, 2012, 88(1): 194-200. |
70 | ZHANG H P, GANDHI N S, GU Y T, et al. Chitosan/graphene complex membrane for polymer electrolyte membrane fuel cell: a molecular dynamics simulation study[J]. International Journal of Hydrogen Energy, 2020, 45(48): 25960-25969. |
71 | KUMAR R, KIM H, SINGH G. Experimental and theoretical investigations of a newly synthesized azomethine compound as inhibitor for mild steel corrosion in aggressive media: a comprehensive study[J]. Journal of Molecular Liquids, 2018, 259: 199-208. |
72 | UMOREN S A, ALAHMARY A A, GASEM Z M, et al. Evaluation of chitosan and carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel[J]. International Journal of Biological Macromolecules, 2018, 117: 1017-1028. |
73 | PRABAKARAN M, KIM S H, MUGILA N, et al. Aster koraiensis as nontoxic corrosion inhibitor for mild steel in sulfuric acid[J]. Journal of Industrial and Engineering Chemistry, 2017, 52: 235-242. |
74 | 郑云香, 王向鹏, 宗丽娜. 天然多糖及衍生物在金属缓蚀剂中的研究进展[J]. 表面技术, 2021, 50(2): 221-231. |
ZHENG Yunxiang, WANG Xiangpeng, ZONG Lina. Advance on natural polysaccharides and its derivatives in metal corrosion inhibition[J]. Surface Technology, 2021, 50(2): 221-231. | |
75 | ZHAO Q, GUO J X, CUI G D, et al. Chitosan derivatives as green corrosion inhibitors for P110 steel in a carbon dioxide environment[J]. Colloids and Surfaces B: Biointerfaces, 2020, 194: 111150. |
76 | CHAUHAN D S, MAZUMDER M A J, QURAISHI M A, et al. Chitosan-cinnamaldehyde Schiff base: a bioinspired macromolecule as corrosion inhibitor for oil and gas industry[J]. International Journal of Biological Macromolecules, 2020, 158: 127-138. |
77 | JMIAI A, IBRAHIMI B EL, TARA A, et al. The effect of the two biopolymers “sodium alginate and chitosan” on the inhibition of copper corrosion in 1M hydrochloric acid[J]. Materials Today: Proceedings, 2020, 22: 12-15. |
78 | HAQUE J, SRIVASTAVA V, CHAUHAN D S, et al. Microwave-induced synthesis of chitosan schiff bases and their application as novel and green corrosion inhibitors: experimental and theoretical approach[J]. ACS Omega, 2018, 3(5): 5654-5668. |
79 | CHAUHAN D S, QURAISHI M A, SOROUR A A, et al. Triazole-modified chitosan: a biomacromolecule as a new environmentally benign corrosion inhibitor for carbon steel in a hydrochloric acid solution[J]. RSC Advances, 2019, 9(26): 14990-15003. |
80 | SAHARAN P, KUMAR V, SHARMA A K, et al. Scalable fabrication of chitosan-grafted silica bionanocomposite for the superb sequestration of anionic dye from aqueous solution[J]. Emergent Materials, 2020, 3(6): 871-879. |
81 | VIJAYASRI K, TIWARI A. Chemical and radiation grafted chitosan for the mitigation of arsenic from contaminated water[J]. Journal of Dispersion Science and Technology, 2020, 41(7): 967-979. |
82 | CHANAJAREE R, SRIUTTHA M, LEE V S, et al. Thermodynamics and kinetics of cationic/anionic dyes adsorption on cross-linked chitosan[J]. Journal of Molecular Liquids, 2021, 322: 114507. |
83 | UDOETOK I A, FAYE O, WILSON L D. Adsorption of phosphate dianions by hybrid inorganic–biopolymer polyelectrolyte complexes: experimental and computational studies[J]. ACS Applied Polymer Materials, 2020, 2(2): 899-910. |
84 | REZAKAZEMI M, ALBADARIN A B, WALKER G M, et al. Quantum chemical calculations and molecular modeling for methylene blue removal from water by a lignin-chitosan blend[J]. International Journal of Biological Macromolecules, 2018, 120: 2065-2075. |
85 | KHNIFIRA M, BOUMYA W, ABDENNOURI M, et al. A combined molecular dynamic simulation, DFT calculations, and experimental study of the eriochrome black T dye adsorption onto chitosan in aqueous solutions[J]. International Journal of Biological Macromolecules, 2021, 166: 707-721. |
86 | SUN W Y, ZENG H B, TANG T. Synergetic adsorption of polymers on montmorillonite: insights from molecular dynamics simulations[J]. Applied Clay Science, 2020, 193: 105654. |
87 | HASSAN B, RAJAN V K, MUJEEB V M A, et al. A DFT based analysis of adsorption of Hg2+ ion on chitosan monomer and its citralidene and salicylidene derivatives: prior to the removal of Hg toxicity[J]. International Journal of Biological Macromolecules, 2017, 99: 549-554. |
88 | 王炳捷, 白志山, 杨晓勇. 离子印迹吸附微球微流控制备及DFT性能[J]. 工程科学与技术, 2019, 51(6): 36-43. |
WANG Bingjie, BAI Zhishan, YANG Xiaoyong. Microfluidical-synthesis and quantum chemistry insight into ionic imprinted chitosan adsorbents[J]. Advanced Engineering Sciences, 2019, 51(6): 36-43. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 王少凡, 周颖, 郝康安, 黄安荣, 张如菊, 吴翀, 左晓玲. 具有pH响应性的自愈合蓝光水凝胶[J]. 化工进展, 2023, 42(9): 4837-4846. |
[3] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[4] | 欧阳素芳, 周道伟, 黄伟, 贾凤. 新型耐迁移橡胶防老剂的研究进展[J]. 化工进展, 2023, 42(7): 3708-3719. |
[5] | 陈森, 殷鹏远, 杨证禄, 莫一鸣, 崔希利, 锁显, 邢华斌. 功能固体材料智能合成研究进展[J]. 化工进展, 2023, 42(7): 3340-3348. |
[6] | 赵毅, 杨臻, 张新为, 王刚, 杨旋. 不同裂缝损伤和愈合温度条件下沥青自愈合行为的分子模拟[J]. 化工进展, 2023, 42(6): 3147-3156. |
[7] | 杨发容, 顾丽莉, 刘洋, 李伟雪, 蔡洁云, 王惠平. 计算机模拟辅助特丁津分子印迹聚合物的制备及应用[J]. 化工进展, 2023, 42(6): 3157-3166. |
[8] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[9] | 赵景斌, 王彦富, 王涛, 马伟恺, 王琛. 基于蒙特卡洛模拟和动态事件树的储罐脆弱性评估[J]. 化工进展, 2023, 42(5): 2751-2759. |
[10] | 王林, 辛梅华, 李明春, 陈琦, 毛扬帆. 季铵化/磺化壳聚糖的制备及其抗生物被膜活性[J]. 化工进展, 2023, 42(5): 2577-2585. |
[11] | 王林, 辛梅华, 李明春, 张涛, 毛扬帆. 烷基季铵化壳聚糖的制备及其抗生物被膜的活性[J]. 化工进展, 2023, 42(4): 1995-2002. |
[12] | 张建伟, 许蕊, 张忠闯, 董鑫, 冯颖. 基于卷积神经网络的撞击流反应器浓度场混合特性[J]. 化工进展, 2023, 42(2): 658-668. |
[13] | 马云飞, 王建兵, 贾超敏, 邢懿心, 柯述, 张先. 臭氧氧化动力学模型及反应器建模研究进展[J]. 化工进展, 2022, 41(S1): 556-570. |
[14] | 宋超, 叶学民, 李春曦. 纳米颗粒与表面活性剂的自组装行为对硅油-水界面性质影响的分子动力学[J]. 化工进展, 2022, 41(S1): 366-375. |
[15] | 李炜, 阮成龙, 王晓明, 李亚洁, 梁成龙. 罐式批次成品汽油调和配方集成建模方法[J]. 化工进展, 2022, 41(9): 4701-4712. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |