1 |
梁晶, 郑健, 韩苗苗, 等. 氮氧化物危害及其处理技术[J]. 科技创新与应用, 2021, 11(24): 120-122.
|
|
LIANG Jing, ZHENG Jian, HAN Miaomiao, et al. The harm of nitrogen oxide and its treatment technologies[J]. Technology Innovation and Application, 2021, 11(24): 120-122.
|
2 |
王宝冬, 汪国高, 刘斌, 等. 选择性催化还原脱硝催化剂的失活、失效预防、再生和回收利用研究进展[J]. 化工进展, 2013, 32(S1): 133-139.
|
|
WANG Baodong, WANG Guogao, LIU Bin, et al. Development of SCR catalyst deactivation, regeneration and recycling[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 133-139.
|
3 |
马子然, 林德海, 马少丹, 等. 600MW机组脱硝催化剂失活机理及中试再生[J]. 环境工程学报, 2018, 12(6): 1702-1712.
|
|
MA Ziran, LIN Dehai, MA Shaodan, et al. Deactivation mechanism and regeneration of SCR catalyst used in 600MW unit of coal fired power plant[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1702-1712.
|
4 |
肖雨亭, 赵建新, 汪德志, 等. 废旧脱硝催化剂再生清洗研究[J]. 电力科技与环保, 2013, 29(4): 44-46.
|
|
XIAO Yuting, ZHAO Jianxin, WANG Dezhi, et al. Cleaning regeneration research of used denitration catalyst[J]. Electric Power Technology and Environmental Protection, 2013, 29(4): 44-46.
|
5 |
ZHENG Yuanjing, JENSEN A D, JOHNSSON J E. Laboratory investigation of selective catalytic reduction catalysts: deactivation by potassium compounds and catalyst regeneration[J]. Industrial & Engineering Chemistry Research, 2004, 43(4): 941-947.
|
6 |
王乐, 刘淑鹤, 王宽岭, 等. 脱硝催化剂的失活机理及其再生技术[J]. 化工环保, 2020, 40(1): 79-84.
|
|
WANG Le, LIU Shuhe, WANG Kuanling, et al. Deactivation mechanism and regeneration technology of denitration catalyst[J]. Environmental Protection of Chemical Industry, 2020, 40(1): 79-84.
|
7 |
崔力文, 宋浩, 吴卫红, 等. 电站失活SCR催化剂再生试验研究[J]. 能源工程, 2012(3): 43-46, 54.
|
|
CUI Liwen, SONG Hao, WU Weihong, et al. A research on the regeneration of deactivated SCR catalyst used in coal-fired plant[J]. Energy Engineering, 2012(3): 43-46, 54.
|
8 |
陈冬林, 曾稀, 盘思伟, 等. 钒基活化液增活V2O5-WO3-MoO3/TiO2催化剂的实验研究[J]. 环境工程学报, 2015, 9(2): 847-854.
|
|
CHEN Donglin, ZENG Xi, PAN Siwei, et al. Experimental investigation on vanadium based liquids activating V2O5-WO3-MoO3/TiO2 catalyst[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 847-854.
|
9 |
WANG Chizhong, YANG Shijian, CHANG Huazhen, et al. Dispersion of tungsten oxide on SCR performance of V2O5WO3/TiO2: acidity, surface species and catalytic activity[J]. Chemical Engineering Journal, 2013, 225: 520-527.
|
10 |
BUSCA G. Acid catalysts in industrial hydrocarbon chemistry[J]. Chemical Reviews, 2007, 107(11): 5366-5410.
|
11 |
LIU Zhong, HAN Jian, ZHAO Li, et al. Effects of Se and SeO2 on the denitrification performance of V2O5-WO3/TiO2 SCR catalyst[J]. Applied Catalysis A: General, 2019, 587: 117263.
|
12 |
TOPSOE N Y, TOPSOE H, DUMESIC J A. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia (Ⅰ): combined temperature-programmed in situ FTIR and on-line mass-spectroscopy studies[J]. Journal of Catalysis, 1995, 151(1): 226-240.
|
13 |
TOPSOE N Y, DUMESIC J A, TOPSOE H. Vanadia-titania catalysts for selective catalytic reduction of nitric-oxide by ammonia (Ⅱ): studies of active sites and formulation of catalytic cycles[J]. Journal of Catalysis, 1995, 151(1): 241-252.
|
14 |
沈伯雄, 马娟. SiO2改性的V2O5-MoO3/TiO2催化剂抗碱中毒性能研究[J]. 燃料化学学报, 2012, 40(2): 247-251.
|
|
SHEN Boxiong, MA Juan. Alkali-resistant performance of V2O5-MoO3/TiO2 catalyst modified by SiO2 [J]. Journal of Fuel Chemistry and Technology, 2012, 40(2): 247-251.
|
15 |
ARFAOUI J, BOUDALI L K, GHORBEL A, et al. Effect of vanadium on the behaviour of unsulfated and sulfated Ti-pillared clay catalysts in the SCR of NO by NH3 [J]. Catalysis Today, 2009, 142(3/4): 234-238.
|
16 |
CAO Yijun, YUAN Junfan, DU Hao, et al. A clean and efficient approach for recovery of vanadium and tungsten from spent SCR catalyst[J]. Minerals Engineering, 2021, 165: 106857.
|
17 |
CHOO S T, LEE Y G, NAM I S, et al. Characteristics of V2O5 supported on sulfated TiO2 for selective catalytic reduction of NO by NH3 [J]. Applied Catalysis A: General, 2000, 200(1/2): 177-188.
|
18 |
YU Wenchao, WU Xiaodong, SI Zhichun, et al. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5-WO3/TiO2 catalyst[J]. Applied Surface Science, 2013, 283: 209-214.
|
19 |
ZENGEL D, STEHLE M, DEUTSCHMANN O, et al. Impact of gas phase reactions and catalyst poisons on the NH3-SCR activity of a V2O5-WO3/TiO2 catalyst at pre-turbine position[J]. Applied Catalysis B: Environmental, 2021, 288: 119991.
|
20 |
VUURMAN M A, WACHS I E, HIRT A M. Structural determination of supported vanadium pentoxide-tungsten trioxide-titania catalysts by in situ Raman spectroscopy and X-ray photoelectron spectroscopy[J]. The Journal of Physical Chemistry, 1991, 95(24): 9928-9937.
|
21 |
CAO Jun, LIU Weizao, KANG Keke, et al. Effects of the morphology and crystal-plane of TiO2 on NH3-SCR performance and K tolerance of V2O5-WO3/TiO2 catalyst[J]. Applied Catalysis A: Gereral, 2021, 623: 118285-118297.
|
22 |
WU Xiaodong, YU Wenchao, SI Zhichun, et al. Chemical deactivation of V2O5-WO3/TiO2 SCR catalyst by combined effect of potassium and chloride[J]. Frontiers of Environmental Science & Engineering, 2013, 7(3): 420-427.
|
23 |
KOMPIO P G W A, BRÜCKNER A, HIPLER F, et al. A new view on the relations between tungsten and vanadium in V2O5-WO3/TiO2 catalysts for the selective reduction of NO with NH3 [J]. Journal of Catalysis, 2012, 286: 237-247.
|
24 |
ENGWEILER J, HARF J, BAIKER A. WO x /TiO2Catalysts prepared by grafting of tungsten alkoxides: morphological properties and catalytic behavior in the selective reduction of NO by NH3 [J]. Journal of Catalysis, 1996, 159(2): 259-269.
|
25 |
CHEN Liang, LI Junhua, GE Maofa. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NO x by NH3 [J]. Chemical Engineering Journal, 2011, 170(2): 531-537.
|
26 |
翟丽军, 胡志勇, 牛宇岚. 电导率法对偏钒酸铵在草酸溶液中的溶解研究[J]. 应用化工, 2008, 37(9): 1032-1034.
|
|
ZHAI Lijun, HU Zhiyong, NIU Yulan. Solubility of ammonium metavanadate in the oxalate solution by conductivity[J]. Applied Chemical Industry, 2008, 37(9): 1032-1034.
|