化工进展 ›› 2023, Vol. 42 ›› Issue (2): 765-773.DOI: 10.16085/j.issn.1000-6613.2022-0703
侯丽敏1,2,3(), 许杰1, 付善聪1, 武文斐1,2,3()
收稿日期:
2022-04-19
修回日期:
2022-09-21
出版日期:
2023-02-25
发布日期:
2023-03-13
通讯作者:
武文斐
作者简介:
侯丽敏(1988—),女,博士,讲师,研究方向为稀土尾矿改性制备催化剂、矿产资源综合利用。E-mail:neuhlm@163.com。
基金资助:
HOU Limin1,2,3(), XU Jie1, FU Shancong1, WU Wenfei1,2,3()
Received:
2022-04-19
Revised:
2022-09-21
Online:
2023-02-25
Published:
2023-03-13
Contact:
WU Wenfei
摘要:
近年来,天然矿物由于储量大、活性组分丰富、价格低廉、绿色环保等优点成为脱硝催化剂研究的热点。本文以稀土尾矿为研究对象,利用浸渍-水热法对稀土尾矿进行Cu改性,通过XRD、SEM-EDS、XPS、H2-TPR、NH3-TPD、BET等表征探究Cu改性对稀土尾矿催化剂性能的影响。结果表明,Cu改性后,稀土尾矿催化剂的脱硝性能有大幅提升,且活性反应温度窗口拓宽至200~350℃。随着Cu改性量的增加,催化剂的脱硝效率先升高后降低,改性量为2.5%(质量分数)时,性能提升效果最明显。Cu改性提高了稀土尾矿催化剂的比表面积,Cu元素主要以CuO形式存在于催化剂表面,且与Fe2O3存在相互作用,催化剂中Cu2+、Fe2+和Fe3+的结合能发生明显的偏移,诱导Fe离子周围电子云密度降低,且质量分数2.5%Cu-稀土尾矿催化剂中两者相互作用最强烈,提升了催化剂的氧化还原能力和酸活性中心,CuO的还原温度对脱硝活性的影响大于氧化能力的影响,Fe2O3的氧化能力对脱硝活性的影响大于还原温度的影响。催化剂表面流动性较强的吸附氧更有利于脱硝反应的进行。
中图分类号:
侯丽敏, 许杰, 付善聪, 武文斐. Cu改性对稀土尾矿催化剂NH3-SCR脱硝的影响[J]. 化工进展, 2023, 42(2): 765-773.
HOU Limin, XU Jie, FU Shancong, WU Wenfei. Effect of Cu modification on NH3-SCR denitration of rare earth tailings catalyst[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 765-773.
元素 | 含量/% | 元素 | 含量/% | 元素 | 含量/% | 元素 | 含量/% |
---|---|---|---|---|---|---|---|
Fe | 17.40 | S | 0.72 | Th | 0.03 | Zr | 0.004 |
Ca | 17.80 | Ba | 0.99 | Zn | 0.04 | Ni | 0.002 |
F | 11.84 | Nd | 0.68 | Pb | 0.02 | Sn | 0.005 |
Si | 8.80 | Mn | 0.93 | Sc | 0.01 | Cr | 0.001 |
Mg | 3.10 | K | 0.57 | Cl | 0.08 | Rb | 0.002 |
Ce | 1.78 | Ti | 0.31 | V | 0.008 | Te | 0.002 |
Al | 1.49 | Nb | 0.11 | Co | 0.005 | As | 0.0004 |
Na | 1.34 | Pr | 0.10 | Pd | 0.003 | W | 0.0005 |
P | 1.16 | Sr | 0.10 | I | 0.006 | Cu | 0.0025 |
表1 稀土尾矿主要元素及含量(质量分数)
元素 | 含量/% | 元素 | 含量/% | 元素 | 含量/% | 元素 | 含量/% |
---|---|---|---|---|---|---|---|
Fe | 17.40 | S | 0.72 | Th | 0.03 | Zr | 0.004 |
Ca | 17.80 | Ba | 0.99 | Zn | 0.04 | Ni | 0.002 |
F | 11.84 | Nd | 0.68 | Pb | 0.02 | Sn | 0.005 |
Si | 8.80 | Mn | 0.93 | Sc | 0.01 | Cr | 0.001 |
Mg | 3.10 | K | 0.57 | Cl | 0.08 | Rb | 0.002 |
Ce | 1.78 | Ti | 0.31 | V | 0.008 | Te | 0.002 |
Al | 1.49 | Nb | 0.11 | Co | 0.005 | As | 0.0004 |
Na | 1.34 | Pr | 0.10 | Pd | 0.003 | W | 0.0005 |
P | 1.16 | Sr | 0.10 | I | 0.006 | Cu | 0.0025 |
项目 | 稀土尾矿 | 质量分数1%Cu-稀土尾矿 | 质量分数2.5%Cu-稀土尾矿 | 质量分数4%Cu-稀土尾矿 |
---|---|---|---|---|
Cu2+原子分数/% | — | 64.0 | 61.0 | 66.0 |
Cu+原子分数/% | — | 36.0 | 39.0 | 44.0 |
Cu2+/Cu+ | — | 1.7 | 1.56 | 1.5 |
Fe2+原子分数/% | 44.6 | 55.0 | 52.0 | 51.0 |
Fe3+原子分数/% | 55.4 | 45.0 | 48.0 | 49.0 |
Fe2+/Fe3+ | 0.8 | 1.2 | 1.1 | 1.1 |
Oα原子分数/% | 74.0 | 62.4 | 69.4 | 64.2 |
Oβ原子分数/% | 26.0 | 37.6 | 30.6 | 35.8 |
Oα/Oβ | 2.8 | 1.7 | 2.3 | 1.8 |
表2 稀土尾矿及Cu改性稀土尾矿催化剂表面元素及其价态占比
项目 | 稀土尾矿 | 质量分数1%Cu-稀土尾矿 | 质量分数2.5%Cu-稀土尾矿 | 质量分数4%Cu-稀土尾矿 |
---|---|---|---|---|
Cu2+原子分数/% | — | 64.0 | 61.0 | 66.0 |
Cu+原子分数/% | — | 36.0 | 39.0 | 44.0 |
Cu2+/Cu+ | — | 1.7 | 1.56 | 1.5 |
Fe2+原子分数/% | 44.6 | 55.0 | 52.0 | 51.0 |
Fe3+原子分数/% | 55.4 | 45.0 | 48.0 | 49.0 |
Fe2+/Fe3+ | 0.8 | 1.2 | 1.1 | 1.1 |
Oα原子分数/% | 74.0 | 62.4 | 69.4 | 64.2 |
Oβ原子分数/% | 26.0 | 37.6 | 30.6 | 35.8 |
Oα/Oβ | 2.8 | 1.7 | 2.3 | 1.8 |
催化剂 | 温度/℃ | 脱附峰面积 | ||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | S1 | S2 | S3 | |
稀土尾矿 | 141 | 339 | 487 | 172 | 407 | 138 |
质量分数1%Cu-稀土尾矿 | 209 | 370 | — | 553 | 615 | — |
质量分数2.5%Cu-稀土尾矿 | 232 | 433 | 533 | 603 | 537 | 45 |
质量分数4%Cu-稀土尾矿 | 209 | 445 | — | 558 | 563 | — |
表3 稀土尾矿及Cu改性稀土尾矿催化剂表面酸活性中心种类及其分布
催化剂 | 温度/℃ | 脱附峰面积 | ||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | S1 | S2 | S3 | |
稀土尾矿 | 141 | 339 | 487 | 172 | 407 | 138 |
质量分数1%Cu-稀土尾矿 | 209 | 370 | — | 553 | 615 | — |
质量分数2.5%Cu-稀土尾矿 | 232 | 433 | 533 | 603 | 537 | 45 |
质量分数4%Cu-稀土尾矿 | 209 | 445 | — | 558 | 563 | — |
催化剂 | 比表面积 /m2·g-1 | 孔径 /nm | 孔容 /cm3·g-1 |
---|---|---|---|
稀土尾矿 | 20.10 | 22.21 | 0.11 |
质量分数1%Cu-稀土尾矿 | 38.10 | 8.88 | 0.08 |
质量分数2.5%Cu-稀土尾矿 | 59.67 | 8.69 | 0.13 |
质量分数4%Cu-稀土尾矿 | 42.02 | 9.17 | 0.09 |
表4 稀土尾矿及Cu改性稀土尾矿催化剂的比表面积、孔容、孔径分析
催化剂 | 比表面积 /m2·g-1 | 孔径 /nm | 孔容 /cm3·g-1 |
---|---|---|---|
稀土尾矿 | 20.10 | 22.21 | 0.11 |
质量分数1%Cu-稀土尾矿 | 38.10 | 8.88 | 0.08 |
质量分数2.5%Cu-稀土尾矿 | 59.67 | 8.69 | 0.13 |
质量分数4%Cu-稀土尾矿 | 42.02 | 9.17 | 0.09 |
1 | 赵乾. SCR烟气脱硝系统模拟优化及喷氨量最优控制[D]. 重庆: 重庆大学, 2012. |
ZHAO Qian. Simulation optimization and optimal control on spraying ammonia of SCR flue gas denitrification[D]. Chongqing: Chongqing University, 2012. | |
2 | LIU Kaijie, YU Qingbo, WANG Baolan, et al. Activated carbon-supported catalyst loading of CH4N2O for selective reduction of NO from flue gas at low temperatures[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13523-13537. |
3 | 赵毅, 孙中豪, 曾韵洁. 低温SCR脱硝催化剂的研究进展[J]. 化工环保, 2019, 39(1): 1-5. |
ZHAO Yi, SUN Zhonghao, ZENG Yunjie. Research progresses of low temperature SCR denitration catalyst[J]. Environmental Protection of Chemical Industry, 2019, 39(1): 1-5. | |
4 | CHAE Ho Jeong, In-Sik NAM, Sung-Won HAM, et al. Characteristics of vanadia on the surface of V2O5/Ti-PILC catalyst for the reduction of NO x by NH3 [J]. Applied Catalysis B: Environmental, 2004, 53(2): 117-126. |
5 | NOVA Isabella, LIETTI Luca, TRONCONI Enrico, et al. Dynamics of SCR reaction over a TiO2-supported vanadia-tungsta commercial catalyst[J]. Catalysis Today, 2000, 60(1/2): 73-82. |
6 | CHEN Liang, LI Junhua, GE Maofa. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NO x by NH3 [J]. Chemical Engineering Journal, 2011, 170(2/3): 531-537. |
7 | MARBERGER Adrian, ELSENER Martin, NUGUID Rob Jeremiah G, et al. Thermal activation and aging of a V2O5/WO3-TiO2 catalyst for the selective catalytic reduction of NO with NH3 [J]. Applied Catalysis A: General, 2019, 573: 64-72. |
8 | WANG Xiaoxiang, CONG Qiliang, CHEN Liang, et al. The alkali resistance of CuNbTi catalyst for selective reduction of NO by NH3: A comparative investigation with VWTi catalyst[J]. Applied Catalysis B: Environmental, 2019, 246: 166-179. |
9 | LIANG Zengying, MA Xiaoqian, LIN Hai, et al. The energy consumption and environmental impacts of SCR technology in China[J]. Applied Energy, 2011, 88(4): 1120-1129. |
10 | BERA Parthasarathi, PATIL K C, JAYARAM V, et al. Ionic dispersion of Pt and Pd on CeO2 by combustion method: Effect of metal-ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation[J]. Journal of Catalysis, 2000, 196(2): 293-301. |
11 | 边雪, 肖坤宇, 王书豪, 等. Fe、Ce改性锰钛催化剂的制备及其低温脱硝性能研究[J]. 功能材料, 2019, 50(7): 7079-7084, 7089. |
BIAN Xue, XIAO Kunyu, WANG Shuhao, et al. Preparation and the study on low-temperature denitrification of Fe, Ce modified manganese titanium catalyst[J]. Journal of Functional Materials, 2019, 50(7): 7079-7084, 7089. | |
12 | LIU Zhiming, ZHU Junzhi, ZHANG Shaoxuan, et al. Selective catalytic reduction of NO x by NH3 over MoO3-promoted CeO2/TiO2 catalyst[J]. Catalysis Communications, 2014, 46: 90-93. |
13 | LI Zhe, SHEN Lintao, HUANG Wei, et al. Kinetics of selective catalytic reduction of NO by NH3 on Fe-Mo/ZSM-5 catalyst[J]. Journal of Environmental Sciences, 2007, 19(12): 1516-1519. |
14 | 刘向辉, 张娜, 白宏科, 等. MnO x /DPC催化剂SCR脱硝活性研究[J]. 煤炭加工与综合利用, 2020(3): 75-78. |
LIU Xianghui, ZHANG Na, BAI Hongke, et al. Study on SCR denitrification activity of MnO x /DPC catalyst[J]. Coal Processing & Comprehensive Utilization, 2020(3): 75-78. | |
15 | WANG Xiaobo, WU Shiguo, ZOU Weixin, et al. Fe-Mn/Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3 [J]. Chinese Journal of Catalysis, 2016, 37(8): 1314-1323. |
16 | SINGOREDJO Lydia, KORVER Ruben, KAPTEIJN Freek, et al. Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B: Environmental, 1992, 1(4): 297-316. |
17 | CHANG Huazhen, CHEN Xiaoyin, LI Junhua, et al. Improvement of activity and SO2 tolerance of Sn-modified MnO x -CeO2 catalysts for NH3-SCR at low temperatures[J]. Environmental Science & Technology, 2013, 47(10): 5294-5301. |
18 | CHANG Huazhen, LI Junhua, CHEN Xiaoyin, et al. Effect of Sn on MnO x -CeO2 catalyst for SCR of NO x by ammonia: Enhancement of activity and remarkable resistance to SO2 [J]. Catalysis Communications, 2012, 27: 54-57. |
19 | XING Mengmeng, SUN Qian, ZENG Chun, et al. Modulating Cu+ distribution on the surface of Ce-doped CuO composite oxides for SO2-resistant NH3-selective catalytic reduction of NO[J]. RSC Advances, 2017, 7(31): 18830-18837. |
20 | 郭娜. 复合型锰基催化剂的制备和脱硝性能研究[D]. 西安: 西安建筑科技大学, 2013. |
GUO Na. Study on the preparation and properties of manganese base SCR catalyst[D]. Xi’an: Xi’an University of Architecture and Technology, 2013. | |
21 | 卢慧霞. 菱/锰铁矿石低温SCR脱硝催化剂的制备及改性研究[D]. 南京: 东南大学, 2017. |
LU Huixia. Preparation and modification of siderite and pyrolusite catalysts for low-temperature SCR of NO x with NH3 [D]. Nanjing: Southeast University, 2017. | |
22 | KAMASAMUDRAM Krishna, CURRIER Neal W, CHEN Xu, et al. Overview of the practically important behaviors of zeolite-based urea-SCR catalysts, using compact experimental protocol[J]. Catalysis Today, 2010, 151(3/4): 212-222. |
23 | SONG Zhongxian, ZHANG Qiulin, NING Ping, et al. Effect of copper precursors on the catalytic activity of Cu/ZSM-5 catalysts for selective catalytic reduction of NO by NH3 [J]. Research on Chemical Intermediates, 2016, 42(10): 7429-7445. |
24 | 郑强. 综合回收白云鄂博弱磁尾矿中铁、稀土、氟和磷的研究[D]. 沈阳: 东北大学, 2017. |
ZHENG Qiang. Studies on comprehensive recovery of iron, rare earth, fluorine and phosphorus from Bayan obo weakly magnetic tailings[D]. Shenyang: Northeastern University, 2017. | |
25 | 侯丽敏, 闫笑, 乔超越, 等. 从工艺矿物学角度分析稀土尾矿作为NH3-SCR催化剂的可行性[J]. 中国稀土学报, 2022, 40(2): 216-224. |
HOU Limin, YAN Xiao, QIAO Chaoyue, et al. Feasibility of rare earth tailings as NH3-SCR catalyst from perspective of process mineralogy[J]. Journal of the Chinese Society of Rare Earths, 2022, 40(2): 216-224. | |
26 | 付金艳. γ-Al2O3球磨修饰稀土尾矿NH3-SCR脱硝特性研究[D]. 包头: 内蒙古科技大学, 2020. |
FU Jinyan. Study on NH3-SCR denitration characteristics of rare earth tailings modified by γ-Al2O3 [D]. Baotou: Inner Mongolia University of Science & Technology, 2020. | |
27 | 彭罡. Cu和Fe改性MCM-22催化剂的NH3-SCR性能研究[D]. 武汉: 武汉科技大学, 2020. |
PENG Gang. Investigation on catalytic performance of MCM-22 modified by Cu and Fe in NH3-SCR[D]. Wuhan: Wuhan University of Science and Technology, 2020. | |
28 | 王建. 稀土尾矿催化CO还原脱硝特性实验研究[D]. 包头: 内蒙古科技大学, 2020. |
WANG Jian. Experimental study on catalytic performance of rare earth tailings for CO reduction and denitrification[D]. Baotou: Inner Mongolia University of Science & Technology, 2020. | |
29 | 侯丽敏, 闫笑, 乔超越, 等. 机械力-微波活化对稀土尾矿NH3-SCR脱硝性能的影响[J]. 化工进展, 2021, 40(10): 5818-5828. |
HOU Limin, YAN Xiao, QIAO Chaoyue, et al. Effect of mechanical force and microwave on the NH3-SCR denitration of rare earth tailings[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5818-5828. | |
30 | 李秀凤. 固体超强酸SO4 2-/ZrO2-CeO2的制备及在生物柴油中的应用[D]. 昆明: 昆明理工大学, 2010. |
LI Xiufeng. Preparation of solid superacid SO4 2-/ZrO2-CeO2 and its application in biodiesel[D]. Kunming: Kunming University of Science and Technology, 2010. | |
31 | Feng BIN, SONG Chonglin, Gang LYU, et al. Selective catalytic reduction of nitric oxide with ammonia over zirconium-doped copper/ZSM-5 catalysts[J]. Applied Catalysis B: Environmental, 2014, 150/151: 532-543. |
32 | GONG Jinlong, YUE Hairong, ZHAO Yujun, et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. Journal of the American Chemical Society, 2012, 134(34): 13922-13925. |
33 | CAO Fan, SU Sheng, XIANG Jun, et al. The activity and mechanism study of Fe-Mn-Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3 [J]. Fuel, 2015, 139: 232-239. |
34 | BONINGARI Thirupathi, PAPPAS Dimitrios K, ETTIREDDY Padmanabha R, et al. Influence of SiO2 on M/TiO2 (M = Cu, Mn, and Ce) formulations for low-temperature selective catalytic reduction of NO x with NH3: Surface properties and key components in relation to the activity of NO x reduction[J]. Industrial & Engineering Chemistry Research, 2015, 54(8): 2261-2273. |
35 | KANG Min, PARK Eun Duck, KIM Ji Man, et al. Manganese oxide catalysts for NO x reduction with NH3 at low temperatures[J]. Applied Catalysis A: General, 2007, 327(2): 261-269. |
36 | 杨勇, 陶智超, 张成华, 等. 焙烧温度对Fe-Mn催化剂结构和F-T合成性能影响[J]. 燃料化学学报, 2004, 32(6): 717-722. |
YANG Yong, TAO Zhichao, ZHANG Chenghua, et al. Effect of calcination temperature on the structure and Fischer-Tropsch performance of Fe-Mn catalyst[J]. Journal of Fuel Chemistry and Technology, 2004, 32(6): 717-722. | |
37 | Ismail BOZ, SAHIBZADA Mortaza, METCALFE Ian S. Kinetics of the higher alcohol synthesis over a K-promoted CuO/ZnO/Al2O3 catalyst[J]. Industrial & Engineering Chemistry Research, 1994, 33(9): 2021-2028. |
38 | 刘建国, 定明月, 王铁军, 等. Cu-Fe基双孔载体催化剂结构和低碳醇合成反应性能[J]. 物理化学学报, 2012, 28(8): 1964-1970. |
LIU Jianguo, DING Mingyue, WANG Tiejun, et al. Structure and performance of Cu-Fe bimodal support for higher alcohol syntheses[J]. Acta Physico-Chimica Sinica, 2012, 28(8): 1964-1970. | |
39 | ZHU Zhenping, LIU Zhenyu, LIU Shoujun, et al. Catalytic NO reduction with ammonia at low temperatures on V2O5/AC catalysts: Effect of metal oxides addition and SO2 [J]. Applied Catalysis B: Environmental, 2001, 30(3/4): 267-276. |
40 | XIA Yan, ZHAN Wangcheng, GUO Yun, et al. Fe-Beta zeolite for selective catalytic reduction of NO x with NH3: Influence of Fe content[J]. Chinese Journal of Catalysis, 2016, 37(12): 2069-2078. |
41 | 胡海鹏, 王学涛, 张兴宇, 等. Fe-Cu/ZSM-5催化剂的NH3-SCR脱硝性能[J]. 燃料化学学报, 2018, 46(2): 225-232. |
HU Haipeng, WANG Xuetao, ZHANG Xingyu, et al. Performance of Fe-Cu/ZSM-5 catalyst in the deNO x process via NH3-SCR[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 225-232. | |
42 | SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
43 | 李娜, 陈泽东, 李华, 等. 氟碳铈精矿矿物学分析及负载锰的NH3-SCR脱硝性能的研究[J]. 中国稀土学报, 2021, 39(6): 890-902. |
LI Na, CHEN Zedong, LI Hua, et al. Mineralogical analysis of bastnaesite concentrate and denitration performance of NH3-SCR loaded with manganese[J]. Journal of the Chinese Society of Rare Earths, 2021, 39(6): 890-902. | |
44 | WEI Mengqi, YU Qingbo, MU Tongtong, et al. Preparation and characterization of waste ion-exchange resin-based activated carbon for CO2 capture[J]. Adsorption, 2016, 22(3): 385-396. |
45 | WANG Xiaoxiang, SHI Yun, LI Sujing, et al. Promotional synergistic effect of Cu and Nb doping on a novel Cu/Ti-Nb ternary oxide catalyst for the selective catalytic reduction of NO x with NH3 [J]. Applied Catalysis B: Environmental, 2018, 220: 234-250. |
46 | MA Ziran, WU Xiaodong, SI Zhichun, et al. Impacts of niobia loading on active sites and surface acidity in NbO x /CeO2-ZrO2 NH3-SCR catalysts[J]. Applied Catalysis B: Environmental, 2015, 179: 380-394. |
47 | ARFAOUI Jihene, GHORBEL Abdelhamid, PETITTO Carolina, et al. WITHDRAWN: Novel vanadium supported onto mixed molybdenum-titanium pillared clay catalysts for the low temperature SCR-NO by NH3 [J]. Chemical Engineering Journal, 2017 |
48 | WAN Yaping, ZHAO Wenru, TANG Yu, et al. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3 [J]. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[6] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[7] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[10] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[11] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[12] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[13] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[14] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[15] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |