化工进展 ›› 2022, Vol. 41 ›› Issue (1): 17-29.DOI: 10.16085/j.issn.1000-6613.2021-0232
孙通1,2(), 许东东1,2, 宋民航1, 靳星1, 黄云1,2()
收稿日期:
2021-01-31
修回日期:
2021-07-06
出版日期:
2022-01-05
发布日期:
2022-01-24
通讯作者:
黄云
作者简介:
孙通(1995—),男,硕士研究生,研究方向为火焰合成。E-mail:基金资助:
SUN Tong1,2(), XU Dongdong1,2, SONG Minhang1, JIN Xing1, HUANG Yun1,2()
Received:
2021-01-31
Revised:
2021-07-06
Online:
2022-01-05
Published:
2022-01-24
Contact:
HUANG Yun
摘要:
火焰合成法是指前驱物在燃烧器中经过一系列复杂的物理化学反应过程得到产物纳米颗粒的方法,具有一步合成的优点,是现代工业规模化制备高性能材料的一种重要方法。火焰合成过程机理涉及物质的相态变化、颗粒生长团聚和热量质量交换等复杂过程,探究火焰合成过程是实现产物颗粒调控的关键。本文对火焰合成过程中的关键部分,如前驱物、为合成过程提供高温氧化环境的燃烧器、产物颗粒等进行分析,阐述了火焰气溶胶技术中颗粒的生长及转变路径、不同燃烧器的结构及其温度场、流场特点,并分析了不同燃烧器合成的纳米TiO2进行了粒径及晶型特点的研究进展。指出火焰合成TiO2生长机理和形态调控的基础研究对工业制备钛白粉具有指导意义。
中图分类号:
孙通, 许东东, 宋民航, 靳星, 黄云. 火焰合成法制备TiO2的燃烧发生器研究进展[J]. 化工进展, 2022, 41(1): 17-29.
SUN Tong, XU Dongdong, SONG Minhang, JIN Xing, HUANG Yun. Research progress of the burners in synthesis of TiO2 by combustion method[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 17-29.
1 | LI S Q, REN Y H, BISWAS P, et al. Flame aerosol synthesis of nanostructured materials and functional devices: processing, modeling, and diagnostics[J]. Progress in Energy and Combustion Science, 2016, 55: 1-59. |
2 | 陈信华. 颜料的物理形态对塑料着色性能影响[J]. 塑料助剂, 2019(3): 1-5, 32. |
CHEN X H. Impact of the physical forms of pigments on the application performance of plastic coloring[J]. Plastics Additives, 2019(3): 1-5, 32. | |
3 | 董如林, 莫剑臣, 张汉平, 等. 二氧化钛/氧化石墨烯复合光催化剂的合成[J]. 化工进展, 2014, 33(3): 679-684. |
DONG R L, MO J C, ZHANG H P, et al. Synthesis of the titania/graphene oxide composite photocatalyst[J]. Chemical Industry and Engineering Progress, 2014, 33(3): 679-684. | |
4 | 孙家伟, 刘娜, 翟尚儒, 等. 纳米TiO2/ZSM-5型催化剂的制备及其光催化应用研究进展[J]. 化工进展, 2014, 33(1): 85-91, 123. |
SUN J W, LIU N, ZHAI S R, et al. Progress in the preparation of nanoTiO2/ZSM-5 and its photocatalytic applications[J]. Chemical Industry and Engineering Progress, 2014, 33(1): 85-91, 123. | |
5 | 黄俊, 李荣兴, 田林, 等. 氯化法钛白生产工艺中四氯化钛氧化微观反应机理研究进展[J]. 化工进展, 2018, 37(3): 1054-1061. |
HUANG J, LI R X, TIAN L, et al. Research progress of oxidation mechanism in the chloride process for titanium dioxide production[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1054-1061. | |
6 | FRIEDLANDER S K, PUI D Y H. Emerging issues in nanoparticle aerosol science and technology[J]. Journal of Nanoparticle Research, 2004, 6(2): 313-320. |
7 | HAWA T, ZACHARIAH M R. Molecular dynamics study of particle-particle collisions between hydrogen-passivated silicon nanoparticles[J]. Physical Review B, 2004, 69(3): 035417. |
8 | ROTH P. Particle synthesis in flames[J]. Proceedings of the Combustion Institute, 2007, 31(2): 1773-1788. |
9 | ZHANG Y Y, XIONG G, LI S Q, et al. Novel low-intensity phase-selective laser-induced breakdown spectroscopy of TiO2 nanoparticle aerosols during flame synthesis[J]. Combustion and Flame, 2013, 160(3): 725-733. |
10 | REN Y H, CAI J Z, PITSCH H. Theoretical single-droplet model for particle formation in flame spray pyrolysis[J]. Energy & Fuels, 2021, 35(2): 1750-1759. |
11 | JOSSEN R, PRATSINIS S E, STARK W J, et al. Criteria for flame-spray synthesis of hollow, shell-like, or inhomogeneous oxides[J]. Journal of the American Ceramic Society, 2005, 88(6): 1388-1393. |
12 | SOKOLOWSKI M, SOKOLOWSKA A, MICHALSKI A, et al. The “in-flame-reaction” method for Al2O3 aerosol formation[J]. Journal of Aerosol Science, 1977, 8(4): 219-230. |
13 | ROSEBROCK C D, RIEFLER N, WRIEDT T, et al. Disruptive burning of precursor/solvent droplets in flame-spray synthesis of nanoparticles[J]. AIChE Journal, 2013, 59(12): 4553-4566. |
14 | ROSEBROCK C D, WRIEDT T, MÄDLER L, et al. The role of microexplosions in flame spray synthesis for homogeneous nanopowders from low-cost metal precursors[J]. AIChE Journal, 2016, 62(2): 381-391. |
15 | REN Y, LI S, ZHANG Y, et al. Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system[J]. Physical Review Letters, 2015, 114(9): 093401. |
16 | ZHANG Y Y, WANG Z H, WU X X, et al. In situ laser diagnostics of nanoparticle transport across stagnation plane in a counterflow flame[J]. Journal of Aerosol Science, 2017, 105: 145-150. |
17 | WEI J L, LI S Q, REN Y H, et al. Investigating the role of solvent formulations in temperature-controlled liquid-fed aerosol flame synthesis of YAG-based nanoparticles[J]. Proceedings of the Combustion Institute, 2019, 37(1): 1193-1201. |
18 | REN Y H, ZHANG Y Y, LI S Q. Simultaneous single-shot two-dimensional imaging of nanoparticles and radicals in turbulent reactive flows[J]. Physical Review Applied, 2020, 13(4): 044002. |
19 | CAILLAT R, CUER J P, ELSTON J, et al. Preparation doxydes homodisperses dans la flamme hydrogene-oxygene et quelques proprietes de ces composes[J]. Bulletin de la Societe Chimique de France, 1959 (1): 152-156. |
20 | FORMENTI M, JUILLET F, MERIAUDEAU P, et al. Preparation in a hydrogen-oxygen flame of ultrafine metal oxide particles. Oxidative properties toward hydrocarbons in the presence of ultraviolet radiation[J]. Journal of Colloid and Interface Science, 1972, 39(1): 79-89. |
21 | 王宝璐, 额日其太. 甲烷反扩散火焰光谱特性实验研究[J]. 推进技术, 2016, 37(1): 105-111. |
WANG Baolu, ERIQITAI. Experiment study of inverse methane/air diffusion flame emission spectrum properties[J]. Journal of Propulsion Technology, 2016, 37(1): 105-111. | |
22 | XIE F, ZHOU Y, SONG X D, et al. Investigation of OH* chemiluminescence with lift-off characteristic in methane-oxygen inverse diffusion flame[J]. International Journal of Hydrogen Energy, 2021, 46(2): 1461-1472. |
23 | XU Y T, DAI Z H, LI C, et al. Numerical simulation of natural gas non-catalytic partial oxidation reformer[J]. International Journal of Hydrogen Energy, 2014, 39(17): 9149-9157. |
24 | STELZNER B, HUNGER F, VOSS S, et al. Experimental and numerical study of rich inverse diffusion flame structure[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1045-1055. |
25 | 程易, 陈家琦, 丁石. 高温气相法可控制备纳米TiO2[J]. 化工学报, 2007, 58(8): 2103-2109. |
CHENG Y, CHEN J Q, DING S. Controlled synthesis of nano-sized TiO2 powders using high-temperature vapor phase process[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(8): 2103-2109. | |
26 | RESENDE P R, AYOOBI M, AFONSO A M. Numerical investigations of micro-scale diffusion combustion: a brief review[J]. Applied Sciences, 2019, 9(16): 3356. |
27 | XIANG Y, YUAN Z L, WANG S X, et al. Effects of flow rate and fuel/air ratio on propagation behaviors of diffusion H2/air flames in a micro-combustor[J]. Energy, 2019, 179: 315-322. |
28 | SUNSAP P, KIM D J, CHARINPANITKUL T, et al. Analysis of preparation of TiO2 particles by diffusion flame reactor for photodegradation of phenol and toluene[J]. Research on Chemical Intermediates, 2008, 34(4): 319-329. |
29 | ULRICH G D, MILNES B A, SUBRAMANIAN N S. Particle growth in flames. Ⅱ: Experimental results for silica particles[J]. Combustion Science and Technology, 1976, 14(4/5/6): 243-249. |
30 | ULRICH G D. Flame synthesis of fine particles[J]. Chemical & Engineering News, 1984, 62: 22-29. |
31 | EHRMAN S H, FRIEDLANDER S K, ZACHARIAH M R. Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame[J]. Journal of Aerosol Science, 1998, 29(5/6): 687-706. |
32 | ZHANG M, WANG J H, XIE Y L, et al. Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames[J]. Experimental Thermal and Fluid Science, 2014, 52: 288-296. |
33 | JIN W, WANG J H, NIE Y H, et al. Experimental study on flame instabilities of laminar premixed CH4/H2/air non-adiabatic flat flames[J]. Fuel, 2015, 159: 599-606. |
34 | JIN W, WANG J H, YU S B, et al. Cellular instabilities of non-adiabatic laminar flat methane/hydrogen oxy-fuel flames highly diluted with CO2[J]. Fuel, 2015, 143: 38-46. |
35 | JIANG L Q, GU C, ZHOU G Z, et al. Cellular instabilities of n-butane/air flat flames probing by PLIF-OH and PLIF-CH2O laser diagnosis[J]. Experimental Thermal and Fluid Science, 2020, 118: 110155. |
36 | ARABI-KATBI O I, PRATSINIS S E, MORRISON P W, et al. Monitoring the flame synthesis of TiO2 particles by in situ FTIR spectroscopy and thermophoretic sampling[J]. Combustion and Flame, 2001, 124(4): 560-572. |
37 | KAMMLER H K, PRATSINIS S E, MORRISON P W, et al. Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles[J]. Combustion and Flame, 2002, 128(4): 369-381. |
38 | WOOLDRIDGE M S, TOREK P V, DONOVAN M T, et al. An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner[J]. Combustion and Flame, 2002, 131(1/2): 98-109. |
39 | FENG D, GOLDBERG B M, SHNEIDER M N, et al. Optimization of filtered Rayleigh scattering for the measurement of pressure and temperature[J]. Combustion Science and Technology, 2020. DOI: 10.1080/00102202.2020.1822345. |
40 | QI S, WANG Z H, COSTA M, et al. Ignition and combustion of single pulverized biomass and coal particles in N2/O2 and CO2/O2 environments[J]. Fuel, 2021, 283: 118956. |
41 | HUANG Q, MA P, GAO Q, et al. Ultrafine particle formation in pulverized coal, biomass, and waste combustion: understanding the relationship with flame synthesis process[J]. Energy & Fuels, 2020, 34(2): 1386-1395. |
42 | MA P, HUANG Q, GAO Q, et al. Effects of Na and Fe on the formation of coal-derived soot in a two-stage flat-flame burner[J]. Fuel, 2020, 265: 116914. |
43 | CHUNG S L, KATZ J L. The counterflow diffusion flame burner: a new tool for the study of the nucleation of refractory compounds[J]. Combustion and Flame, 1985, 61(3): 271-284. |
44 | HUNG C H, KATZ J L. Formation of mixed oxide powders in flames: Part Ⅰ. TiO2-SiO2[J]. Journal of Materials Research, 1992, 7(7): 1861-1869. |
45 | HUNG C H, MIQUEL P F, KATZ J L. Formation of mixed oxide powders in flames: Part Ⅱ. SiO2-GeO2 and Al2O3-TiO2[J]. Journal of Materials Research, 1992, 7(7): 1870-1875. |
46 | LIANG M Q, HE Y T, LIAO S Y, et al. Coupling effects of hydrogen transport and reactivity on NO production in laminar nonpremixed methane/air flames[J]. Fuel, 2021, 288: 119725. |
47 | SKANDAN G, CHEN Y J, GLUMAC N, et al. Synthesis of oxide nanoparticles in low pressure flames[J]. Nanostructured Materials, 1999, 11(2): 149-158. |
48 | FENG L, WANG Q L, LIU H F, et al. Effect of the stagnation plate on PAHs, soot and OH distributions in partially premixed laminar flames fueled with a blend of n-heptane and toluene[J]. Combustion and Flame, 2021, 227: 52-64. |
49 | SAITO K, YI E, LAINE R M, et al. Preparation of Nb-doped TiO2 nanopowder by liquid-feed spray pyrolysis followed by ammonia annealing for tunable visible-light absorption and inhibition of photocatalytic activity[J]. Ceramics International, 2020, 46(2): 1314-1322. |
50 | GRÖHN A J, PRATSINIS S E, SÁNCHEZ-FERRER A, et al. Scale-up of nanoparticle synthesis by flame spray pyrolysis: the high-temperature particle residence time[J]. Industrial & Engineering Chemistry Research, 2014, 53(26): 10734-10742. |
51 | DE IULIIS S, MIGLIORINI F, DONDÈ R. Laser-induced emission of TiO2 nanoparticles in flame spray synthesis[J]. Applied Physics B, 2019, 125(11): 1-11. |
52 | DE IULIIS S, DONDÈ R, ALTMAN I. On thermal regime of nanoparticles in synthesis flame[J]. Chemical Physics Letters, 2021, 769: 138424. |
53 | LIANG Y J, KU K, LIN Y L, et al. Process engineering to increase the layered phase concentration in the immediate products of flame spray pyrolysis[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 26915-26923. |
54 | TEOH W Y, AMAL R, MÄDLER L. Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication[J]. Nanoscale, 2010, 2(8): 1324. |
55 | SCHAEFER D,WIEGAND A, ALFF H, et al. Producing mixed oxide comprising lithium, zirconium and other than lithium and zirconium metal by means of flame spray pyrolysis, solution of metal precursors, comprises lithium carboxylate and/or zirconium carboxylate: WO2021048249-A1[P]. 2021-03-08. |
56 | SCHAEFER D, WIEGAND A, ALFF H,et al. Producing lithium zirconium mixed oxide as e.g., coating or doping material for electrodes of lithium batteries by flame spray pyrolysis and optional further thermal treatment using solution of metal precursors comprising metal carboxylate: WO2021048251-A1[P]. 2021-03-18. |
57 | SUEMATSU R, MISAKI N, YAMAZAKI H, et al. Producing inorganic oxide particles, involves spraying mist from nozzle in internal combustion type spray pyrolysis apparatus equipped with nozzle, and thermally decomposing mist: JP2020142949-A[P]. 2020-09-10. |
58 | ZHU W H, PRATSINIS S E. Flame synthesis of nanosize powders - effect of flame configuration and oxidant composition [M]//ZHU W H, PRATSINIS S E. Nanotechnology: Molecularly designed materials. Washington: American Chemical Society, 1996: 64-78. |
59 | WEGNER K, PRATSINIS S E. Nozzle-quenching process for controlled flame synthesis of titania nanoparticles[J]. AIChE Journal, 2003, 49(7): 1667-1675. |
60 | YANG G X, BISWAS P. Study of the sintering of nanosized titania agglomerates in flames using in situ light scattering measurements[J]. Aerosol Science and Technology, 1997, 27(4): 507-521. |
61 | MA H K,YANG H A. A comparative study of TiO2 nanoparticles synthesized in premixed and diffusion flames[J]. Journal of Thermal Science, 2010, 19(6): 567-575. |
62 | MEMON N K, ANJUM D H, CHUNG S H. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles[J]. Combustion and Flame, 2013, 160(9): 1848-1856. |
63 | RULISON A J, MIQUEL P F, KATZ J L. Titania and silica powders produced in a counterflow diffusion flame[J]. Journal of Materials Research, 1996, 11(12): 3083-3089. |
64 | GLUMAC N G, CHEN Y J, SKANDAN G. Diagnostics and modeling of nanopowder synthesis in low pressure flames[J]. Journal of Materials Research, 1998, 13(9): 2572-2579. |
65 | 符春林, 魏锡文. 二氧化钛晶型转变研究进展[J]. 材料导报, 1999, 13(3): 37-38, 47. |
FU C L, WEI X W. Recent advances in the crystalline phase transition of titania[J]. Materials Review, 1999, 13(3): 37-38, 47. | |
66 | 王若泽, 杨振, 龙翔, 等. X射线衍射仪和X荧光光谱仪在钛白粉分析中的应用[J]. 中国涂料, 2017, 32(7): 63-66. |
WANG R Z, YANG Z, LONG X, et al. Application of X-ray diffractometer and X-ray fluorescence spectrometer in titanium dioxide analysis[J]. China Coatings, 2017, 32(7): 63-66. | |
67 | 施利毅, 李春忠, 朱以华, 等. TiCl4高温气相氧化合成纳米二氧化钛颗粒的研究Ⅰ. 颗粒粒度控制[J]. 功能材料, 2000, 31(6): 622-624. |
SHI L Y, LI C Z, ZHU Y H, et al. Study on the nanosized TiO2 particles synthesized by TiCl4 high temperature gas phase oxidation Ⅰ. Particles size controlling[J]. Journal of Functional Materials, 2000, 31(6): 622-624. | |
68 | 施利毅, 李春忠, 陈爱平, 等. TiCl4高温气相氧化合成纳米二氧化钛颗粒的研究Ⅱ.颗粒晶型结构控制[J]. 功能材料, 2000, 31(6): 625-627. |
SHI L Y, LI C Z, CHEN A P, et al. Study on the nanosized TiO2 particles synthesized by TiCl4 high temperature gas phase oxidation Ⅱ. Crystal structure controlling[J]. Journal of Functional Materials, 2000, 31(6): 625-627. | |
69 | 戚蓉. 氯化法钛白粉的粒径与粒径分布[J]. 现代涂料与涂装, 2007, 10(5): 44-46, 50. |
QI R. Particle size and distribution of titanium dioxide produced by chloride procedure[J]. Modern Paint & Finishing, 2007, 10(5): 44-46, 50 | |
70 | 王亚锋, 李俊峰, 张兵兵. TiCl4气相氧化制备TiO2颗粒的粒径控制研究[J]. 河南科学, 2016, 34(5): 662-666. |
WANG Y F, LI J F, ZHANG B B. Size control of TiO2 particle produced by gas-phase oxidation of titanium tetrachloride[J]. Henan Science, 2016, 34(5): 662-666. | |
71 | MAHENDER C, MURALI B, VENKATESHWARARAO M, et al. Synthesis of titanium nanorods with LPG as fuel and oxygen as oxidant in diffusion flame reactor[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 1884-1887. |
72 | ALMQUIST C B, BISWAS P. Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity[J]. Journal of Catalysis, 2002, 212(2): 145-156. |
73 | BICKMORE C R, WALDNER K F, TREADWELL D R, et al. Ultrafine spinel powders by flame spray pyrolysis of a magnesium aluminum double alkoxide[J]. Journal of the American Ceramic Society, 1996, 79(5): 1419-1423. |
74 | BICKMORE C R, WALDNER K F, BARANWAL R, et al. Ultrafine titania by flame spray pyrolysis of a titanatrane complex[J]. Journal of the European Ceramic Society, 1998, 18(4): 287-297. |
75 | KHO Y K, TEOH W Y, MÄDLER L, et al. Dopant-free, polymorphic design of TiO2 nanocrystals by flame aerosol synthesis[J]. Chemical Engineering Science, 2011, 66(11): 2409-2416. |
76 | JIANG Y J, SCOTT J, AMAL R. Exploring the relationship between surface structure and photocatalytic activity of flame-made TiO2-based catalysts[J]. Applied Catalysis B: Environmental, 2012, 126: 290-297. |
77 | BETTINI L G, DOZZI M V, FOGLIA F D, et al. Mixed-phase nanocrystalline TiO2 photocatalysts produced by flame spray pyrolysis[J]. Applied Catalysis B: Environmental, 2015, 178: 226-232. |
78 | MAHENDER C, MURALI B. Synthesis of nano phase titanium dioxide (TiO2) in diffusion flame reactor and it application in photocatalytic reaction[J]. Journal of Engineering Research and Applications, 2014, 4(2): 209-213. |
79 | DHAND V, PRASAD J, RAO M V, et al. Design and development of flame reactor unit for carbon nanorods (CNRs) production[J]. Indian Journal of Engineering and Materials Sciences, 2007, 14(3): 235-239. |
80 | ZHANG H Z, BANFIELD J F. Thermodynamic analysis of phase stability of nanocrystalline titania[J]. Journal of Materials Chemistry, 1998, 8(9): 2073-2076. |
81 | MEMARZADEH S, TOLMACHOFF E D, PHARES D J, et al. Properties of nanocrystalline TiO2 synthesized in premixed flames stabilized on a rotating surface[J]. Proceedings of the Combustion Institute, 2011, 33(2): 1917-1924. |
82 | 胡悦, 谭建国, 吕良. 甲烷-空气预混火焰中化学发光定量化测量放热率的实验研究[J]. 推进技术, 2019, 40(5): 1083-1092. |
HU Y, TAN J G, LYU L. Experimental investigation of heat release rate quantitative measurement using chemiluminescence in premixed methane-air flames[J]. Journal of Propulsion Technology, 2019, 40(5): 1083-1092. | |
83 | 张浪, 谭建国, 刘瑶. 甲烷/空气同轴射流火焰反应热与OH*/CH*定量表征特性研究[J]. 光谱学与光谱分析, 2020, 40(6): 1703-1709. |
ZHANG L, TAN J G,LIU Y. Methane/air coaxial jet flame reaction heat and quantitative characterization of OH*/CH*[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1703-1709. |
[1] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
[2] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[3] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[4] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[5] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[6] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[7] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[8] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
[9] | 殷铭, 郭晋, 庞纪峰, 吴鹏飞, 郑明远. 铜催化剂在涉氢反应中的失活机制和稳定策略[J]. 化工进展, 2023, 42(4): 1860-1868. |
[10] | 葛伟童, 廖亚龙, 李明原, 嵇广雄, 郗家俊. Pd-Fe/MWCNTs双金属催化剂制备及其脱氯动力学[J]. 化工进展, 2023, 42(4): 1885-1894. |
[11] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[12] | 司银芳, 胡语婕, 张凡, 董浩, 佘跃惠. 生物合成氧化锌纳米颗粒材料及其抗菌应用[J]. 化工进展, 2023, 42(4): 2013-2023. |
[13] | 郭帅帅, 陈锦路, 金梁程龙, 陶醉, 陈小丽, 彭国文. 基于海水提铀的多孔芳香框架材料研究进展[J]. 化工进展, 2023, 42(3): 1426-1436. |
[14] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
[15] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |