化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4790-4800.DOI: 10.16085/j.issn.1000-6613.2021-2323
收稿日期:
2021-11-12
修回日期:
2022-02-20
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
袁珮
作者简介:
王亚溪(1996—),女,硕士研究生,研究方向为材料化学工程。E-mail:yxwang1128@163.com。
基金资助:
WANG Yaxi(), WU Shuzheng, ZHANG Hongwei, YUAN Pei()
Received:
2021-11-12
Revised:
2022-02-20
Online:
2022-09-25
Published:
2022-09-27
Contact:
YUAN Pei
摘要:
丁腈橡胶(NBR)选择性催化加氢是制备高附加值、高性能氢化丁腈橡胶(HNBR)的一个重要过程。将链段中C
中图分类号:
王亚溪, 吴淑正, 张宏伟, 袁珮. 丁腈橡胶非均相催化加氢研究进展[J]. 化工进展, 2022, 41(9): 4790-4800.
WANG Yaxi, WU Shuzheng, ZHANG Hongwei, YUAN Pei. Research progress on heterogeneous catalytic hydrogenation of nitrile butadiene rubber[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4790-4800.
催化剂 | 溶剂 | 反应条件 | 加氢度/% | ||
---|---|---|---|---|---|
温度/℃ 时间/h | 压力/MPa | ||||
纳米Pd/C | 异丙醇、苯 | 30~150 | 3~10 | 2~8 | 99.5[ |
多巴胺改性SiO2负载铑/钌 | 二甲苯 | 0.5~32 | 20~140 | 0.1~5 | >90[ |
SiO2、CeO2等空心球混合物 | — | 50~100 | 3~5 | 4~7 | >90[ |
树状分子封装铑/钌 | 四氢呋喃 | 60~120 | 2~64 | 0.5~3 | 80[ |
Rh/树脂 | 二甲苯 | 25~150 | 0.5~12 | 0.5~3 | >90[ |
磁性碳纳米管 | 氯苯等 | 80~160 | 1~24 | 1.5~5.5 | 98[ |
大孔SiO2负载Pd | 丙酮 | 80 | 5 | 6 | 96[ |
SiO2负载Pd、Zr | 丙酮 | 50~100 | 1~12 | 1~10 | >90[ |
偶联剂改性SiO2负载Rh | 氯苯 | 80~160 | 1~30 | 0.5~3 | >98[ |
二氧化钛、H2PdCl4 | 二甲苯 | 20~30 | 1~8 | 2~4 | >73[ |
胶体钯 | 丙酮 | 50 | 4 | 5 | 90[ |
石墨烯、对苯二胺和Pt | 二甲苯 | 50~150 | 2~15 | 2~5 | 96[ |
RhCl3和Pt/C | 二甲苯 | 100~150 | 2~12 | 1~3 | 98[ |
表1 NBR非均相催化加氢催化剂、反应条件及加氢度
催化剂 | 溶剂 | 反应条件 | 加氢度/% | ||
---|---|---|---|---|---|
温度/℃ 时间/h | 压力/MPa | ||||
纳米Pd/C | 异丙醇、苯 | 30~150 | 3~10 | 2~8 | 99.5[ |
多巴胺改性SiO2负载铑/钌 | 二甲苯 | 0.5~32 | 20~140 | 0.1~5 | >90[ |
SiO2、CeO2等空心球混合物 | — | 50~100 | 3~5 | 4~7 | >90[ |
树状分子封装铑/钌 | 四氢呋喃 | 60~120 | 2~64 | 0.5~3 | 80[ |
Rh/树脂 | 二甲苯 | 25~150 | 0.5~12 | 0.5~3 | >90[ |
磁性碳纳米管 | 氯苯等 | 80~160 | 1~24 | 1.5~5.5 | 98[ |
大孔SiO2负载Pd | 丙酮 | 80 | 5 | 6 | 96[ |
SiO2负载Pd、Zr | 丙酮 | 50~100 | 1~12 | 1~10 | >90[ |
偶联剂改性SiO2负载Rh | 氯苯 | 80~160 | 1~30 | 0.5~3 | >98[ |
二氧化钛、H2PdCl4 | 二甲苯 | 20~30 | 1~8 | 2~4 | >73[ |
胶体钯 | 丙酮 | 50 | 4 | 5 | 90[ |
石墨烯、对苯二胺和Pt | 二甲苯 | 50~150 | 2~15 | 2~5 | 96[ |
RhCl3和Pt/C | 二甲苯 | 100~150 | 2~12 | 1~3 | 98[ |
1 | 商宏超. 氢化丁腈橡胶的合成及配合技术研究进展[J]. 橡塑资源利用, 2016(4): 31-33. |
SHANG Hongchao. Research progress on synthesis and compounding technology of hydrogenated nitrile butadiene rubber[J]. Rubber & Plastics Resources Utilization, 2016(4): 31-33. | |
2 | 李晶, 魏绪玲, 龚光碧. 国内外氢化丁腈橡胶的生产现状与展望[J]. 橡胶工业, 2016, 63(1): 55-59. |
LI Jing, WEI Xuling, GONG Guangbi. Production status and prospect of hydrogenated nitrile rubber at home and abroad[J]. China Rubber Industry, 2016, 63(1): 55-59. | |
3 | 梁滔. 氢化丁腈橡胶的加工技术与应用进展[J]. 合成橡胶工业, 2017, 40(2): 158-163. |
LIANG Tao. Advances of processing technology and application of hydrogenated nitrile rubber[J]. China Synthetic Rubber Industry, 2017, 40(2): 158-163. | |
4 | 李昂. 新材料——氢化丁腈橡胶(HNBR)[J]. 特种橡胶制品, 2001, 22(3): 18-20. |
LI Ang. New material——HNBR[J]. Special Purpose Rubber Products, 2001, 22(3): 18-20. | |
5 | 应婵娟, 杨政. 丁腈橡胶生产技术进展及其市场分析[J]. 化工设计通讯, 2017, 43(9): 163. |
YING Chanjuan, YANG Zheng. Development of nitrile rubber production technology and its market analysis[J]. Chemical Engineering Design Communications, 2017, 43(9): 163. | |
6 | CHANG J R, HUANG S M. Pd/Al2O3 catalysts for selective hydrogenation of polystyrene-block-polybutadiene-block-polystyrene thermoplastic elastomers[J]. Industrial & Engineering Chemistry Research, 1998, 37(4): 1220-1227. |
7 | SHAHAB Y A, BASHEER R A. Nuclear magnetic resonance spectroscopy of partially saturated diene polymers. Ⅰ. 1H NMR spectra of partially hydrogenated and partially deuterated natural rubber, gutta percha, and cis-1, 4-polybutadiene[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1978, 16(10): 2667-2670. |
8 | WANG Shuhan, GE Bingqing, YIN Yixuan, et al. Solvent effect in heterogeneous catalytic selective hydrogenation of nitrile butadiene rubber: relationship between reaction activity and solvents with density functional theory analysis[J]. ChemCatChem, 2020, 12(2): 663-672. |
9 | 李少毅. 丁腈橡胶乳液加氢凝胶机理和加氢工艺的研究[D]. 北京: 北京化工大学, 2005. |
LI Shaoyi. Studies on gel mechanism and hydrogenation process of nitrile rubber latex[D]. Beijing: Beijing University of Chemical Technology, 2005. | |
10 | 王忠超. 丁腈橡胶性能影响因素研究[D]. 兰州: 西北师范大学, 2012. |
WANG Zhongchao. Research on factors influencing the performance of nitrile rubber[D]. Lanzhou: Northwest Normal University, 2012. | |
11 | 刘娟, 张正国, 孙静宇, 等. 丁腈橡胶溶液加氢催化剂研究进展[J]. 合成材料老化与应用, 2020, 49(1): 90-96. |
LIU Juan, ZHANG Zhengguo, SUN Jingyu, et al. The progress of catalyst for nitrile butadiene rubber solution hydrogenation[J]. Synthetic Materials Aging and Application, 2020, 49(1): 90-96. | |
12 | 刘娟. 丁腈橡胶催化加氢及其功能化改性研究[D]. 太原: 中北大学, 2020. |
LIU Juan. Catalytic hydrogenation and functional modification of nitrile-butadiene rubber[D]. Taiyuan: North University of China, 2020. | |
13 | 孙黎, 毕忠华, 高梅, 等. 氢化丁腈橡胶的研究进展[J]. 特种橡胶制品, 2020, 41(1): 60-64. |
SUN Li, BI Zhonghua, GAO Mei, et al. Research progress of hydrogenated nitrile butadiene rubber[J]. Special Purpose Rubber Products, 2020, 41(1): 60-64. | |
14 | WANG H, YANG L J, REMPEL G L. Homogeneous hydrogenation art of nitrile butadiene rubber: a review[J]. Polymer Reviews, 2013, 53(2): 192-239. |
15 | 艾纯金. 丁腈橡胶的烯烃复分解反应及催化加氢[D]. 兰州: 兰州大学, 2017. |
AI Chunjin. Olefin metathesis reaction and catalytic hydrogenation of nitrile rubber[D]. Lanzhou: Lanzhou University, 2017. | |
16 | WEINSTEIN A H. Elastomeric tetramethylene-ethylethylene-acrylonitrile copolymers[J]. Rubber Chemistry and Technology, 1984, 57(1): 203-215. |
17 | SINGHA N K, SIVARAM S, TALWAR S S. A new method to hydrogenate nitrile rubber in the latex form[J]. Rubber Chemistry and Technology, 1995, 68(2): 281-286. |
18 | NING Simin, YANG Shoufa, WEI Xinpeng, et al. Selective hydrogenation of nitrile-butadiene rubber catalyzed by thermoregulated phase transfer phosphine rhodium complex[J]. Journal of Applied Polymer Science, 2012, 123(2): 1040-1046. |
19 | YANG L J, PAN Q M, REMPEL G L. Development of a green separation technique for recovery of Wilkinson’s catalysts from bulk hydrogenated nitrile butadiene rubber[J]. Catalysis Today, 2013, 207: 153-161. |
20 | ZHOU Wei, PENG Xiaohong. Preparation of a novel homogeneous bimetallic Rhodium/Palladium ionic catalyst and its application for the catalytic hydrogenation of nitrile butadiene rubber[J]. Journal of Organometallic Chemistry, 2016, 823: 76-82. |
21 | ZHOU Wei, YI Jiemin, LIN Jiawei, et al. Preparation of facile separable homogeneous Rhodium catalyst and its application for the catalytic hydrogenation of nitrile butadiene rubber and styrene-butadiene rubber[J]. Research on Chemical Intermediates, 2017, 43(7): 3651-3662. |
22 | 焦宁宁, 张安民. 丁腈橡胶非均相加氢催化剂[J]. 兰化科技, 1993, 11(2): 135-138. |
JIAO Ningning, ZHANG Anmin. Heterogeneous hydrogenation catalyst for nitrile butadiene rubber[J]. Science and Technology of LCIC, 1993, 11(2): 135-138. | |
23 | 陈家惠. NBR溶液加氢技术及HNBR化学改性[J]. 特种橡胶制品, 2009, 30(6): 61-65. |
CHEN Jiahui. NBR hydrogenation in solution and HNBR chemical modification[J]. Special Purpose Rubber Products, 2009, 30(6): 61-65. | |
24 | 陈家惠. NBR溶液加氢技术的最新研究方法[J]. 特种橡胶制品, 2010, 31(1): 58-61. |
CHEN Jiahui. Recent progress of NBR hydrogenation[J]. Special Purpose Rubber Products, 2010, 31(1): 58-61. | |
25 | KUBO Y, OHISHI T, OHURA K. Process for production of hydrogenated conjugated diene polymers: US04384081A[P]. 1983-05-17. |
26 | 雷婧, 杨拥军, 叶咏祥, 等. 一种纳米Pd/C催化剂合成氢化丁腈橡胶的方法: CN103073683A[P]. 2013-05-01. |
LEI Jing, YANG Yongjun, YE Yongxiang, et al. A method for synthesizing hydrogenated nitrile butadiene rubber with nano Pd/C catalyst: CN103073683A[P]. 2013-05-01. | |
27 | KUBO Y, OURA K. Process for hydrogenating conjugated diene polymers: US4452951A[P]. 1984-06-05. |
28 | KUBO Y, OHURA K. Process for hydrogenating conjugated diene polymers: US4954576A[P]. 1990-09-04. |
29 | VAN DER LINDEN C C, LEERMAKERS F A M. Polymer adsorption on heterogeneous surfaces[J]. Macromolecular Symposia, 1994, 81(1): 195-197. |
30 | PAN Deng, SHI Gang, ZHANG Teng, et al. New understanding and controllable synthesis of silica hollow microspheres with size-tunable penetrating macroporous shells as a superior support for polystyrene hydrogenation catalysts[J]. Journal of Materials Chemistry A, 2013, 1(34): 9597-9602. |
31 | SHIRAI M, SUZUKI N, NISHIYAMA Y, et al. Size-selective hydrogenation of NBR polymers catalyzed by pore-size controlled smectites loaded with palladium[J]. Applied Catalysis A: General, 1999, 177(2): 219-225. |
32 | CHEN Jian, MA Lei, CHENG Tingting, et al. Stable and recyclable Pd catalyst supported on modified silica hollow microspheres with macroporous shells for enhanced catalytic hydrogenation of NBR[J]. Journal of Materials Science, 2018, 53(21): 15064-15080. |
33 | AI Chunjin, GONG Guangbi, ZHAO Xutao, et al. Macroporous hollow silica microspheres-supported palladium catalyst for selective hydrogenation of nitrile butadiene rubber[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77: 250-256. |
34 | LUO Zhaohui, FENG Miao, LU Hui, et al. Nitrile butadiene rubber hydrogenation over a monolithic Pd/CNTs@Nickel foam catalysts: tunable CNTs morphology effect on catalytic performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(5): 1812-1822. |
35 | ZOU Rui, LI Cui, ZHANG Liqun, et al. Selective hydrogenation of nitrile butadiene rubber (NBR) with rhodium nanoparticles supported on carbon nanotubes at room temperature[J]. Catalysis Communications, 2016, 81: 4-9. |
36 | 姚含波, 钱家盛, 夏茹, 等. 磁性碳纳米管负载铑催化剂在丁腈橡胶氢化方面的应用研究[J]. 化工新型材料, 2019, 47(7): 204-208. |
YAO Hanbo, QIAN Jiasheng, XIA Ru, et al. Study on MWCNTs@Fe3O4@Rh for NBR hydrogenation[J]. New Chemical Materials, 2019, 47(7): 204-208. | |
37 | ZHANG Peng, ZHANG Hongwei, WANG Shuhan, et al. Effect of support morphology on the activity and reusability of Pd/SiO2 for NBR hydrogenation[J]. Journal of Materials Science, 2020, 55(27): 12876-12883. |
38 | 郭舒洋, 张明. 一种氢化丁腈橡胶的制备方法: CN105906743A[P]. 2016-08-31. |
GUO Shuyang, ZHANG Ming. Preparation method of hydrogenated nitrile butadiene rubber: CN105906743A[P]. 2016-08-31. | |
39 | CAO Peng, HUANG Changyue, ZHANG Liqun, et al. One-step fabrication of RGO/HNBR composites via selective hydrogenation of NBR with graphene-based catalyst[J]. RSC Advances, 2015, 5(51): 41098-41102. |
40 | YAO Naiqun, ZHANG Yingdong, ZHANG Ruichen, et al. One-step fabrication of HNBR/MIL-100 composites via selective hydrogenation of acrylonitrile-butadiene rubber with a catalyst derived from MIL-100(Fe)[J]. Journal of Materials Science, 2021, 56(1): 326-336. |
41 | KAWAGUCHI T, SUGIMOTO W, MURAKAMI Y, et al. Particle growth behavior of carbon-supported Pt, Ru, PtRu catalysts prepared by an impregnation reductive-pyrolysis method for direct methanol fuel cell anodes[J]. Journal of Catalysis, 2005, 229(1): 176-184. |
42 | CAO Peng, NI Yanqiang, ZOU Rui, et al. Enhanced catalytic properties of rhodium nanoparticles deposited on chemically modified SiO2 for hydrogenation of nitrile butadiene rubber[J]. RSC Advances, 2015, 5(5): 3417-3424. |
43 | 岳冬梅, 刘平生, 蔡冬绿, 等. 一种负载催化剂的制备方法及加氢应用: CN103418413A[P]. 2013-12-04. |
YUE Dongmei, LIU Pingsheng, CAI Donglü, et al. Preparation method and hydrogenation application of immobilized catalyst: CN103418413A[P]. 2013-12-04. | |
44 | CAO Peng, SU Lin, LI Cui, et al. Highly active and reusable rhodium catalyst for selective hydrogenation of nitrile-butadiene rubber[J]. Rubber Chemistry and Technology, 2015, 88(4): 547-559. |
45 | CHENG Tingting, CHEN Jian, CAI Aofei, et al. Synthesis of Pd/SiO2 catalysts in various HCl concentrations for selective NBR hydrogenation: effects of H+ and Cl- concentrations and electrostatic interactions[J]. ACS Omega, 2018, 3(6): 6651-6659. |
46 | ZHOU Wei, ZHANG Dongqiao, WANG Yang, et al. Preparation of Rh metallic nanoparticle stabilized by 15-membered nitrogen-containing triolefinic macrocycle-ended poly(propylene imine) dendrimer and its catalytic hydrogenation for nitrile-butadiene rubber[J]. Colloid and Polymer Science, 2017, 295(5): 767-772. |
47 | 黄玉安, 王涵, 谭学峰, 等. 一种蛋壳型贵金属-高分子配体催化剂及其制备方法: CN102974395A[P]. 2013-03-20. |
HUANG Yu’an, WANG Han, TAN Xuefeng, et al. Eggshell noble metal-polymer ligand catalyst and preparation method thereof: CN102974395A[P]. 2013-03-20. | |
48 | 岳冬梅, 张立群, 卢立华, 等. 铑/钌纳米粒子催化剂的制备方法及在加氢反应中的应用: CN102335629A[P]. 2012-02-01. |
YUE Dongmei, ZHANG Liqun, LU Lihua, et al. Preparation method of Rhodium/Ruthenium nanoparticle catalyst and its application in hydrogenation reaction: CN102335629A[P]. 2012-02-01. | |
49 | 岳冬梅, 张立群, 杨守法, 等. 一种丁腈橡胶加氢高分子负载催化剂的制备方法: CN102070752A[P]. 2011-05-25. |
YUE Dongmei, ZHANG Liqun, YANG Shoufa, et al. Preparation method of polymer supported catalyst for hydrogenation of nitrile butadiene rubber: CN102070752A[P]. 2011-05-25. | |
50 | GE Bingqing, HU Yuandong, ZHANG Hongwei, et al. Zirconium promoter effect on catalytic activity of Pd based catalysts for heterogeneous hydrogenation of nitrile butadiene rubber[J]. Applied Surface Science, 2021, 539: 148212. |
51 | 岳冬梅, 高敏, 杜沛东, 等. 一种一锅法催化氢化丁腈橡胶的方法: CN107903343A[P]. 2018-04-13. |
YUE Dongmei, GAO Min, DU Peidong, et al. A one-pot method for catalytic hydrogenation of nitrile butadiene rubber: CN107903343A[P]. 2018-04-13. | |
52 | 梁松杰. 一种氢化丁腈橡胶的制备方法: CN104592423A[P]. 2015-05-06. |
LIANG Songjie. A preparation method of hydrogenated nitrile butadiene rubber: CN104592423A[P]. 2015-05-06. | |
53 | 岳冬梅, 王兴宇, 贾曼曼, 等. 一种多功能催化剂及产氢加氢合成氢化丁腈橡胶的方法: CN108993608A[P]. 2018-12-14. |
YUE Dongmei, WANG Xingyu, JIA Manman, et al. A multifunctional catalyst and method for synthesizing hydrogenated nitrile butadiene rubber by hydrogen production and hydrogenation: CN108993608A[P]. 2018-12-14. | |
54 | 张立群, 岳冬梅, 杨守法, 等. 一种丁腈橡胶的双金属催化加氢方法: CN103224591A[P]. 2013-07-31. |
ZHANG Liqun, YUE Dongmei, YANG Shoufa, et al. Bimetal catalytic hydrogenation method of nitrile butadiene rubber: CN103224591A[P]. 2013-07-31. | |
55 | KUBO Y, OHURA K. Process for hydrogenation of conjugated diene polymers: US4337329A[P]. 1982-06-29. |
56 | JIN Zhijun, XIAO Haiyan, ZHOU Wei, et al. Synthesis and hydrogenation application of Pt-Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer[J]. Royal Society Open Science, 2017, 4(12): 171414. |
57 | WANG Yang, PENG Xiaohong. RuRh bimetallic nanoparticles stabilized by 15-membered macrocycles-terminated poly(propylene imine) dendrimer: preparation and catalytic hydrogenation of nitrile-butadiene rubber[J]. Nano-Micro Letters, 2014, 6(1): 55-62. |
58 | DAGUENET C, DYSON P J, KROSSING I, et al. Dielectric response of imidazolium-based room-temperature ionic liquids[J]. The Journal of Physical Chemistry B, 2006, 110(25): 12682-12688. |
59 | KAMLET M J, ABBOUD J L M, ABRAHAM M H, et al. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some metho[J]. The Journal of Organic Chemistry, 1983, 48(17): 2877–2887. |
60 | BERTERO N M, TRASARTI A F, APESTEGUÍA C R, et al. Solvent effect in the liquid-phase hydrogenation of acetophenone over Ni/SiO2: a comprehensive study of the phenomenon[J]. Applied Catalysis A: General, 2011, 394(1/2): 228-238. |
61 | MCMANUS I, DALY H, THOMPSON J M, et al. Effect of solvent on the hydrogenation of 4-phenyl-2-butanone over Pt based catalysts[J]. Journal of Catalysis, 2015, 330: 344-353. |
62 | AKPA B S, D’AGOSTINO C, GLADDEN L F, et al. Solvent effects in the hydrogenation of 2-butanone[J]. Journal of Catalysis, 2012, 289: 30-41. |
63 | WAN Haijun, VITTER A, CHAUDHARI R V, et al. Kinetic investigations of unusual solvent effects during Ru/C catalyzed hydrogenation of model oxygenates[J]. Journal of Catalysis, 2014, 309: 174-184. |
64 | MOHAMMADI N A, REMPEL G L. Homogeneous selective catalytic hydrogenation of C ̿ C in acrylonitrile-butadiene copolymer[J]. Macromolecules, 1987, 20(10): 2362-2368. |
65 | SHIRAI M, TORII K, ARAI M. Hydrogenation of acrylonitrile-butadiene rubbers with palladium loaded mesopore-size controlled clay materials[M]//Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2000: 2105-2110. |
66 | 刘卅, 贾德民. 贮氢合金催化丁腈橡胶溶液加氢反应工艺条件的研究[J]. 弹性体, 2006, 16(2): 19-23. |
LIU Sa, JIA Demin. Investigation of reaction conditions for hydrogenation of NBR solution using hydrogen storage alloy as catalyst[J]. China Elastomerics, 2006, 16(2): 19-23. | |
67 | 葛冰青, 阴义轩, 王亚溪, 等. 溶剂对丁腈橡胶溶解、尺寸、结构和催化加氢的影响研究[J]. 化工学报, 2021, 72(1): 543-554. |
GE Bingqing, YIN Yixuan, WANG Yaxi, et al. Study of solvent effect on the dissolution, size, structure and catalytic hydrogenation of nitrile butadiene rubber[J]. CIESC Journal, 2021, 72(1): 543-554. | |
68 | DYSON P J, JESSOP P G. Solvent effects in catalysis: rational improvements of catalysts via manipulation of solvent interactions[J]. Catalysis Science & Technology, 2016, 6(10): 3302-3316. |
69 | JOURDANT A, GONZÁLEZ-ZAMORA E, ZHU J P. Wilkinson’s catalyst catalyzed selective hydrogenation of olefin in the presence of an aromatic nitro function: a remarkable solvent effect[J]. The Journal of Organic Chemistry, 2002, 67(9): 3163-3164. |
70 | KAJIWARA T, MORISADA S, OHTO K, et al. Palladium particle recovery from nitrile butadiene rubber dissolved in acetone through precipitation of poly(2-(dimethylamino)ethyl methacrylate)[J]. Hydrometallurgy, 2018, 179: 73-78. |
71 | 张振山, 吴剑铭, 王小蕾, 等. 氢化丁腈橡胶的研究进展及分子模拟技术的应用[J]. 橡胶工业, 2019, 66(4): 314-318. |
ZHANG Zhenshan, WU Jianming, WANG Xiaolei, et al. Research progress of hydrogenated nitrile butadiene rubber and application of molecular simulation technology[J]. China Rubber Industry, 2019, 66(4): 314-318. | |
72 | 阴义轩, 成婷婷, 鲍晓军, 等. 丁腈橡胶非均相加氢催化剂失活原因及再生性能研究[J]. 化工学报, 2019, 70(7): 2528-2539. |
YIN Yixuan, CHENG Tingting, BAO Xiaojun, et al. Deactivation and regeneration of heterogeneous catalysts for hydrogenation of nitrile butadiene rubber[J]. CIESC Journal, 2019, 70(7): 2528-2539. | |
73 | CHEN Jian, WU Zhijie, LIU Haiyan, et al. A surface-cofunctionalized silica supported palladium catalyst for selective hydrogenation of nitrile butadiene rubber with enhanced catalytic activity and recycling performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11821-11830. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[3] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[4] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[5] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[6] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[7] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[11] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[12] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[13] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[14] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[15] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |