化工进展 ›› 2022, Vol. 41 ›› Issue (1): 253-263.DOI: 10.16085/j.issn.1000-6613.2021-0142
白永珍1(), 尚小标1,2,3(), 刘美红1, 魏聪1, 张富程1, 肖利平1, 李广超1, 陈君若4
收稿日期:
2021-01-20
修回日期:
2021-03-24
出版日期:
2022-01-05
发布日期:
2022-01-24
通讯作者:
尚小标
作者简介:
白永珍(1994—),女,硕士研究生,研究方向为微波能工程应用技术。E-mail:基金资助:
BAI Yongzhen1(), SHANG Xiaobiao1,2,3(), LIU Meihong1, WEI Cong1, ZHANG Fucheng1, XIAO Liping1, LI Guangchao1, CHEN Junruo4
Received:
2021-01-20
Revised:
2021-03-24
Online:
2022-01-05
Published:
2022-01-24
Contact:
SHANG Xiaobiao
摘要:
微波加热技术因其绿色环保、体积加热、选择性加热等优势,已被广泛应用于化工强化、金属冶炼、陶瓷烧结、食品加工等众多领域,但微波在反应器内普遍存在透波效果差、微波利用率低等问题。随着微波加热技术的不断发展,微波加热设备中透波材料的选用越来越受到大家的关注。本文主要针对透波材料在微波加热领域中的应用现状进行综述,对透波材料的种类进行简要介绍,分别从微波加热用容器和保温材料两方面进行论述。详细介绍了氧化物、氮化物、硅酸盐、磷酸盐等高温透波材料及聚四氟乙烯、玻纤增强树脂基、环氧树脂等中、低温透波材料的研究进展,并具体论述了目前微波加热常用纤维棉、纤维毯和纤维板等各种陶瓷纤维制品的介电特性和透波性能,最后指出了目前微波加热用透波材料普遍存在的问题,并对透波材料的应用和发展作出了展望。
中图分类号:
白永珍, 尚小标, 刘美红, 魏聪, 张富程, 肖利平, 李广超, 陈君若. 微波加热用透波材料的研究进展[J]. 化工进展, 2022, 41(1): 253-263.
BAI Yongzhen, SHANG Xiaobiao, LIU Meihong, WEI Cong, ZHANG Fucheng, XIAO Liping, LI Guangchao, CHEN Junruo. Research progress of wave-transmitting materials for microwave heating[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 253-263.
材料 | 频率 | 温度 | 介电参数 | 数值 |
---|---|---|---|---|
氧化铝 | 2450MHz | 22℃≤T≤1379℃ | 8.9~11.77 | |
0.004~0.0476 | ||||
莫来石 | 915MHz | 400℃≤T≤1300℃ | 3×10-9T3-4×10-6T2+0.0032T+4.4869 | |
9×10-7T2-0.0002T-0.0268 | ||||
2450MHz | 27℃≤T≤1027℃ | 2.119×10-6T2-0.00037T+6.1438 | ||
1.7052×10-9T3-1.4616×10-6T2+0.000559T+0.02279 | ||||
熔融石英 | 915MHz | 25℃≤T≤1400℃ | 3.816~3.988 | |
tanδ | 4.98×10-6~8.39×10-6 | |||
2360MHz | 25℃≤T≤800℃ | 3.820~3.892 | ||
tanδ | 4.97×10-6~5.85×10-6 | |||
硅酸铝纤维板[ | 2422MHz | 20℃≤T≤1300℃ | 2×10-10T3-6×10-8T2-0.0003T+1.2671 | |
2×10-11T3-8×10-9T2-9×10-6T+0.0027 | ||||
氧化锆纤维板[ | 2422MHz | 20℃≤T≤1400℃ | 6×10-10T3-9×10-7T2-0.0003T+2.5433 | |
3×10-9T3-5×10-7T2-0.0003T+0.0438 |
表1 几种常见材料的介电特性
材料 | 频率 | 温度 | 介电参数 | 数值 |
---|---|---|---|---|
氧化铝 | 2450MHz | 22℃≤T≤1379℃ | 8.9~11.77 | |
0.004~0.0476 | ||||
莫来石 | 915MHz | 400℃≤T≤1300℃ | 3×10-9T3-4×10-6T2+0.0032T+4.4869 | |
9×10-7T2-0.0002T-0.0268 | ||||
2450MHz | 27℃≤T≤1027℃ | 2.119×10-6T2-0.00037T+6.1438 | ||
1.7052×10-9T3-1.4616×10-6T2+0.000559T+0.02279 | ||||
熔融石英 | 915MHz | 25℃≤T≤1400℃ | 3.816~3.988 | |
tanδ | 4.98×10-6~8.39×10-6 | |||
2360MHz | 25℃≤T≤800℃ | 3.820~3.892 | ||
tanδ | 4.97×10-6~5.85×10-6 | |||
硅酸铝纤维板[ | 2422MHz | 20℃≤T≤1300℃ | 2×10-10T3-6×10-8T2-0.0003T+1.2671 | |
2×10-11T3-8×10-9T2-9×10-6T+0.0027 | ||||
氧化锆纤维板[ | 2422MHz | 20℃≤T≤1400℃ | 6×10-10T3-9×10-7T2-0.0003T+2.5433 | |
3×10-9T3-5×10-7T2-0.0003T+0.0438 |
1 | 周德良, 刘洁. 微波加热及其量子特性[J]. 黑龙江八一农垦大学学报, 2019, 31(1): 74-77, 108. |
ZHOU Deliang, LIU Jie. Microwave heating and quantum property[J]. Journal of Heilongjiang Bayi Agricultural University, 2019, 31(1): 74-77, 108. | |
2 | 牟群英, 李贤军. 微波加热技术的应用与研究进展[J]. 物理, 2004, 33(6): 438-442. |
MOU Qunying, LI Xianjun. Applications of microwave heating technology[J]. Physics, 2004, 33(6): 438-442. | |
3 | 彭金辉, 梅毅, 巨少华, 等. 微波化工技术[M]. 北京: 化学工业出版社, 2020. |
PENG Jinhui, MEI Yi, JU Shaohua, et al. Microwave chemical technology[M]. Beijing: Chemical Industry Press, 2020. | |
4 | LI Bo, ZHENG Jingguo, LI Wei. Influence of cobalt ions non-stoichiometry on the microstructure and microwave properties of Ca5Co4(VO4)6 ceramics[J]. Ceramics International, 2017, 43(16): 13956-13962. |
5 | HORIKOSHI S, SCHIFFMANN R F, FUKUSHIMA J, et al. Microwave-assisted chemistry[M]//Microwave Chemical and Materials Processing, 2018: 243-319. |
6 | CAMPAONE A, BAVA J, MASCHERONI R. Modeling and process simulation of controlled microwave heating of foods by using of the resonance phenomenon[J]. Applied Thermal Engineering, 2014, 73(1): 914-923. |
7 | BEHREND R, DORN C, UHLIG V, et al. Investigations on container materials in high temperature microwave applications[J]. Energy Procedia, 2017, 120: 417-423. |
8 | 蔡德龙, 陈斐, 何凤梅, 等. 高温透波陶瓷材料研究进展[J]. 现代技术陶瓷, 2019, 40(S1): 4-120. |
CAI Delong, CHEN Fei, HE Fengmei, et al. Recent progress and prospestion on high-temperature wave-transparent ceramic materials[J]. Advanced Ceramics, 2019, 40(Si): 4-120. | |
9 | 黄新松, 李文钦, 简科. 耐高温陶瓷透波纤维研究进展[J]. 安全与电磁兼容, 2010(2): 53-56. |
HUANG Xinsong, LI Wenqin, JIAN Ke. Progress in the research of high-temperature ceramic wave-transparent fibers[J]. Safety and EMC, 2010(2): 53-56. | |
10 | 张子龙. 超常材料对常规微波材料吸收性能的调控研究[D]. 长沙: 湖南大学, 2016. |
ZHANG Zilong. Absorbing properties of conventional microwave absorbing material optimized by metamaterials[D]. Changsha: Hunan University, 2016. | |
11 | AAKRITI R, ABHISHEKKUMAR J, MARIFHUSSAIN A, et al. Metamaterial-inspired microwave sensor for measurement of complex permittivity of materials[J]. Microwave and Optical Technology Letters,2016, 58(11): 2577-2581. |
12 | 谢绵钰. 几种功能材料的高效能制备与性能表征[D]. 广州: 暨南大学, 2016. |
XIE Mianyu. Efficient preparation and characterization of several kinds of functional materials[D]. Guangzhou: Jinan University, 2016. | |
13 | 尚小标, 陈君若, 张伟峰, 等. 硅酸铝/氧化锆纤维板在微波加热中透波性研究[J]. 化学工程, 2014, 42(5): 35-38. |
SHANG Xiaobiao, CHEN Junruo, ZHANG Weifeng, et al. Wave-transparent property of alumino silicate/zirconia fiberboard in microwave heating[J]. Chemical Engineering, 2014, 42(5): 35-38. | |
14 | BHATTACHARYA M, BASAK T. A review on the susceptor assisted microwave processing of materials[J]. Energy, 2016, 97: 306-338. |
15 | ZHOU B, ZHOU J, ZHANG Z, et al. Dielectric characterizations and heating behavior of siderite in microwave field[J]. Materials Research Express, 2018, 5(10): 105502. |
16 | SHANG X B, ZHAI D, ZHANG F, et al. Electromagnetic waves transmission performance of alumina refractory ceramics in 2.45GHz microwave heating[J]. Ceramics International, 2019, 45(17): 23493-23500. |
17 | AFSAR M N, BIRCH J R, CLARKE R N, et al. The measurement of the properties of materials[J]. Proceedings of the IEEE, 1986, 74(1): 183-199. |
18 | 赵艳丽. 典型地物微波介电特性及其室内测量方法研究[D]. 成都: 电子科技大学, 2009. |
ZHAO Yanli. Microwave dielectric properties of typical ground objects and its indoor measurement method[D]. Chengdu: University of Electronic Science and Technology, 2009. | |
19 | 王秀丽. 典型地物介电常数测量方法研究[D]. 成都: 电子科技大学, 2011. |
WANG Xiuli. Research on measurement method of dielectric constant of typical ground objects[D]. Chengdu: University of Electronic Science and Technology, 2011. | |
20 | 黎义, 李建保, 何小瓦. 采用谐振腔法研究透波材料的高温介电性能[J]. 红外与毫米波学报, 2004, 23(2): 157-160. |
LI Yi, LI Jianbao, HE Xiaowa. Study on high temperature dielectric properties of magnetic window materials by cavity resonator method[J]. Journal of Infrared and Millimeter Waves, 2004, 23(2): 157-160. | |
21 | 王依超, 郭高凤, 王娟, 等. 自由空间法测量电磁材料电磁参数[J]. 宇航材料工艺, 2014, 44(1): 107-111. |
WANG Yichao, GUO Gaofeng, WANG Juan, et al. Measurement of electromagnetic parameters of electromagnetic materials by free-space method[J]. Aerospace Materials & Technology, 2014, 44(1): 107-111. | |
22 | PENG Z W, JIANN T. Microwave dielectric characterization of silicon dioxide[M]. Hoboken: John Wiley & Sons, Inc., 2013. |
23 | SHANG X B, CHEN J R, PENG J H. Dynamic transmission performances of alumina and mullite refractory ceramics in microwave high-temperature heating[J]. High Temperature Materials and Processes, 2016, 35(1): 113-119. |
24 | ZHAI D, WEI C, ZHANG F C, et al. Microwave transmission performance of fused silica ceramics in microwave high-temperature heating[J]. Ceramics International, 2019, 45(5): 6157-6162. |
25 | ZHAI D, ZHANG F C, WEI C, et al. Dielectric properties and electromagnetic wave transmission performance of polycrystalline mullite fiberboard at 2.45GHz[J]. Ceramics International, 2020, 46(6): 7362-7373. |
26 | LEWIS D, SPANN J R. Assessment of new radome materials as replacements for pyroceram 9606[J]. Scientia Sinica, 1980: 165-169. |
27 | 吴文军, 胡子君, 李俊宁, 等. Al2O3掺杂对SiO2纳米透波/隔热材料性能的影响[J]. 宇航材料工艺, 2014, 44(1): 97-100. |
WU Wenjun, HU Zijun, LI Junning, et al. Effect on the properties of SiO2 nanoporous transparent-wave/heat-insulation materials doped with Al2O3[J]. Aerospace Materials & Technology, 2014, 44(1): 97-100. | |
28 | 张雄, 王义, 程海峰. 石英纤维透波复合材料的研究进展[J]. 材料导报, 2012, 26(S1): 96-100. |
ZHANG Xiong, WANG Yi, CHENG Haifeng. Research and development of wave-transparent composites reinforced by silica fibers[J]. Materials Review, 2012, 26(S1): 96-100. | |
29 | 万欣欣, 尚小标, 陈君若, 等. 二氧化硅陶瓷在微波场中的透波性能研究[J]. 中国陶瓷, 2015, 51(3): 15-17. |
WAN Xinxin, SHANG Xiaobiao, CHEN Junruo, et al. Study on the wave-transparent property of silicon dioxide under microwave irradiation[J]. China Ceramics, 2015, 51(3): 15-17. | |
30 | HOTTA M, HAYASHI M, NISHIKATA A, et al. Complex permittivity and permeability of SiO2 and Fe3O4 powders in microwave frequency range between 0.2 and 13.5GHz[J]. ISIJ International, 2009, 49(9): 1443-1448. |
31 | Jane’s Information Group. Jane’s strategic weapon systems [R]. Jane’s Air-Launched Weapons, 2009. |
32 | 张雯, 王红洁, 金志浩. 先驱体热解制备BN复合陶瓷材料研究进展[J]. 兵器材料科学与工程, 2004, 27(5): 58-63. |
ZHANG Wen, WANG Hongjie, JIN Zhihao. Preparation of BN matrix composites, by precursor thermolysis[J]. Ordnance Material Science and Engineering, 2004, 27(5): 58-63. | |
33 | GOLDEN K, HANAWALT B, OSSMANN W. The prediction and measure of dielectric proper-ties and RF transmission through ablating BN antenna windows[C]//16th Thermophysics Conference. California: Palo Alto, 1981: 23-25. |
34 | HANAWALT A. Plasma arc test technique for evaluating antenna window RF transmission performance[C]//American Institute of Aeronautics and Astronautics and American Society of Mechanical Engineers. Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, 3rd, St. Louis, MO, 1982: 9. |
35 | HAN J, SUN Y, ZHANG Y. Dielectric properties in GHz range of porous Si3N4-BN-SiO2 ceramics with considerable flexural strength prepared by low temperature sintering in air[J]. Materials Science and Technology, 2010, 26(8): 996-1000. |
36 | 刘坤, 张长瑞, 曹峰, 等. BNp/BN复合材料的制备及其性能研究[C]//全国高技术陶瓷学术年会摘要集. 南京, 2012. |
LIU Kun, ZHANG Changrui, CAO Feng, et al. Preparation and properties of BNp/BN composites[C]//National High Tech Ceramics Annual Meeting. Nanjing, 2012. | |
37 | 邹春荣, 张长瑞, 肖永栋, 等. 高性能透波陶瓷纤维的研究现状和展望[J]. 硅酸盐通报, 2013, 32(2): 274-279. |
ZOU Chunrong, ZHANG Changrui, XIAO Yongdong, et al. Progress and prospect of high performance wave-transparent ceramic fibers[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(2): 274-279. | |
38 | 李光亚, 梁艳媛. 纤维增强SiBN陶瓷基复合材料的制备及性能[J]. 宇航材料工艺, 2016, 46(3): 61-64. |
LI Guangya, LIANG Yanyuan. Preparation and performance of fiber reinforced SiBN ceramic matrix composite[J]. Aerospace Materials & Technology, 2016, 46(3): 61-64. | |
39 | 范冰冰, 李红霞, 李威, 等. 一种微波窑用SiNO透波-隔热一体化内衬材料及其制备方法: CN201710118361.X[P]. 2017-05-31. |
FAN Bingbing, LI Hongxia, LI Wei, et al. SiNO wave transmission-heat insulation integrated inner lining material for microwave kiln, and preparation method of material: CN 201710118361.X[P]. 2017-05-31. | |
40 | 徐恩霞, 王玉霞, 董萌蕾, 等. 一种微波冶金窑车用刚玉-氧氮化硅复合耐火材料: CN 201710736091.9[P]. 2017-12-01. |
XU Enxia, WANG Yuxia, DONG Menglei, et al. Corundum silicon oxynitride composite refractory material for microwave metallurgical kiln car: CN 201710736091.9[P]. 2017-12-01. | |
41 | 魏坤, 贺伦燕, 石燕. 莫来石材料的研究现状及其应用[J]. 功能材料, 1993, 24(1): 85-91. |
WEI Kun, HE Lunyan, SHI Yan. Study present situation and application of mullite materials[J]. Journal of Functional Materials, 1993, 24(1): 85-91. | |
42 | 张桂敏. 莫来石的低温合成与透波性能研究[D]. 武汉: 武汉理工大学, 2010. |
ZHANG Guimin. Synthesis of mullite at low temperature and research of transparency of mullite ceramic[D]. Wuhan: Wuhan University of Technology, 2010. | |
43 | 孟彬, 彭金辉, 刘永鹤, 等. 微波冶金用堇青石莫来石耐火材料制备及性能[J]. 材料科学与工艺, 2011, 19(3): 32-36. |
MENG Bin, PENG Jinhui, LIU Yonghe, et al. Preparation and its properties of cordierite-mullite refractory material used in microwave metallurgy[J]. Materials Science and Technology, 2011, 19(3): 32-36. | |
44 | 刘永鹤. 原位合成莫来石晶须韧化微波冶金用刚玉-莫来石耐火材料的研究[D]. 昆明: 昆明理工大学, 2011. |
LIU Yonghe. Study on toughening corundum mullite refractories for microwave metallurgy by in situ synthesized mullite whiskers[D]. Kunming: Kunming University of Technology, 2011. | |
45 | 尚小标, 陈君若, 张伟峰, 等. 莫来石耐火材料在微波加热中的透波性能研究[J]. 材料导报, 2014, 28(10): 109-112. |
SHANG Xiaobiao, CHEN Junruo, ZHANG Weifeng, et al. Study on the wave-transparent property of mullite refractory layer in microwave heating[J]. Materials Review, 2014, 28(10): 109-112. | |
46 | 李光亚, 梁艳媛, 刘家臣, 等. 刚玉-莫来石多孔透波材料的制备及性能研究[J]. 稀有金属材料与工程, 2015, 44(S1): 43-46. |
LI Guangya, LIANG Yanyuan, LIU Jiachen,et al. Preparation of porous and wave-transmitting alumina-mullite materials and their properties[J]. Rare Metal Materials and Engineering, 2015, 44(S1): 43-46. | |
47 | 董萌蕾. 微波冶金用刚玉-氮化硅及莫来石-氮化硅复合材料的研制[D]. 郑州: 郑州大学, 2017. |
DONG Menglei. Research and preparation of corundum-silicon nitride and mullite-silicon nitride composites for microwave metallurgy[D]. Zhengzhou: Zhengzhou University, 2017. | |
48 | 胡连成, 黎义, 于翘. 俄罗斯航天透波材料现状考察[J] . 宇航材料工艺, 1994, 24(1): 48-52. |
HU Liancheng, LI Yi, YU Qiao. Investigation on the current situation of wave transmission in Russian space[J]. Aerospace Materials & Technology, 1994, 24(1): 48-52. | |
49 | 曹海琳, 张杰, 黄玉东, 等. 磷酸铬铝高温透波材料的制备和性能研究[J]. 宇航材料工艺, 2004, 34(2): 29-32. |
CAO Hailin, ZHANG Jie, HUANG Yudong, et al. Study on synthesis and properties of heat-resistant electrically transparent chrome-alumina phosphate[J]. Aerospace Materials & Technology, 2004, 34(2): 29-32. | |
50 | 刘文娟. 晶须增强磷酸铝透波材料的研究[D]. 济南: 济南大学, 2010. |
LIU Wenjuan. Whisher reinforced wave-transparents materials[D]. Jinan: Jinan University, 2010. | |
51 | 陈宁. 原位生长莫来石增强磷酸铬铝高温透波材料的研究[D]. 北京: 中国建筑材料科学研究总院, 2014. |
CHEN Ning. Study on in-situ mullite reinforced aluminum-chrome phosphates high temperature wave-transparent composites[D]. Beijing: China General Research Institute of Building Materials, 2014. | |
52 | 耿浩然, 刘文娟, 侯宪钦, 等. 硼酸盐系晶须增强的磷酸铝陶瓷透波材料及其制备方法: CN 201010106994.7[P]. 2010-09-01. |
GENG Haoran, LIU Wenjuan, HOU Xianqin, et al. Borate whisker reinforced aluminum phosphate ceramic wave transparent material and its preparation method there of: CN 201010106994.7[P]. 2010-09-01. | |
53 | WANG H, GENG H, LIU C. The influence of SiO2 on the aluminum borate whisker reinforced aluminum phosphate wave-transparent materials[J]. Procedia Engineering, 2012, 27: 1222-1227. |
54 | 王锋, 王继辉, 肖永栋. 磷酸铝系透波复合材料的力学性能与介电性能研究[J]. 宇航材料工艺, 2006, 36(6): 26-28. |
WANG Feng, WANG Jihui, XIAO Yongdong. The mechanical and dielectrical properties of aluminum phosphate matrix composite[J]. Aerospace Materials & Technology, 2006, 36(6): 26-28. | |
55 | 王河. 高性能磷酸铝基透波材料的制备及性能研究[D]. 济南: 济南大学, 2012. |
WANG He. Study and preparation of high performance aluminum phosphates wave-transparent materials[D]. Jinan: Jinan University, 2012. | |
56 | 李瑞波. 玻纤布增强聚四氟乙烯透波材料性能研究[D]. 郑州: 郑州大学, 2016. |
LI Ruibo. Research on properties of glass fibe fabric reinforced PTFE composites[D]. Zhengzhou: Zhengzhou University, 2016. | |
57 | 宋麦丽, 崔红, 杨星, 等. 高硅氧/有机硅透波材料性能研究[J]. 材料导报, 2009, 23(S1): 384-386. |
SONG Maili, CUI Hong, YANG Xing, et al. Study on properties of silica glass/silicone resin radome materials[J]. Materials Review, 2009, 23(S1): 384-386. | |
58 | 陈立瑶. 玻纤增强树脂基透波复合材料的制备及性能研究[D]. 郑州: 中原工学院, 2018. |
CHEN Liyao. Study on fabrication and properties of glass fiber reinforced resin wave-transparent composites[D]. Zhengzhou: Zhongyuan University of Technology, 2018. | |
59 | 胡艳志. 环氧树脂基透波复合材料制备与性能研究[D]. 武汉: 武汉理工大学, 2014. |
HU Yanzhi. Study on preparation and properties of epoxy-matrix wave-transparent composite[D]. Wuhan: Wuhan University of Technology, 2014. | |
60 | RAJESH S, NISA V S, MURALI K P, et al. Microwave dielectric properties of PTFE/rutile nanocomposites[J]. Journal of Alloys and Compounds, 2009, 477(1/2): 677-682. |
61 | ESTEL L, POUX M, BENAMARA N, et al. Continuous flow-microwave reactor: where are we?[J]. Chemical Engineering and Processing, 2017, 113: 56-64. |
62 | LI Yingguang, CHENG Libing, ZHOU Jing, Curing multidirectional carbon fiber reinforced polymer composites with indirect microwave heating[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1/2/3/4): 1137-1147. |
63 | CASTILLEJO N, MARTÍNEZ-HERNÁNDEZ G B, LOZANO-GUERRERO A J, et al. Microwave heating modelling of a green smoothie: effects on glucoraphanin, sulforaphane and S-methyl cysteine sulfoxide changes during storage[J]. Journal of the Science of Food and Agriculture, 2018, 98(5): 1863-1872. |
64 | 范景莲, 黄伯云, 刘军, 等. 微波烧结原理与研究现状[J]. 粉末冶金工业, 2004, 14(1): 29-33. |
FAN Jinglian, HUANG Baiyun, LIU Jun, et al. Principles and status of microwave sintering[J]. Powder Metallurgy Industry, 2004, 14(1): 29-33. | |
65 | 殷增斌, 徐伟伟, 汪家傲, 等. 一种陶瓷材料微波烧结用保温装置: CN 201710263010.8[P]. 2019-10-18. |
YIN Zengbin, XU Weiwei, WANG Jia,ao, et al. Thermal insulation device for microwave sintering of ceramic material: CN 1710263010.8[P]. 2019-10-18. | |
66 | 盛新太. 用于高温管线、设备保温的新型绝热节能材料——陶瓷纤维覆铝箔针刺毯[J]. 化工设备与管道, 2007, 44(5): 59-62. |
SHENG Xintai. A new energy-saving insulator material used in high temperature pipeline and vessel—Ceramic fiber blanket with aluminum foil[J]. Process Equipment & Piping, 2007, 44(5): 59-62. | |
67 | 李呈顺, 张玉军, 张景德. 溶胶凝胶法制备多晶莫来石纤维[J]. 无机材料学报, 2009, 24(4): 848-852. |
LI Chengshun, ZHANG Yujun, ZHANG Jingde. Polycrystalline mullite fibers prepared by sol-gel method[J]. Journal of Inorganic Materials, 2009, 24(4): 848-852. | |
68 | SHANG X B, ZHAI D, LIU M H, et al. Dielectric properties and electromagnetic wave transmission performance of aluminium silicate fibreboard at 915MHz and 2450MHz[J]. Ceramics International, 2021, 47(6): 7539-7557. |
69 | WANG S, ZHAO C S, WANG D Q, et al. Preparation of refractory fiber cardboard for building insulation[J]. Applied Mechanics and Materials, 2013, 357/358/359/360: 1295-1299. |
70 | MECHNICH P, FLUCHT F, SCHMÜCKER M. Manufacturing of porous mullite fiber compacts by uniaxial hot pressing of semicrystalline MAFTEC® MLS-2 organic bound mats[J]. Journal of Materials Research, 2017, 32(17): 3294-3301. |
[1] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[2] | 朱薇, 齐鹏刚, 苏银海, 张书平, 熊源泉. 生物油分级多孔碳超级电容器电极材料的制备及性能[J]. 化工进展, 2023, 42(6): 3077-3086. |
[3] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[4] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[5] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[6] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
[7] | 张成松, 张静, 龚斌, 李明洋, 袁佳新, 李宏业. 自吸射流柔性搅拌桨振动特性[J]. 化工进展, 2023, 42(4): 1728-1738. |
[8] | 杜保宁, 赵珊, 刘向卿, 张毅, 肖雅茹, 张少飞, 李田田, 孙金峰. 纳米多孔CuMn基氧化物电极的制备及性能[J]. 化工进展, 2023, 42(3): 1484-1492. |
[9] | 卓祖优, 宋生南, 黄明堦, 杨旋, 卢贝丽, 陈燕丹. 草酸钾-尿素协同活化法制备超大比表面积面粉基多级孔炭及其电化学储能应用[J]. 化工进展, 2023, 42(2): 925-933. |
[10] | 田甜, 雷西萍, 于婷, 樊凯, 宋晓琪, 朱航. 碳材料在柔性超级电容器中的研究进展[J]. 化工进展, 2023, 42(2): 884-896. |
[11] | 王晓亮, 于振秋, 常雷明, 赵浩男, 宋晓琦, 高靖淞, 张一波, 黄传辉, 刘忆, 杨绍斌. 电沉积法制备氢氧化物/氧化物超级电容器电极的研究进展[J]. 化工进展, 2023, 42(10): 5272-5285. |
[12] | 杨锋苓, 梁国林, 张翠勋, 王贵超. 疏水Rushton搅拌桨的减阻性能[J]. 化工进展, 2022, 41(9): 4682-4690. |
[13] | 龙垠荧, 杨健, 管敏, 杨怡洛, 程正柏, 曹海兵, 刘洪斌, 安兴业. 木质素基材料在混合型超级电容器电极材料中的研究进展[J]. 化工进展, 2022, 41(9): 4855-4865. |
[14] | 张伟, 安兴业, 刘利琴, 龙垠荧, 张昊, 程正柏, 曹海兵, 刘洪斌. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能[J]. 化工进展, 2022, 41(7): 3770-3783. |
[15] | 来奎, 王仕博, 徐建新, 肖清泰, 王华, 李春林. 不连续扰流板强化搅拌的模拟仿真及机理分析[J]. 化工进展, 2022, 41(6): 2871-2883. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |