化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5313-5324.DOI: 10.16085/j.issn.1000-6613.2021-0568
侯学军1,2(), 章小明1,2, 程文博1,2, 王馨1,2, 王春霞1,2, 徐盛明3, 黄国勇1,2()
收稿日期:
2021-03-22
修回日期:
2021-04-26
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
黄国勇
作者简介:
侯学军(1996—),男,硕士研究生,研究方向为战略金属资源循环与增值利用。E-mail:基金资助:
HOU Xuejun1,2(), ZHANG Xiaoming1,2, CHENG Wenbo1,2, WANG Xin1,2, WANG Chunxia1,2, XU Shengming3, HUANG Guoyong1,2()
Received:
2021-03-22
Revised:
2021-04-26
Online:
2021-10-10
Published:
2021-10-25
Contact:
HUANG Guoyong
摘要:
当前中国燃煤发电量仍占总发电量很大比重,燃煤电厂会产生大量的氮氧化物,其会对人体和环境造成危害。因此,处理好燃煤电厂产生的氮氧化物十分重要。选择性催化还原(SCR)技术是控制氮氧化物排放的重要手段。而作为该技术的核心,大量的钒钛基SCR催化剂被应用到燃煤电厂氮氧化物的处理工艺中,对废弃的SCR催化剂进行妥善处理也成为了急需解决的问题。本文对相应背景下的文献进行了系统整理,介绍了催化剂再生处理工艺以及有价金属回收技术的最新研究,分析了与再生处理工艺以及有价金属回收技术优化相关的挑战,提出了有关如何开发高效催化剂再生处理工艺以及有价金属回收技术的建议,以推动该方向的进一步研究。
中图分类号:
侯学军, 章小明, 程文博, 王馨, 王春霞, 徐盛明, 黄国勇. 废钒钛基SCR催化剂的处置方法研究进展[J]. 化工进展, 2021, 40(10): 5313-5324.
HOU Xuejun, ZHANG Xiaoming, CHENG Wenbo, WANG Xin, WANG Chunxia, XU Shengming, HUANG Guoyong. Research on disposal methods of spent vanadium-titanium-based catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5313-5324.
催化剂类型 | 构造 | 工况条件 | 特点 |
---|---|---|---|
蜂窝式催化剂 | 挤压成型/蜂窝载体负载成型 | 适合各种工况条件 | 比表面积大,活性高,耐磨性好,再生性好 |
平板式催化剂 | 金属板/网为骨架,表面负载活性涂层 | 适用于烟气状况较为干净的状况 | 拆卸方便,催化剂用量少,耐磨性较差 |
波纹板式催化剂 | 以波纹状玻纤为载体,负载活性涂层 | 条件苛刻,烟气必须较为清洁 | 比表面积中等,质量轻,但易沉积阻塞 |
表1 3种催化剂在构造、工况条件以及特点的比较
催化剂类型 | 构造 | 工况条件 | 特点 |
---|---|---|---|
蜂窝式催化剂 | 挤压成型/蜂窝载体负载成型 | 适合各种工况条件 | 比表面积大,活性高,耐磨性好,再生性好 |
平板式催化剂 | 金属板/网为骨架,表面负载活性涂层 | 适用于烟气状况较为干净的状况 | 拆卸方便,催化剂用量少,耐磨性较差 |
波纹板式催化剂 | 以波纹状玻纤为载体,负载活性涂层 | 条件苛刻,烟气必须较为清洁 | 比表面积中等,质量轻,但易沉积阻塞 |
类型 | 再生介质 | 再生条件 | 再生后脱硝效率 | 杂质脱除情况 | 参考 文献 |
---|---|---|---|---|---|
酸洗再生工艺 | H2SO4 | 去离子水中超声清洗30min;0.5mol·L-1稀硫酸清洗1h;110℃干燥10h;450℃煅烧3h | 42.62%→78.30% 350℃ | Na、K、Fe、As得到有效去除 | [ |
HNO3 | 去离子水中超声清洗,0.01mol·L-1 HNO3清洗30min | 44.60%→82.70% 380℃ | Na、K、Ca、P去除率>80% | [ | |
EDTA-2Na+H2SO4 | 去离子水中超声清洗,0.04mol·L-1 EDTA-2Na清洗15min,0.04mol·L-1 H2SO4清洗15min | 44.60%→93.70% 380℃ | Na、K、Pb、Ca去除率>90%,P去除率>80% | [ | |
酸洗再生工艺 | NaOH | 0.2mol·L-1 NaOH中洗涤4min | 85.12%左右 300~450℃ | S 54.30%、K 64.80%、 Mg 58.50% | [ |
Ca(NO3)2/Ca(OH)2 | Ca(NO3)2/Ca(OH)2溶液中超声0.5h,静置4h,用pH为2的稀HNO3洗涤,110℃干燥,500℃焙烧3h | >80.00% | As 63.30% | [ | |
聚醚洗再生工艺 | 烷基酚聚氧乙烯(10)醚(OP-10) | 1%的OP-10洗涤,然后用去离子水洗涤,450℃煅烧4h | 95.00% 350℃ | Ca 78.00% | [ |
水蒸气洗再生 | 水蒸气 | 300~350℃下用水蒸气原位处理336h | 91.40% 350℃ | As有效去除 | [ |
表2 不同再生处理工艺过程对比
类型 | 再生介质 | 再生条件 | 再生后脱硝效率 | 杂质脱除情况 | 参考 文献 |
---|---|---|---|---|---|
酸洗再生工艺 | H2SO4 | 去离子水中超声清洗30min;0.5mol·L-1稀硫酸清洗1h;110℃干燥10h;450℃煅烧3h | 42.62%→78.30% 350℃ | Na、K、Fe、As得到有效去除 | [ |
HNO3 | 去离子水中超声清洗,0.01mol·L-1 HNO3清洗30min | 44.60%→82.70% 380℃ | Na、K、Ca、P去除率>80% | [ | |
EDTA-2Na+H2SO4 | 去离子水中超声清洗,0.04mol·L-1 EDTA-2Na清洗15min,0.04mol·L-1 H2SO4清洗15min | 44.60%→93.70% 380℃ | Na、K、Pb、Ca去除率>90%,P去除率>80% | [ | |
酸洗再生工艺 | NaOH | 0.2mol·L-1 NaOH中洗涤4min | 85.12%左右 300~450℃ | S 54.30%、K 64.80%、 Mg 58.50% | [ |
Ca(NO3)2/Ca(OH)2 | Ca(NO3)2/Ca(OH)2溶液中超声0.5h,静置4h,用pH为2的稀HNO3洗涤,110℃干燥,500℃焙烧3h | >80.00% | As 63.30% | [ | |
聚醚洗再生工艺 | 烷基酚聚氧乙烯(10)醚(OP-10) | 1%的OP-10洗涤,然后用去离子水洗涤,450℃煅烧4h | 95.00% 350℃ | Ca 78.00% | [ |
水蒸气洗再生 | 水蒸气 | 300~350℃下用水蒸气原位处理336h | 91.40% 350℃ | As有效去除 | [ |
序号 | 浸出试剂 | 浸出条件 | 浸出效率 | 参考文献 |
---|---|---|---|---|
1 | H2SO4 | 5mol·L-1 H2SO4,60℃,600r·min-1,20mL·g-1,1h | V,56.0% | [ |
2 | HCl | 38% HCl,80℃,25mL·L-1,12h | V,72.9% | [ |
3 | H2SO4 | 98% H2SO4,80℃,25mL·L-1,12h | V,64.4% | [ |
4 | HNO3 | 38% HNO3,80℃,25mL·L-1,12h | V,34.9% | [ |
5 | H2C2O4 | 1mol·L-1 H2C2O4,80℃,10mL·g-1、3h | V,63.5%;W,13.1% | [ |
6 | 酒石酸(C4H6O6) | 0.5mol·L-1 C4H6O6,100℃,10mL·g-1,3h | V,44.0%;W,9.0% | [ |
7 | H2C2O4 | 1mol·L-1 H2C2O4,90℃,20mL·L-1,3h | V,86.3%;Fe,96.0% | [ |
8 | H2SO4+Na2SO3 | 5% H2SO4,95℃,10mL·g-1,2h,1g/0.5h Na2SO3 | V,接近100% | [ |
表3 不同酸浸主导工艺浸出过程对比
序号 | 浸出试剂 | 浸出条件 | 浸出效率 | 参考文献 |
---|---|---|---|---|
1 | H2SO4 | 5mol·L-1 H2SO4,60℃,600r·min-1,20mL·g-1,1h | V,56.0% | [ |
2 | HCl | 38% HCl,80℃,25mL·L-1,12h | V,72.9% | [ |
3 | H2SO4 | 98% H2SO4,80℃,25mL·L-1,12h | V,64.4% | [ |
4 | HNO3 | 38% HNO3,80℃,25mL·L-1,12h | V,34.9% | [ |
5 | H2C2O4 | 1mol·L-1 H2C2O4,80℃,10mL·g-1、3h | V,63.5%;W,13.1% | [ |
6 | 酒石酸(C4H6O6) | 0.5mol·L-1 C4H6O6,100℃,10mL·g-1,3h | V,44.0%;W,9.0% | [ |
7 | H2C2O4 | 1mol·L-1 H2C2O4,90℃,20mL·L-1,3h | V,86.3%;Fe,96.0% | [ |
8 | H2SO4+Na2SO3 | 5% H2SO4,95℃,10mL·g-1,2h,1g/0.5h Na2SO3 | V,接近100% | [ |
序号 | 浸出试剂 | 浸出条件 | 浸出效率 | 参考文献 |
---|---|---|---|---|
1 | NaOH | m(NaOH)∶m(废催化剂)=0.3,固液比3%,70℃,粒经<74mm,0.5h | W,91.0%;V,87.0% | [ |
2 | NaOH | 4mol·L-1 NaOH,250℃,固液比=0.4,2h,粒径<150mm | W,91.5%;V,87.0% | [ |
3 | NaOH | m(NaOH)∶m(废催化剂)=0.2,130~160℃,0.6~0.8MPa,1~2h | — | [ |
4 | NaOH | 5mol·L-1 NaOH,120℃,5mL·g-1,3h | W,72.3%;V,96.5% | [ |
5 | NaOH+Na2CO3 | 2mol·L-1 NaOH,0.2mol·L-1 Na2CO3,300℃,20mL·g-1 | W,98.8%;V,96.6% | [ |
6 | Na2CO3+NaOH | Na2CO3加入量20%,NaOH加入量8%,液固比2,2h,230℃ | W,75.1%;V,89.4% | [ |
表4 不同碱浸主导工艺浸出过程对比
序号 | 浸出试剂 | 浸出条件 | 浸出效率 | 参考文献 |
---|---|---|---|---|
1 | NaOH | m(NaOH)∶m(废催化剂)=0.3,固液比3%,70℃,粒经<74mm,0.5h | W,91.0%;V,87.0% | [ |
2 | NaOH | 4mol·L-1 NaOH,250℃,固液比=0.4,2h,粒径<150mm | W,91.5%;V,87.0% | [ |
3 | NaOH | m(NaOH)∶m(废催化剂)=0.2,130~160℃,0.6~0.8MPa,1~2h | — | [ |
4 | NaOH | 5mol·L-1 NaOH,120℃,5mL·g-1,3h | W,72.3%;V,96.5% | [ |
5 | NaOH+Na2CO3 | 2mol·L-1 NaOH,0.2mol·L-1 Na2CO3,300℃,20mL·g-1 | W,98.8%;V,96.6% | [ |
6 | Na2CO3+NaOH | Na2CO3加入量20%,NaOH加入量8%,液固比2,2h,230℃ | W,75.1%;V,89.4% | [ |
95 | CHOI H, CHO Y-C, MOON G, et al. Recent developments in the recycling of spent selective catalytic reduction catalyst in South Korea [J]. Catalysts, 2020, 10(2): 182. |
96 | MOON G, KIM J H, LEE J-Y, et al. Leaching of spent selective catalytic reduction catalyst using alkaline melting for recovery of titanium, tungsten, and vanadium [J]. Hydrometallurgy, 2019, 189: 105132. |
1 | 魏学好, 周浩. 中国火力发电行业减排污染物的环境价值标准估算[J]. 环境科学研究, 2003, 16(1): 53-56. |
WEI X H, ZHOU H. Evaluating the environmental value schedule of pollutants mitigated in China thermal power industry [J]. Research of Environmental Sciences, 2003, 16(1): 53-56. | |
2 | 王占山, 潘丽波, 李云婷, 等. 火电厂大气污染物排放标准对区域酸沉降影响的数值模拟[J]. 中国环境科学, 2014, 34(9): 2420-2429. |
WANG Z S, PAN L B, LI Y T, et al. Effect of emission standard of air pollutants for thermal power plants on regional acid deposition: a numerical simulation[J]. China Environmental Science, 2014, 34(9): 2420-2429. | |
3 | 环境保护部科技标准司. 火电厂大气污染物排放标准: [S]. 北京: 中国环境科学出版社, 2012. |
Department of Science and Technology Standards, Ministry of Environmental Protection. Emission standard of air pollutants for thermal power plants: [S]. Beijing: China Environment Science Press, 2012. | |
4 | 李博, 王卫良, 姚宣, 等. 煤电减排对中国大气污染物排放控制的影响研究[J]. 中国电力, 2019, 52(1): 110-117. |
LI B, WANG W L, YAO X, et al. Study on the effects of emission reduction in coal-fired power industry on China's air pollutant emission control [J]. Electric Power, 2019, 52(1): 110-117. | |
5 | 马国霞, 於方, 张衍燊, 等. 《大气污染防治行动计划》实施效果评估及其对我国人均预期寿命的影响[J]. 环境科学研究, 2019, 32(12): 1966-1972. |
MA Guoxia, YU Fang, ZHANG Yansheng, et al. Effect of implementation of the action plan on prevention and control of air pollution and its impact on life expectancy in China [J]. Research of Environmental Sciences, 2019, 32(12): 1966-1972. | |
6 | MOHAN S, DINESHA P, KUMAR S. NOx reduction behaviour in copper zeolite catalysts for ammonia SCR systems: a review [J]. Chemical Engineering Journal, 2019, 384: 123253. |
7 | 王小曼, 张晟昊, 权芳芳. 氮氧化物的危害及其催化还原控制方法[J]. 上海节能, 2019(4): 259-261. |
WANG X M, ZHANG S H, QUAN F F. Harmness of NOx and its catalytic reduction control method [J]. Shanghai Energy Conservation, 2019(4): 259-261. | |
8 | PARK S U, LEE Y H. Spatial distribution of wet deposition of nitrogen in South Korea [J]. Atmos Environ., 2002, 36(4): 619-628. |
9 | NAKAJIMA F, HAMADA I. The state-of-the-art technology of NOx control [J]. Catalysis Today, 1996, 29(1/2/3/4): 109-115. |
10 | LISI L, LASORELLA G, MALLOGGI S, et al. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts [J]. Applied Catalysis B: Environmental, 2004, 50(4): 251-258. |
11 | 顾卫荣, 周明吉, 马薇. 燃煤烟气脱硝技术的研究进展[J]. 化工进展, 2012, 31(9): 2084-2092. |
GU W R, ZHOU M J, MA W. Technology status and analysis on coal-fired flue gas denitrification [J]. Chemical Industry and Engineering Progress, 2012, 31(9): 2084-2092. | |
12 | 李如冰, 吴玉锋, 章启军, 等. 关于商用SCR(V2O5-WO3/TiO2)催化剂的再生和回收研究概述[J]. 现代化工, 2017, 37(3): 29-33. |
LI R B, WU Y F, ZHANG Q J, et al. A comprehensive review of the regeneration and recovery of commercial SCR catalyst (V2O5-WO3/TiO2) [J]. Modern Chemical Industry, 2017, 37(3): 29-33. | |
13 | XU J Q, CHEN G R, GUO F, et al. Development of wide-temperature vanadium-based catalysts for selective catalytic reducing of NOx with ammonia: review [J]. Chemical Engineering Journal, 2018, 353: 507-518. |
14 | TENG H S, HSU L Y, LAI Y C. Catalytic reduction of NO with NH3 over carbons impregnated with Cu and Fe [J]. Environmental Science & Technology, 2001, 35(11): 2369-2374. |
15 | YU J, LI C M, GUO F, et al. The pilot demonstration of a honeycomb catalyst for the DeNOx of low-temperature flue gas from an industrial coking plant [J]. Fuel, 2018, 219: 37-49. |
16 | 中国环境保护产业协会脱硫脱硝委员会. 我国脱硫脱硝行业2012年发展综述[J]. 中国环保产业, 2013(7): 8-20. |
China Association of Environmental Protection Industry. Development report on China desulfurization and denitration industries in 2012 [J]. China Environmental Protection Industry, 2013(7): 8-20. | |
17 | 姜烨, 高翔, 吴卫红, 等. 选择性催化还原脱硝催化剂失活研究综述[J]. 中国电机工程学报, 2013, 33(14): 18-31. |
JIANG Y, GAO X, WU W H, et al. Review of the deactivation of selective catalytic reduction DeNOx catalysts [J]. Proceedings of the CSEE, 2013, 33(14): 18-31. | |
18 | 曾瑞. 浅谈SCR废催化剂的回收再利用[J]. 中国环保产业, 2013(2): 39-42. |
ZENG Rui. Reclamation and recycling of SCR waste catalyzer [J]. China Environmental Protection Industry, 2013(2): 39-42. | |
19 | 林德海, 宋宝华, 王中原. 废弃SCR脱硝催化剂资源回收[J]. 山东化工, 2013, 42(4): 8-10. |
LIN D H, SONG B H, WANG Z Y. Discussion about resource utilization for disabled SCR catalyst [J]. Shandong Chemical Industry, 2013, 42(4): 8-10. | |
20 | 曹礼梅, 王青, 张巍, 等. 典型燃煤电厂废SCR催化剂解析及环境管理思考[J]. 装备环境工程, 2018, 15(2): 45-51. |
CAO L M, WANG Q, ZHANG W, et al. Spent SCR catalysts and environmental management in typical coal-fired power plant [J]. Equipment Environmental Engineering, 2018, 15(2): 45-51. | |
21 | 高永璋. 中国钒矿资源及供需形势分析[J]. 中国矿业, 2019, 28(S2): 5-10. |
GAO Yongzhang. Vandium resources and its supply and demand situation in China [J]. China Mining Magazine, 2019, 28(S2): 5-10. | |
22 | 崇霄霄, 栾文楼, 王丰翔, 等. 全球钛资源现状概述及我国钛消费趋势[J]. 矿产保护与利用, 2020, 40(2): 162-170. |
CHONG Xiaoxiao, LUAN Wenlou, WANG Fengxiang, et al. Overview of global titanium resources status and titanium consumption trend in China [J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 162-170. | |
23 | 赵中伟, 孙丰龙, 杨金洪, 等. 我国钨资源、技术和产业发展现状与展望[J]. 中国有色金属学报, 2019, 29(9): 1902-1916. |
ZHAO Z W, SUN F L, YANG J H, et al. Status and prospect for tungsten resources, technologies and industrial development in China [J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 1902-1916. | |
24 | DAI Z J, WANG L L, TANG H, et al. Speciation analysis and leaching behaviors of selected trace elements in spent SCR catalyst [J]. Chemosphere, 2018, 207: 440-448. |
25 | 杨涛. 废弃钒钛系SCR催化剂重金属浸出毒性及其水泥固化研究[D]. 武汉: 华中科技大学, 2017. |
YANG T. Experimental study on leaching toxicity of heavy metals in spent SCR catalyst and its cement solidification/stabilization product [D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
26 | 国家危险废物名录(2021) [R]. 中华人民共和国国务院公报, 2021. |
The state directory of dangerous wastes (2021) [R]. The Bulletin of the State Council of the People's Republic of China, 2021. | |
27 | 李萍, 曾令可, 王慧,等. 氮氧化物排放控制技术分类[J]. 中国陶瓷工业, 2015(2): 25-33. |
LI Ping, ZENG Lingke, WANG Hui, et al. Classification of NOx emission control techniques [J]. China Ceramic Industry, 2015(2): 25-33. | |
28 | 钟秦. 燃煤烟气脱硫脱硝技术及工程实例[M]. 北京: 化学工业出版社, 2002. |
ZHONG Q. Desulfurization and denitrification technology of coal-fired flue gas and engineering example [M]. Beijing: Chemical Industry Press, 2002. | |
29 | 杨加强, 梅毅, 王驰, 等. 湿法烟气脱硝技术现状及发展[J]. 化工进展, 2017, 36(2): 695-704. |
YANG J Q, MEI Y, WANG C, et al. Current status and trends on wet flue gas denitration technology [J]. Chemical Industry and Engineering Progress, 2017, 36(2): 695-704. | |
30 | 刘少明, 田军吉, 谷东亮, 等. 火电厂SCR脱硝催化剂技术研究进展[J]. 环境工程, 2015(1): 351-353. |
LIU Shaoming, TIAN Junji, GU Dongliang, et al. The progress of SCR de-NOx techology in thermal power plant [J]. Environmental Engineering, 2015(1): 351-353. | |
31 | JANSSEN F, MEIJER R. Quality control of DeNOx catalysts. performance testing, surface analysis, and characterization of DeNOxcatalysts [J]. Catalysis Today, 1993, 16(2): 157-185. |
32 | KIM J W, LEE W G, HWANG I S, et al. Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching [J]. Journal of Industrial & Engineering Chemistry, 2015, 28: 73-77. |
33 | 张强. 燃煤电站SCR烟气脱硝技术及工程应用[M]. 北京: 化学工业出版社, 2007. |
ZHANG Q. Coal fired power plants SCR nitrogen oxides control and removal [M]. Beijing: Chemical Industry Press, 2007. | |
34 | FORZATTI P. Present status and perspectives in de-NOx SCR catalysis [J]. Applied Catalysis A: General, 2001, 222(1/2): 221-236. |
35 | KANG M, KIM D J, PARK E D, et al. Two-stage catalyst system for selective catalytic reduction of NOx by NH3 at low temperatures [J]. Applied Catalysis B: Environmental, 2006, 68(1/2): 21-27. |
36 | REZAEI F, ROWNAGHI A A, MONJEZI S, et al. SOx/NOx removal from flue gas streams by solid adsorbents: a review of current challenges and future directions [J]. Energy & Fuels, 2015, 29(9): 5467-5486. |
37 | WANG C Z, YANG S J, CHANG H Z, et al. Dispersion of tungsten oxide on SCR performance of V2O5-WO3/TiO2: acidity, surface species and catalytic activity [J]. Chemical Engineering Journal, 2013, 225:520-527. |
38 | SHIN B S, LIM S Y, CHOUNG S J. WO3 and MoO3 addition effect on V2O5/TiO2 as promoters for removal of NOx and SOx from stationary sources [J]. Korean Journal of Chemical Engineering, 1994, 11(4): 254-260. |
39 | 陈晨, 陆强, 蔺卓玮, 等. 燃煤电厂废弃SCR脱硝催化剂元素回收研究进展[J]. 化工进展, 2016, 35(10): 3306-3312. |
CHEN C, LU Q, LIN Z W, et al. Research progress of element recovery of waste de-NOx SCR catalyst from coal-fired power plants[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3306-3312. | |
40 | 金丽丽, 叶剑娜. SCR脱硝催化剂整体制备技术研究现状[J]. 能源环境保护, 2015, 29(4): 5-8. |
JING L L, YE J N. Molding methods of SCR de-NOx catalysts: a review [J]. Energy Environmental Protection, 2015, 29(4): 5-8. | |
41 | 丁万丽. 废SCR脱硝催化剂V2O5-WO3/TiO2中钨和钒的萃取分离与回收实验研究[D]. 马鞍山: 安徽工业大学, 2018. |
DING Wanli. The study on leaching, solvent extraction separation and recovery of Tungsten and Vanadium from V2O5-WO3/TiO2 SCR catalyst [D]. Maanshan: Anhui University of Technology, 2018. | |
42 | HUANG G F, GUO X L, HAN Y F, et al. Effect of extrusion dies angle on the microstructure and properties of (TiB+TiC)/Ti6Al4V in situ titanium matrix composite [J]. Materials Science and Engineering: A, 2016, 667: 317-325. |
43 | 马英利, 高凤雨, 贾广如, 等. SCR脱硝催化剂的发展、应用及其成型工艺综述[J]. 现代化工, 2019, 39(8): 33-37. |
MA Y L, GAO F Y, JIA G R, et al. Overview on development, application and manufacturing technology of SCR catalysts for de-NOx [J]. Modern Chemical Industry, 2019, 39(8): 33-37. | |
44 | KLING A, ANDERSSON C, MYRINGER A, et al. Alkali deactivation of high-dust SCR catalysts used for NOx reduction exposed to flue gas from 100MW-scale biofuel and peat fired boilers: influence of flue gas composition [J]. Applied Catalysis B: Environmental, 2007, 69(3/4): 240-251. |
45 | TANG F S, XU B L, SHI H H, et al. The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3 [J]. Applied Catalysis B: Environmental, 2010, 94(1/2): 71-76. |
46 | LARSSON A C, EINVALL J, ANDERSSON A, et al. Targeting by comparison with laboratory experiments the SCR catalyst deactivation process by potassium and zinc salts in a large-scale biomass combustion boiler [J]. Energy & Fuels, 2006, 20(4): 1398-1405. |
47 | DENG L, LIU X, CAO P Q, et al. A study on deactivation of V2O5-WO3/TiO2 SCR catalyst by alkali metals during entrained-flow combustion [J]. Journal of the Energy Institute, 2017, 90(5): 743-751. |
48 | KAMATA H, TAKAHASHI K, ODENBRAND C U I. The role of K2O in the selective reduction of NO with NH3 over a V2O5-WO3/TiO2 commercial selective catalytic reduction catalyst [J]. Journal of Molecular Catalysis A: Chemical, 1999, 139(2/3): 189-198. |
49 | CHEN J P, BUZANOWSKI M A, YANG R T, et al. Deactivation of the vanadia catalyst in the selective catalytic reduction process [J]. Journal of the Air & Waste Management Association, 1990, 40(10): 1403-1409. |
50 | BENSON S A, LAUMB J D, CROCKER C R, et al. SCR catalyst performance in flue gases derived from subbituminous and lignite coals [J]. Fuel Processing Technology, 2005, 86(5): 577-613. |
51 | KONG Ming, LIU Qingcai, WANG Xiaoqing, et al. Performance impact and poisoning mechanism of arsenic over commercial V2O5-WO3/TiO2 SCR catalyst [J]. Catalysis Communications, 2015, 72: 121-126. |
52 | ANDONOVA S, VOVK E, SJÖBLOM J, et al. Chemical deactivation by phosphorous under lean hydrothermal conditions over Cu/BEA NH3-SCR catalysts [J]. Applied Catalysis B: Environmental, 2014, 147: 251-263. |
53 | KHODAYARI R, ODENBRAND C U I. Deactivating effects of lead on the selective catalytic reduction of nitric oxide with ammonia over a V2O5/WO3/TiO2 catalyst for waste incineration applications[J]. Industrial & Engineering Chemistry Research, 1998, 37(4): 1196-1202. |
54 | GAO X, DU X S, FU Y C, et al. Theoretical and experimental study on the deactivation of V2O5 based catalyst by lead for selective catalytic reduction of nitric oxides [J]. Catalysis Today, 2011, 175(1): 625-630. |
55 | 陆强, 裴鑫琦, 徐明新, 等. SCR脱硝催化剂抗砷中毒改性优化与再生研究进展[J].化工进展, 2021, 40(5): 2365-2374. |
LU Qiang, PEI Xinqi, XU Mingxin, et al. Progress in the development and regeneration of SCR catalysts for anti arsenic poisoning[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2365-2374. | |
56 | 云端, 宋蔷, 姚强. V2O5-WO3/TiO2 SCR催化剂的失活机理及分析[J]. 煤炭转化, 2009, 32(1): 91-96. |
YUN D, SONG Q, YAO Q. Mechanism and analysis of SCR catalyst deactivation[J]. Coal Conversion, 2009, 32(1): 91-96. | |
57 | MADIA G, ELSENER M, KOEBEL M, et al. Thermal stability of vanadia-tungsta-titania catalysts in the SCR process [J]. Applied Catalysis B: Environmental, 2002, 39(2): 181-190. |
58 | NOVA I, DALL’ACQUA, LIETTI L, et al. Study of thermal deactivation of a de-NOx commercial catalyst [J]. Applied Catalysis B: Environmental, 2001, 35(1): 31-42. |
59 | 张烨, 徐晓亮, 缪明烽. SCR脱硝催化剂失活机理研究进展[J]. 能源环境保护, 2011, 25(4): 14-18. |
ZHANG Y, XU X L, MIAO M F. Advance in deactivation mechanism for SCR denitration catalyst [J]. Energy Environmental Protection, 2011, 25(4): 14-18. | |
60 | GUO Xiaoyu. Poisoning and sulfation on vanadia SCR catalyst poisoning and sulfation on vanadia SCR catalyst [D]. Provo: Brigham Young University, 2006. |
61 | 强华松, 刘清才. 燃煤电厂SCR脱硝催化剂的失活与再生[J]. 材料导报, 2008, 22(S3): 285-287. |
QIANG H S, LIU Q C. Deactivation and regeneration of SCR de-NOx catalyst[J]. Materials Review, 2008, 22(S3): 285-287. | |
62 | 张强, 许世森, 王志强. 选择性催化还原烟气脱硝技术进展及工程应用[J]. 热力发电, 2004(4): 1-6. |
ZHANG Qiang, XU Shisen, WANG Zhiqiang. Advancement and engineering application of flue gas denitrification technology by using selective catalytic reduction method [J]. Thermal Power Generation, 2004(4): 1-6. | |
63 | 方拓拓, 高尔豪, 王亮, 等. 1000MW燃煤电厂商业SCR脱硝催化剂的失活[J]. 中国环境科学, 2019, 39(2): 583-590. |
FANG T T, GAO E H, WANG L, et al. Deactivation of commercial SCR catalyst used in 1000MW coal-fired power plant [J]. China Environmental Science, 2019, 39(2): 583-590. | |
64 | WU W F, WANG C Y, BAO W J, et al. Selective reduction leaching of vanadium and iron by oxalic acid from spent V2O5-WO3/TiO2 catalyst [J]. Hydrometallurgy, 2018, 179: 52-59. |
65 | 张涛, 肖雨亭, 白伟, 等. 失活脱硝催化剂再生和回收研究进展[J]. 电力科技与环保, 2015, 31(5): 20-22. |
ZHANG T, XIAO Y T, BAI W, et al. Research progress of regeneration and recovery deactivation deNOx catalyst [J]. Electric Power Environmental Protection, 2015, 31(5): 20-22. | |
66 | ZHANG Q J, WU Y F, YUAN H R. Recycling strategies of spent V2O5-WO3/TiO2 catalyst: a review [J]. Resources Conservation and Recycling, 2020, 161: 104983. |
67 | 尹海芮, 王远洋. 燃煤电厂烟气脱硝废弃SCR催化剂的再生和回收研究进展[J]. 现代化工, 2019, 39(9): 16-20. |
YIN H R, WANG Y Y. Research progress on regeneration and recovery of waste SCR catalyst for flue gas denitrification in coal-fired power plants [J]. Modern Chemical Industry, 2019, 39(9): 16-20. | |
68 | 马建蓉, 黄张根, 刘振宇, 等. 再生方法对V2O5/AC催化剂同时脱硫脱硝活性的影响[J]. 催化学报, 2005, 26(6): 463-469. |
MA J R, HUANG Z G, LIU Z Y, et al. Effect of regeneration method on activity for simultaneous removal of SO2 and NO over V2O5/AC catalyst-sorbent [J]. Chinese Journal of Catalysis, 2005, 26(6): 463-469. | |
69 | YE T, CHEN D L, YIN Y S, et al. Experimental research of an active solution for modeling in situ activating selective catalytic reduction catalyst [J]. Catalysts, 2017, 7(9): 258. |
70 | FERELLA F. A review on management and recycling of spent selective catalytic reduction catalysts [J]. Journal of Cleaner Production, 2020, 246: 118990. |
71 | ARGYLE M D, BARTHOLOMEW C. Heterogeneous catalyst deactivation and regeneration: a review [J]. Catalysts, 2015, 5(1): 145-269. |
72 | 高凤雨, 唐晓龙, 易红宏, 等. 商用SCR催化剂的钠中毒及再生[J]. 中南大学学报(自然科学版), 2015, 46(6): 2382-2390. |
GAO F Y, TANG X L, YI H H, et al. Sodium poisoning mechanism and regeneration of commercial de-NOx SCR catalysts [J]. Journal of Central South University (Science and Technology), 2015, 46(6): 2382-2390. | |
73 | 张沛, 吴思明, 方拓拓, 等. 660MW燃煤电厂商用SCR催化剂的失活与再生[J]. 高校化学工程学报, 2017, 31(5): 1186-1192. |
ZHANG P, WU S M, FANG T T, et al. Deactivation and regeneration of commercial SCR catalysts used in a 660MW coal-fired power plant [J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(5): 1186-1192. | |
74 | TIAN Yuanmeng, YANG Jian, LIU Lan, et al. Insight into regeneration mechanism with sulfuric acid for arsenic poisoned commercial SCR catalyst [J]. Journal of the Energy Institute, 2020, 93(1): 387-394. |
75 | YU Y K, WANG J X, CHEN J S, et al. Regeneration of commercial selective catalyst reduction catalysts deactivated by Pb and other inorganic elements [J]. Journal of Environmental Sciences, 2016, 47(9): 100-108. |
76 | LI J X, ZHANG P, CHEN L, et al. Regeneration of selective catalyst reduction catalysts deactivated by Pb, As, and alkali metals [J]. ACS Omega, 2020, 5(23): 13886-13893. |
77 | YU Y K, HE C, CHEN J S, et al. Regeneration of deactivated commercial SCR catalyst by alkali washing [J]. Catalysis Communications, 2013, 39: 78-81. |
78 | 李想. 废旧脱硝催化剂中毒机制与再生技术研究[D].北京: 清华大学, 2017. |
LI Xiang. The research of deactivation mechanism and regeneration technology for used denitration catalysts [D]. Beijing: Tsinghua University, 2017. | |
79 | QI L Q, LI J T, YAO Y,et al. Heavy metal poisoned and regeneration of selective catalytic reduction catalysts [J]. Journal of Hazardous Materials, 2019, 366: 492-500. |
80 | LI Xiansheng, LIU Changdong, LI Xiang, et al. A neutral and coordination regeneration method of Ca-poisoned V2O5-WO3/TiO2 SCR catalyst [J]. Catalysis Communications, 2017, 100: 112-116. |
81 | SHI Yao, ZHANG Pei, FANG Tuotuo, et al. In situ regeneration of commercial NH3-SCR catalysts with high-temperature water vapor [J]. Catalysis Communications, 2018, 116: 57-61. |
82 | ZHANG Q J, WU Y F, ZUO T Y. Titanium extraction from spent selective catalytic reduction catalysts in a NaOH molten-salt system: thermodynamic, experimental, and kinetic studies [J]. Metallurgical and Materials Transactions B, 2019, 50(1): 471-479. |
83 | LI Q C, LIU Z Y, LIU Q Y. Kinetics of vanadium leaching from a spent industrial V2O5/TiO2 catalyst by sulfuric acid [J]. Industrial & Engineering Chemistry Research, 2014, 53(8): 2956-2962. |
84 | 李力成, 王磊, 赵学娟, 等. 几种酸在废弃脱硝催化剂中提钒效果的比较[J]. 中国有色金属学报, 2016, 26(10): 2230-2237. |
LI L C, WANG L, ZHAO X J, et al. Comparison of effect of different acid treatments on vanadium extraction of waste deNOx catalyst [J]. The Chinese Journal of Nonferrous Metals, 2016, 26(10): 2230-2237. | |
85 | 郑怡琳, 戴世金, 赵由才, 等. 废SCR催化剂中钒和钨的有机酸浸出[J]. 化工环保, 2020, 40(2): 162-168. |
ZHENG Y L, DAI S J, ZHAO Y C, et al. Selective leaching of vanadium and tungsten from spent SCR catalyst using organic acids [J]. Environmental Protection of Chemical Industry, 2020, 40(2): 162-168. | |
86 | 武文粉. 废脱硝催化剂回收钒钨及载体循环利用过程基础研究[D]. 北京: 中国科学院大学, 2020. |
WU Wenfen. Basci research on recovery of vanadium tungsten and carrier from spent denitrification catalyst [D]. Beijing: University of Chinese Academy of Sciences, 2020. | |
87 | 陈允至, 尹振兴, 陈国栋,等. 一种处理废钒催化剂的方法: CN107416903A [P]. 2017-04-20. |
CHEN Yunzhi, YIN Zhenxing, CHEN Guodong, et al. A method of treating spent vanadium catalyst: CN107416903A [P]. 2017-04-20. | |
88 | ZHANG Q J, WU Y F, LI L L, et al. Sustainable approach for spent V2O5-WO3/TiO2 catalysts management: selective recovery of heavy metal vanadium and production of value-added WO3-TiO2 photocatalysts [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12502-12510. |
89 | HUO Y T, CHANG Z D, LI W J, et al. Reuse and valorization of vanadium and tungsten from waste V2O5-WO3/TiO2 SCR catalyst [J]. Waste and Biomass Valorization, 2015, 6(2): 159-165. |
90 | WU W C, TSAI T Y, SHEN Y H. Tungsten recovery from spent SCR catalyst using alkaline leaching and ion exchange [J]. Minerals, 2016, 6(4): 107. |
91 | CHOI I H, MOON G, LEE J Y, et al. Extraction of tungsten and vanadium from spent selective catalytic reduction catalyst for stationary application by pressure leaching process [J]. Journal of Cleaner Production, 2018, 197:163-169. |
92 | 罗军, 关文娟, 张贵清,等. Na2CO3高压浸出SCR脱硝废催化剂中的钨和钒[J]. 稀有金属与硬质合金, 2015, 43(6): 1-6, 32. |
LUO Jun, GUAN Wenjuan, ZHANG Guiqing, et al. High pressure leaching of tungsten and vanadium with sodium carbonate from spent SCR denitration catalyst [J]. Rare Metals and Cemented Carbides, 2015, 43(6): 1-6, 32. | |
93 | KIM J W, HWANG I J. Separation of valuables from spent selective catalytic reduction catalyst leaching solution by fabricated anion extraction resins [J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 1100-1108. |
94 | 李丁辉, 任英杰, 封雅芬, 等. 一种废弃SCR脱硝催化剂的回收利用方法: CN105481007A [P]. 2016-01-12. |
LI Dinghui, REN Yingjie, FENG Yafen, et al. A recycling method of waste SCR denitrification catalyst: CN105481007A [P]. 2016-01-12. |
[1] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[2] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[3] | 殷成阳, 侯铭, 杨爽, 毛迪, 刘俊言. 过渡金属改性Cu-SSZ-13分子筛脱硝催化剂研究进展[J]. 化工进展, 2023, 42(6): 2963-2974. |
[4] | 何川, 吴国勋, 李昂, 张发捷, 卞子君, 卢承政, 王丽朋, 赵民. 垃圾焚烧脱硝催化剂钙镁失活与活性恢复特性[J]. 化工进展, 2023, 42(5): 2413-2420. |
[5] | 符乐, 杨阳, 徐文青, 耿錾卜, 朱廷钰, 郝润龙. 新型相变有机胺吸收捕集CO2技术研究进展[J]. 化工进展, 2023, 42(4): 2068-2080. |
[6] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[7] | 宁淑英, 苏亚欣, 杨洪海, 温妮妮. 用于HC-SCR还原NO x 的Cu基分子筛催化剂研究进展[J]. 化工进展, 2023, 42(3): 1308-1320. |
[8] | 张晨光, 封硕, 邢玉烨, 沈伯雄, 苏立超. 柴油车用NH3-SCR铜基分子筛催化剂孤立态Cu2+研究进展[J]. 化工进展, 2023, 42(3): 1321-1331. |
[9] | 黄起中, 刘冰, 马红鹏, 吕文杰. 基于新型微通道分离技术的甲醇制烯烃废水处理[J]. 化工进展, 2023, 42(2): 669-676. |
[10] | 侯丽敏, 许杰, 付善聪, 武文斐. Cu改性对稀土尾矿催化剂NH3-SCR脱硝的影响[J]. 化工进展, 2023, 42(2): 765-773. |
[11] | 袁礼, 王学谦, 李翔, 王郎郎, 马懿星, 宁平, 熊亦然. 催化脱除钢铁副产煤气中COS和H2S的研究进展[J]. 化工进展, 2023, 42(10): 5147-5161. |
[12] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
[13] | 崔瑞利, 程涛, 宋俊男, 牛贵峰, 刘圆元, 张涛, 赵愉生, 王路海. 固定床渣油加氢脱残炭催化剂的再生表征及性能评价[J]. 化工进展, 2023, 42(10): 5200-5204. |
[14] | 马文杰, 姚卫棠. 共价有机框架(COFs)在锂离子电池中的应用[J]. 化工进展, 2023, 42(10): 5339-5352. |
[15] | 仉洁, 王旭东, 杨逸飞, 任玥, 陈立成. 响应面优化温敏水凝胶汲取剂的制备及性能[J]. 化工进展, 2023, 42(10): 5363-5372. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |