化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5325-5336.DOI: 10.16085/j.issn.1000-6613.2021-0818
刘子潇1,2(), 张家靓1,2,3(), 杨成1,2, 陈永强1,2,3, 王成彦1,2,3,4()
收稿日期:
2021-04-18
修回日期:
2021-05-28
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
张家靓,王成彦
作者简介:
刘子潇(1997—),女,硕士研究生,研究方向为锂离子电池回收。E-mail:基金资助:
LIU Zixiao1,2(), ZHANG Jialiang1,2,3(), YANG Cheng1,2, CHEN Yongqiang1,2,3, WANG Chengyan1,2,3,4()
Received:
2021-04-18
Revised:
2021-05-28
Online:
2021-10-10
Published:
2021-10-25
Contact:
ZHANG Jialiang,WANG Chengyan
摘要:
废旧锂离子电池的回收是近年来资源回收研究领域的热点,但相关回收体系的理论基础研究仍然较为薄弱。其中在热力学研究方面,研究者们大多仍以经典冶金物理化学理论为指导,并借助E-pH图、优势区域图等方法开展研究。本文对该领域已有的较为典型的热力学研究进行综述,详细阐述了热力学研究对废旧锂离子电池常规回收工艺的指导作用以及对三元正极废料选择性提锂、磷酸铁锂正极废料选择性提锂和失效电池材料再生修复等新技术开发的启发性作用。同时,基于对现有锂离子电池回收体系热力学研究的总结和评述,指出了未来锂离子电池回收体系热力学研究亟待解决的关键问题和发展方向。
中图分类号:
刘子潇, 张家靓, 杨成, 陈永强, 王成彦. 热力学研究在锂离子电池回收中的应用[J]. 化工进展, 2021, 40(10): 5325-5336.
LIU Zixiao, ZHANG Jialiang, YANG Cheng, CHEN Yongqiang, WANG Chengyan. Applications of thermodynamic research in recycling of lithium ion battery[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5325-5336.
1 | 中汽协会行业信息部. 2020年汽车工业经济运行情况[EB/OL].[2021-01-13]. . |
China Association of Automobile Manufacturers. The economic operation performance of the automobile industry in 2020[EB/OL].[2021-01-13]. . | |
2 | KANG D H, CHEN M, OGUNSEITAN O A. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste[J]. Environmental Science & Technology, 2013, 47(10): 5495-5503. |
3 | LYU W, WANG Z H, CAO H B, et al. A critical review and analysis on the recycling of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1504-1521. |
4 | ZHAO Y L, YUAN X Z, JIANG L B, et al. Regeneration and reutilization of cathode materials from spent lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 383: 1385-8947. |
5 | FAN E S, LI L, WANG Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063. |
6 | YAO Y L, ZHU M Y, ZHAO Z, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13611-13627. |
7 | ZHENG X H, ZHU Z W, LIN X, et al. A mini-review on metal recycling from spent lithium ion batteries[J]. Engineering, 2018, 4(3): 361-370. |
8 | 马荣骏, 马玉雯. 循环经济的二次资源金属回收[J]. 矿冶工程, 2014, 34(2): 68-72. |
MA R J, MA Y W. Recycling utilization of secondary resourse metals in circular economy[J]. Mining and Merallurgical Engineering, 2014, 34(2): 68-72. | |
9 | 张笑笑, 王鸯鸯, 刘媛, 等. 废旧锂离子电池回收处理技术与资源化再生技术进展[J]. 化工进展, 2016, 35(12): 4026-4032. |
ZHANG X X, WANG Y Y, LIU Y, et al. Recent progress in disposal and recycling of spent lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4026-4032. | |
10 | LIU Y, LYU W G, ZHENG X H, et al. Near-to-stoichiometric acidic recovery of spent lithium-ion batteries through induced crystallization[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(8): 3183-3194. |
11 | 徐平, 陈钦, 张西华, 等. 废锂离子电池中锂提取技术研究进展[J]. 过程工程学报, 2019, 19(5): 853-864. |
XU P, CHEN Q, ZHANG X H, et al. Research advances on lithium recovery from spent lithium-ion batteries[J]. The Chinese Journal of Process Engineering, 2019, 19(5): 853-864. | |
12 | 中国政府网. 中华人民共和国国民经济和社会发展第十三个五年规划纲要[EB/OL]. [2016-03-17]. . |
The State Council of the People’s Republic of China. Outline of the 13th Five-Year Plan for Economic and Social Development of China[EB/OL].[2016-03-17]. . | |
13 | 中国政府网. 国务院关于印发《中国制造2025》的通知[EB/OL].[2015-05-19]. . |
The State Council of the People’s Republic of China. Circular of the State Council on the issuance of the "Made in China2025"[EB/OL].[2015-05-19]. . | |
14 | 陈岳龙, 杨忠芳. 环境地球化学[M]. 北京: 地质出版社, 2017. |
CHEN Y L, YANG Z F. Environmental geochemistry[M]. Beijing: Geological Publishing House, 2017. | |
15 | WANG R C, LIN Y C, WU S H. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries[J]. Hydrometallurgy, 2009, 99(3/4): 194-201. |
16 | JOULIÉ M, LAUCOURNET R, BILLY E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries[J]. Journal of Power Sources, 2014, 247: 551-555. |
17 | YANG Y, XU S M, HE Y H. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes[J]. Waste Management, 2017, 64: 219-227. |
18 | MESHRAM P, PANDEY B D, MANKHAND T R. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching[J]. Chemical Engineering Journal, 2015, 281: 418-427. |
19 | MESHRAM P, ABHILASH, PANDEY B D, et al. Comparision of different reductants in leaching of spent lithium ion batteries[J]. JOM, 2016, 68(10): 2613-2623. |
20 | CHEN X P, FAN B L, XU L P, et al. An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2016, 112: 3562-3570. |
21 | HE L P, SUN S Y, MU Y Y, et al. Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using L-tartaric acid as a leachant[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 714-721. |
22 | GAO W F, ZHANG X H, ZHENG X H, et al. Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process[J]. Environmental Science & Technology, 2017, 51(3): 1662-1669. |
23 | LI L, FAN E S, GUAN Y B, et al. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5224-5233. |
24 | 郭持皓, 赵中伟, 霍广生. Li-Ni-H2O系的热力学分析[J]. 电源技术, 2005, 29(6): 376-379. |
GUO C H, ZHAO Z W, HUO G S. Thermodynamic analysis on Li-Ni-H2O system[J]. Chinese Journal of Power Sources, 2005, 29(6): 376-379. | |
25 | 文士美, 赵中伟, 霍广生. Li-Co-H2O系热力学分析及E-pH图[J]. 电源技术, 2005, 29(7): 423-426. |
WEN S M, ZHAO Z W, HUO G S. Thermodynamic analysis and potential-pH diagrams of Li-Co-H2O system[J]. Chinese Journal of Power Sources, 2005, 29(7): 423-426. | |
26 | 赵中伟, 霍广生. Li-Mn-H2O系热力学分析[J]. 中国有色金属学报, 2004, 14(11): 1926-1933. |
ZHAO Z W, HUO G S. Thermodynamic analysis of Li-Mn-H2O system[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(11): 1926-1933. | |
27 | 陈若葵, 李长东, 唐红辉, 等. 一种从废旧锂离子电池中回收锂的方法: CN104745823A[P]. 2015-07-01. |
CHEN R K, LI C D, TANG H H, et al. A method for recovering lithium from spent lithium ion batteries: CN104745823A[P]. 2015-07-01. | |
28 | YANG C, ZHANG J L, YU B Y, et al. Recovery of valuable metals from spent LiNixCoyMnzO2 cathode material via phase transformation and stepwise leaching[J]. Separation and Purification Technology, 2021, 267: 118609. |
29 | 严康, 熊正阳, 刘志楼, 等. 废旧三元锂离子电池正极还原焙烧回收Li的研究[J]. 中南大学学报(自然科学版), 2020, 51(12): 3367-3378. |
YAN K, XIONG Z Y, LIU Z L, et al. Study on recycling Li of waste lithium ion batteries by reduction roasting[J]. Journal of Central South University (Science and Technology), 2020, 51(12): 3367-3378. | |
30 | 张家靓, 胡军涛. 一种从废旧锂离子电池材料中综合回收有价金属的方法: CN106129511A[P]. 2016-11-16. |
ZHANG J L, HU J T. A method for comprehensive recovery of valuable metals from spent lithium ion battery: CN106129511A[P]. 2016-11-16. | |
31 | HU J T, ZHANG J L, LI H X, et al. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries[J]. Journal of Power Sources, 2017, 351: 192-199. |
32 | ZHANG J L, HU J T, ZHANG W J, et al. Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries[J]. Journal of Cleaner Production, 2018, 204: 437-446. |
33 | YI W T, YAN C Y, MA P H, et al. Refining of crude Li2CO3via slurry phase dissolution using CO2[J]. Separation and Purification Technology, 2007, 56(3): 241-248. |
34 | ZHAO Y Z, LIU B G, ZHANG L B, et al. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling[J]. Journal of Hazardous Materials, 2020, 384: 121487. |
35 | LIU P C, XIAO L, TANG Y W, et al. Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(3): 1323-1332. |
36 | LIU P C, XIAO L, CHEN Y F, et al. Recovering valuable metals from LiNixCoyMn1-x-yO2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching[J]. Journal of Alloys and Compounds, 2019, 783: 743-752. |
37 | PINDAR S, DHAWAN N. Rapid recycling of spent lithium-ion batteries using microwave route[J]. Process Safety and Environmental Protection, 2021, 147: 226-233. |
38 | FU Y P, HE Y Q, LI J L, et al. Improved hydrometallurgical extraction of valuable metals from spent lithium-ion batteries via a closed-loop process[J]. Journal of Alloys and Compounds, 2020, 847: 156489. |
39 | LIU F P, PENG C, MA Q X, et al. Selective lithium recovery and integrated preparation of high-purity lithium hydroxide products from spent lithium-ion batteries[J]. Separation and Purification Technology, 2021, 259: 118181. |
40 | GUO X Y, LI D PARK K H, et al. Leaching behavior of metals from a limonitic nickel laterite using a sulfation-roasting-leaching process[J]. Hydrometallurgy, 2009, 99(3/4): 144-150. |
41 | 李敦钫, 王成彦, 尹飞, 等. 从硫酸铵焙烧废旧锂离子电池产物中浸出有价金属[J]. 过程工程学报, 2009, 9(2): 264-268. |
LI D F, WANG C Y, YIN F, et al. Leaching of valuable metals from roasted residue of spent lithium-ion batteries with ammonium sulfate[J]. The Chinese Journal of Process Engineering, 2009, 9(2): 264-268. | |
42 | 揭晓武, 王成彦, 李敦钫, 等. 从失效锂离子电池中浸出有价金属的试验研究[J]. 湿法冶金, 2010, 29(2): 114-116. |
JIE X W, WANG C Y, LI D F, et al. Experiment research on leaching of valuable metals from cobalt-containing spent lithium-ion batteries[J]. Hydrometallurgy of China, 2010, 29(2): 114-116. | |
43 | MESHRAM P, ABHILASH, PANDEY B D, et al. Acid baking of spent lithium ion batteries for selective recovery of major metals: a two-step process[J]. Journal of Industrial and Engineering Chemistry, 2016, 43: 117-126. |
44 | 林娇, 刘春伟, 曹宏斌, 等. 基于高温化学转化的废旧锂离子电池资源化技术[J]. 化学进展, 2018, 30(9): 1445-1454. |
LIN J, LIU C W, CAO H B, et al. Recovery of spent lithium ion batteries based on high temperature chemical conversion[J]. Progress in Chemistry, 2018, 30(9): 1445-1454. | |
45 | ZHANG X D, WANG D H, CHEN H X, et al. Chemistry evolution of LiNi1/3Co1/3Mn1/3O2-NaHSO4·H2O system during roasting[J]. Solid State Ionics, 2019, 339: 114983. |
46 | TANG Y Q, ZHANG B L, XIE H W, et al. Recovery and regeneration of lithium cobalt oxide from spent lithium-ion batteries through a low-temperature ammonium sulfate roasting approach[J]. Journal of Power Sources, 2020, 474: 228596. |
47 | TANG Y Q, QU X, ZHANG B L, et al. Recycling of spent lithium nickel cobalt manganese oxides via a low-temperature ammonium sulfation roasting approach[J]. Journal of Cleaner Production, 2021, 279: 123633. |
48 | WANG D H, ZHANG X D, CHEN H J, et al. Separation of Li and Co from the active mass of spent Li-ion batteries by selective sulfating roasting with sodium bisulfate and water leaching[J]. Minerals Engineering, 2018, 126: 28-35. |
49 | LIN J, LIU C W, CAO H B, et al. Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting[J]. Green Chemistry, 2019, 21(21): 5904-5913. |
50 | XU P, LIU C W, ZHANG X H, et al. Synergic mechanisms on carbon and sulfur during the selective recovery of valuable metals from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(5): 2271-2279. |
51 | LIN J, LI L, FAN E S, et al. Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18482-18489. |
52 | CHEN Y M, SHI P F CHANG D, et al. Selective extraction of valuable metals from spent EV power batteries using sulfation roasting and two stage leaching process[J]. Separation and Purification Technology, 2021, 258: 118078. |
53 | YANG C, ZHANG J L, CAO Z H, et al. Sustainable and facile process for lithium recovery from spent LiNixCoyMnzO2 cathode materials via selective sulfation with ammonium sulfate[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(41): 15732-15739. |
54 | JING Q K, ZHANG J L, LIU Y B, et al. E-pH diagrams for the Li-Fe-P-H2O system from 298 to 473K: Thermodynamic analysis and application to the wet chemical processes of the LiFePO4 cathode material[J]. The Journal of Physical Chemistry C, 2019, 123(23): 14207-14215. |
55 | ZHANG J L, HU J T, LIU Y B, et al. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5626-5631. |
56 | 张家靓, 王成彦, 胡军涛. 一种从磷酸铁锂废料中选择性回收锂的方法: CN106910969A[P]. 2017-06-30. |
ZHANG J L, WANG C Y, HU J T. A method for selective recovery of lithium from spent lithium iron phosphate: CN106910969A[P]. 2017-06-30. | |
57 | YANG Y X, MENG X Q, CAO H B, et al. Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process[J]. Green Chemistry, 2018, 20(13): 3121-3133. |
58 | LI H, XING S Z, LIU Y, et al. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8017-8024. |
59 | YU J Z, WANG X, ZHOU M Y, et al. A redox targeting-based material recycling strategy for spent lithium ion batteries[J]. Energy & Environmental Science, 2019, 12(9): 2672-2677. |
60 | LI Z, LIU D F, XIONG J C, et al. Selective recovery of lithium and iron phosphate/carbon from spent lithium iron phosphate cathode material by anionic membrane slurry electrolysis[J]. Waste Management, 2020, 107: 1-8. |
61 | LI Z, HE L H, ZHU Y F, et al. A green and cost-effective method for production of LiOH from spent LiFePO4[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(42): 15915-15926. |
62 | WANG L H, LI J, ZHOU H M, et al. Regeneration cathode material mixture from spent lithium iron phosphate batteries[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(11): 9283-9290. |
63 | CHEN J P, LI Q W, SONG J S, et al. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries[J]. Green Chemistry, 2016, 18(8): 2500-2506. |
64 | MENG X Q, HAO J, CAO H B, et al. Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering[J]. Waste Management, 2019, 84: 54-63. |
65 | NIE H H, XU L, SONG D W, et al. LiCoO2: recycling from spent batteries and regeneration with solid state synthesis[J]. Green Chemistry, 2015, 17(2): 1276-1280. |
66 | 王成彦, 荆乾坤, 张家靓, 等. 废旧锂离子电池正极材料循环利用制备三元正极材料方法: CN109088115A[P]. 2018-12-25. |
WANG C Y, JING Q K, ZHANG J L, et al. A method for preparing ternary cathode materials by recycling spent cathode materials of lithium ion batteries: CN109088115A[P]. 2018-12-25. | |
67 | JING Q K, ZHANG J L, YANG C, et al. A novel and practical hydrothermal method for synthesizing LiNi1/3Co1/3Mn1/3O2 cathode material[J]. Ceramics International, 2020, 46(12): 20020-20026. |
68 | SHI Y, CHEN G, LIU F, et al. Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes[J]. ACS Energy Letters, 2018, 3(7): 1683-1692. |
69 | 杨则恒, 翁韶迎, 张卫新, 等. 一种废旧磷酸铁锂电池正极材料修复再生的方法: CN102208707B[P]. 2013-11-06. |
YANG Z H, WENG S Y, ZHANG W X, et al. A method for regeneration of spent cathode material of lithium iron phosphate battery: CN102208707B[P]. 2013-11-06. | |
70 | JING Q K, ZHANG J L, LIU Y B, et al. Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(48): 17622-17628. |
71 | SONG W, LIU J W, YOU L, et al. Re-synthesis of nano-structured LiFePO4/graphene composite derived from spent lithium-ion battery for booming electric vehicle application[J]. Journal of Power Sources, 2019, 419: 192-202. |
72 | XU P P, DAI Q, GAO H B, et al. Efficient direct recycling of lithium-ion battery cathodes by targeted healing[J]. Joule, 2020, 4(12): 2609-2626. |
73 | LI L, LI Y J, XU B, et al. LiNixCoyMn1-x-yO2 cathode material synthesized through construction of E-pH diagram and its electrochemical performance[J]. Journal of Inorganic Materials, 2018, 33(3): 320-324. |
74 | LI Y J, LI L, SU Q Y, et al. Thermodynamic analysis of Li-Ni-Co-Mn-H2O system and synthesis of LiNi0.5Co0.2Mn0.3O2 composite oxide via aqueous process[J]. Journal of Central South University, 2019, 26(10): 2668-2680. |
75 | ZOU Y H, YANG X F, LYU C X, et al. Multishelled Ni-rich Li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries[J]. Advanced Science, 2017, 4(1): 1600262. |
76 | YANG S F, ZAVALIJ P Y, WHITTINGHAM M S. Hydrothermal synthesis of lithium iron phosphate cathodes[J]. Electrochemistry Communications, 2001, 3(9): 505-508. |
77 | HAUSBRAND R, CHERKASHININ G, EHRENBERG H, et al. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: methodology, insights and novel approaches[J]. Materials Science and Engineering B, 2015, 192: 3-25. |
78 | MELIGRANA G, GERBALDI C, TUEL A, et al. Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells[J]. Journal of Power Sources, 2006, 160(1): 516-522. |
79 | YANG J X, LI Z J, GUANG T J, et al. Green synthesis of high-performance LiFePO4 nanocrystals in pure water[J]. Green Chemistry, 2018, 20(22): 5215-5223. |
80 | KIM J H, WOO S C, PARK M S, et al. Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage[J]. Journal of Power Sources, 2013, 229: 190-197. |
81 | GROLLEAU S, DELAILLE A, GUALOUS H, et al. Calendar aging of commercial graphite/LiFePO4 cell-predicting capacity fade under time dependent storage conditions[J]. Journal of Power Sources, 2014, 255: 450-458. |
82 | PAUL N, WANDT J, SEIDLMAYER S, et al. Aging behavior of lithium iron phosphate based 18650-type cells studied by in situ neutron diffraction[J]. Journal of Power Sources, 2017, 345: 85-96. |
[1] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[2] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[3] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[4] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[5] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[6] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[7] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[8] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[9] | 胡亚飞, 冯自平, 田佳垚, 宋文吉. 空气源燃气热泵系统多制热运行模式下余热回收特性[J]. 化工进展, 2023, 42(8): 4204-4211. |
[10] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[11] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[12] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[13] | 杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129. |
[14] | 侯殿保, 贺茂勇, 陈育刚, 杨海云, 李海民. 资源优化配置与循环经济在钾资源开发利用中的应用[J]. 化工进展, 2023, 42(6): 3197-3208. |
[15] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |