化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4975-4985.DOI: 10.16085/j.issn.1000-6613.2021-0046
罗来明(), 陈思安, 王海宁(), 张劲, 卢善富(), 相艳
收稿日期:
2021-01-11
修回日期:
2021-03-22
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
王海宁,卢善富
作者简介:
罗来明(1993—),男,博士研究生,研究方向为燃料电池数值模拟。E-mail:luolaiming 基金资助:
LUO Laiming(), CHEN Si’an, WANG Haining(), ZHANG Jin, LU Shanfu(), XIANG Yan
Received:
2021-01-11
Revised:
2021-03-22
Online:
2021-09-05
Published:
2021-09-13
Contact:
WANG Haining,LU Shanfu
摘要:
以大尺寸(100mm×200mm, 200cm2)多蛇形流场为研究对象,通过数值模拟和实验的方法探究了阴极多蛇形流场的排布方式对高温聚合物电解质膜燃料电池输出性能的影响。相比于竖向排布多蛇形流场,基于横向排布的多蛇形流场的电池在进气量1.527L/min和电压0.6V时展示出了更高的平均输出电流密度222.78mA/cm2和更均匀的电流密度分布(均一指数为75.3%)。在此基础上,进一步对横向排布流场结构的气体通道数进行了优化。结果表明入口气体通道数的增加可以显著减少流场进出口的压降损失,但电池平均输出电流密度和均一指数也有所降低。其中,9通道横排多蛇形流场有较高的电池性能和较好的电流密度分布均匀性(相对于14通道)和较低的压降损失(相对于6通道),对进一步提高高温聚合物电解质膜燃料电池的性能及稳定性和商业化应用具有指导意义。
中图分类号:
罗来明, 陈思安, 王海宁, 张劲, 卢善富, 相艳. 高温聚合物电解质膜燃料电池大尺寸(200cm2)多蛇形流场模拟与优化[J]. 化工进展, 2021, 40(9): 4975-4985.
LUO Laiming, CHEN Si’an, WANG Haining, ZHANG Jin, LU Shanfu, XIANG Yan. Simulation and optimization of large-scale (200cm2) multiple-serpentine flow field for high temperature polymer electrolyte membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4975-4985.
流场 | 流场长度/mm | 流场宽度/mm | 通道宽度/mm | 通道深度/mm | 脊宽度/mm | 扩散层厚度/mm |
---|---|---|---|---|---|---|
Hor-S | 200.0 | 100.0 | 1.0 | 1.0 | 1.0 | 0.3 |
Ver-S | 200.0 | 100.0 | 1.0 | 1.0 | 1.0 | 0.3 |
表1 模型尺寸及几何参数
流场 | 流场长度/mm | 流场宽度/mm | 通道宽度/mm | 通道深度/mm | 脊宽度/mm | 扩散层厚度/mm |
---|---|---|---|---|---|---|
Hor-S | 200.0 | 100.0 | 1.0 | 1.0 | 1.0 | 0.3 |
Ver-S | 200.0 | 100.0 | 1.0 | 1.0 | 1.0 | 0.3 |
参数 | 数值 |
---|---|
出口压强/Pa | 101325 |
工作温度/℃ | 150 |
阴极参考交换电流密度/A·m-2 | 0.02 |
阴极转移系数 | 0.88381 |
开路电压/V | 1.23 |
工作电压/V | 0.6 |
氧质量分数 | 0.228 |
扩散层孔隙率 | 0.4 |
扩散层渗透率/m2 | 1×10-12 |
气体黏度/Pa·s | 2.46×10-5 |
氧气参考浓度/mol·m-3 | 40.88 |
氧气-氮气二元扩散系数/m2·s-1 | 4.1807×10-5 |
氧气-水蒸气二元扩散系数/m2·s-1 | 4.9136×10-5 |
氮气-水蒸气二元扩散系数/m2·s-1 | 4.4848×10-5 |
集总电阻/Ω·m2 | 0.15×10-5 |
表2 主要边界条件和物性参数
参数 | 数值 |
---|---|
出口压强/Pa | 101325 |
工作温度/℃ | 150 |
阴极参考交换电流密度/A·m-2 | 0.02 |
阴极转移系数 | 0.88381 |
开路电压/V | 1.23 |
工作电压/V | 0.6 |
氧质量分数 | 0.228 |
扩散层孔隙率 | 0.4 |
扩散层渗透率/m2 | 1×10-12 |
气体黏度/Pa·s | 2.46×10-5 |
氧气参考浓度/mol·m-3 | 40.88 |
氧气-氮气二元扩散系数/m2·s-1 | 4.1807×10-5 |
氧气-水蒸气二元扩散系数/m2·s-1 | 4.9136×10-5 |
氮气-水蒸气二元扩散系数/m2·s-1 | 4.4848×10-5 |
集总电阻/Ω·m2 | 0.15×10-5 |
流场 | 进气量/L·min-1 | 平均电流密度/mA·cm-2 | 压降/Pa | 出口氧气质量分数 | 均一指数/% |
---|---|---|---|---|---|
Hor-S | 0.672 | 120.64 | 448.17 | 0.0019 | 27.3 |
Ver-S | 0.672 | 115.35 | 316.53 | 0.0015 | 23.2 |
Hor-S | 0.840 | 148.09 | 559.83 | 0.0065 | 44.2 |
Ver-S | 0.840 | 145.73 | 391.19 | 0.0063 | 43.1 |
Hor-S | 1.008 | 171.69 | 649.72 | 0.0133 | 55.3 |
Ver-S | 1.008 | 169.33 | 468.76 | 0.0137 | 55.1 |
Hor-S | 1.176 | 191.79 | 760.04 | 0.0230 | 64.1 |
Ver-S | 1.176 | 189.10 | 546.59 | 0.0232 | 63.8 |
Hor-S | 1.344 | 208.24 | 871.90 | 0.0339 | 70.3 |
Ver-S | 1.344 | 205.35 | 624.88 | 0.0339 | 69.9 |
Hor-S | 1.527 | 222.78 | 996.07 | 0.0459 | 75.3 |
Ver-S | 1.527 | 219.77 | 711.07 | 0.0456 | 74.8 |
表3 不同进气量下两种流场模型的核心参数变化
流场 | 进气量/L·min-1 | 平均电流密度/mA·cm-2 | 压降/Pa | 出口氧气质量分数 | 均一指数/% |
---|---|---|---|---|---|
Hor-S | 0.672 | 120.64 | 448.17 | 0.0019 | 27.3 |
Ver-S | 0.672 | 115.35 | 316.53 | 0.0015 | 23.2 |
Hor-S | 0.840 | 148.09 | 559.83 | 0.0065 | 44.2 |
Ver-S | 0.840 | 145.73 | 391.19 | 0.0063 | 43.1 |
Hor-S | 1.008 | 171.69 | 649.72 | 0.0133 | 55.3 |
Ver-S | 1.008 | 169.33 | 468.76 | 0.0137 | 55.1 |
Hor-S | 1.176 | 191.79 | 760.04 | 0.0230 | 64.1 |
Ver-S | 1.176 | 189.10 | 546.59 | 0.0232 | 63.8 |
Hor-S | 1.344 | 208.24 | 871.90 | 0.0339 | 70.3 |
Ver-S | 1.344 | 205.35 | 624.88 | 0.0339 | 69.9 |
Hor-S | 1.527 | 222.78 | 996.07 | 0.0459 | 75.3 |
Ver-S | 1.527 | 219.77 | 711.07 | 0.0456 | 74.8 |
(气体通道数/流速)/m·s-1 | 进气量/L·min-1 | 平均电流密度/mA·cm-2 | 压降/Pa | 出口氧气质量分数 | 均一指数/% |
---|---|---|---|---|---|
6/1.867 | 0.672 | 127.16 | 2386.83 | 0.0029 | 31.6 |
7/1.600 | 0.672 | 126.05 | 1751.36 | 0.0027 | 31.0 |
9/1.244 | 0.672 | 122.66 | 1116.0 | 0.0020 | 28.3 |
11/1.018 | 0.672 | 121.50 | 733.65 | 0.0019 | 27.7 |
14/0.800 | 0.672 | 120.64 | 448.17 | 0.0019 | 27.3 |
表4 Hor-S流场模型核心参数随入口气体通道数的变化
(气体通道数/流速)/m·s-1 | 进气量/L·min-1 | 平均电流密度/mA·cm-2 | 压降/Pa | 出口氧气质量分数 | 均一指数/% |
---|---|---|---|---|---|
6/1.867 | 0.672 | 127.16 | 2386.83 | 0.0029 | 31.6 |
7/1.600 | 0.672 | 126.05 | 1751.36 | 0.0027 | 31.0 |
9/1.244 | 0.672 | 122.66 | 1116.0 | 0.0020 | 28.3 |
11/1.018 | 0.672 | 121.50 | 733.65 | 0.0019 | 27.7 |
14/0.800 | 0.672 | 120.64 | 448.17 | 0.0019 | 27.3 |
1 | 赵俊杰, 涂正凯. 高温车用燃料电池的发展及现状综述[J]. 化工进展, 2020, 39(5): 1722-1733. |
ZHAO Junjie, TU Zhengkai. Review on the development and present situation of high temperature vehicle fuel cell[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1722-1733. | |
2 | 李振宇, 任文坡, 黄格省, 等. 我国新能源汽车产业发展现状及思考[J]. 化工进展,2017, 36(7): 2337-2343. |
LI Zhenyu, REN Wenpo, HUANG Gesheng,et al. Development situation and thinking of China’s new energy vehicle industry[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2337-2343. | |
3 | 卢善富, 徐鑫, 张劲, 等. 燃料电池用磷酸掺杂高温质子交换膜研究进展[J]. 中国科学: 化学, 2017, 47(5): 565-572. |
LU Shanfu, XU Xin, ZHANG Jin, et al. Progress of phosphoric acid doped high temperature proton exchange membrane for fuel cells[J]. Scientia Sinica (Chimica), 2017, 47(5): 565-572. | |
4 | WANG S Y, JIANG S P. Prospects of fuel cell technologies[J]. Natl. Sci. Rev., 2017, 4(2): 163-166. |
5 | ZHANG J, AILI D, LU S F, et al. Advancement toward polymer electrolyte membrane fuel cells at elevated temperatures[J]. Research, 2020, 2020: 9089405. |
6 | ZHANG J, XIANG Y, LU S F, et al. High temperature polymer electrolyte membrane fuel cells for integrated fuel cell-methanol reformer power systems: a critical review[J]. Adv. Sustainable Syst., 2018, 2(8/9): 1700184. |
7 | CHENG Y, ZHANG J, LU S F, et al. Significantly enhanced performance of direct methanol fuel cells at elevated temperatures[J]. J. Power Sources, 2020, 450: 227620. |
8 | YAN W, XIANG Y, ZHANG J, et al. Substantially enhanced power output and durability of direct formic acid fuel cells at elevated temperatures[J]. Adv. Sustainable Syst., 2020, 4(7): 2000065. |
9 | CHENG Y, ZHANG J, LU S F, et al. High CO tolerance of new SiO2 doped phosphoric acid/polybenzimidazole polymer electrolyte membrane fuel cells at high temperatures of 200-250℃[J]. Inter. J. Hydrogen Energy, 2018, 43(49): 22487-22499. |
10 | ZHANG J J, BAI H J, YAN W R, et al. Enhancing cell performance and durability of high temperature polymer electrolyte membrane fuel cells by inhibiting the formation of cracks in catalyst layers[J]. J. Electrochem. Soc., 2020, 167(11): 114501. |
11 | 李英, 张香平. 用于高温质子交换膜燃料电池的聚合物电解质膜研究进展[J]. 化工进展,2018, 37(9): 3446-3453. |
LI Ying, ZHANG Xiangping. Research progress of polymer electrolyte membrane for high temperature proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3446-3453. | |
12 | 王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略——第二部分:操作条件[J]. 化工进展,2021, 40(1): 118-136. |
WANG Ziqian, YANG Linlin, SUN Hai. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells——Part Ⅱ: Operation conditions[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 118-136. | |
13 | HAN I S, LIM J, JEONG J, et al. Effect of serpentine flow-field designs on performance of PEMFC stacks for micro-CHP systems[J]. Renew. Energ., 2013, 54: 180-188. |
14 | 曹鹏贞, 王红星, 王宇新. 质子交换膜燃料电池流道设计[J]. 电源技术, 2007, 31(4): 341-343. |
CAO Pengzhen, WANG Hongxing, WANG Yuxin. Design of flow channels for proton exchange membrane fuel cells[J]. Chinese Journal of Power Sources, 2007, 31(4): 341-343. | |
15 | 熊济时, 肖金生, 潘牧. 质子交换膜燃料电池流场模拟与结构尺寸优化[J]. 武汉理工大学学报, 2009, 33(3): 534-536, 568. |
XIONG Jishi, XIAO Jinsheng, PAN Mu. Modeling and optimizing of the flow field in PEM fuel cell[J]. Journal of Wuhan University of Technology, 2009, 33(3): 534-536, 568. | |
16 | 尧磊, 彭杰, 张剑波, 等. 质子交换膜燃料电池冷启动的数值模拟[J]. 化工进展, 2019, 38(9): 4029-4035. |
YAO Lei, PENG Jie, ZHANG Jianbo, et al. Numerical simulation of cold start processes in proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4029-4035. | |
17 | 侯明, 吴金锋, 衣宝廉, 等. PEM燃料电池流场板[J]. 电源技术, 2001, 25(4): 294-298. |
HOU Ming, WU Jinfeng, YI Baolian, et al. Flow-field plates in proton exchange membrane fuel cell[J]. Chinese Journal of Power Sources, 2001, 25(4): 294-298. | |
18 | KAHRAMAN H, ORHAN M F. Flow field bipolar plates in a proton exchange membrane fuel cell: analysis & modeling[J]. Energy Convers. Manage., 2017, 133: 363-384. |
19 | VELISALA V, SRINIVASULU G N. Numerical simulation and experimental comparison of single, double and triple serpentine flow channel configuration on performance of a PEM fuel cell[J]. Arab. J. Sci. Eng., 2018, 43(3):1225-1234. |
20 | 谭雅巍, 姜炜, 李增耀, 等. 流道结构和几何尺寸对燃料电池性能影响的实验研究[J]. 工程热物理学报, 2006, 27(6): 1026-1028. |
TAN Yawei, JIANG Wei, LI Zengyao, et al. Effects of gas flow distributor structures and geometric dimensions of the polar plates on the performance of a PEM fuel cell[J]. Journal of Engineering Thermophysics, 2006, 27(6): 1026-1028. | |
21 | GHANBARIAN A, KERMANI M J, SCHOLTA J, et al. Polymer electrolyte membrane fuel cell flow field design criteria – Application to parallel serpentine flow patterns[J]. Energy Convers. Manage., 2018, 166: 281-296. |
22 | 陈士忠, 夏忠贤, 王艺澄, 等. 蛇形流场PEMFC性能影响因素的数值模拟[J]. 电源技术, 2017, 41(2): 230-233. |
CHEN Shizhong, XIA Zhongxian, WANG Yicheng, et al. Numerical simulation of influencing factors on performance of PEMFC with serpentine flow field[J]. Chinese Journal of Power Sources, 2017, 41(2): 230-233. | |
23 | 胡桂林, 樊建人. 多通道蛇形流场PEMFC内传递现象的数值模拟[J]. 电源技术, 2009, 33(4): 245-248. |
HU Guilin, FAN Jianren. Numerical simulation of transport phenomena in PEMFC with multi-channel serpentine flow fields[J]. Chinese Journal of Power Sources, 2009, 33(4): 245-248. | |
24 | 吴孟飞, 鲁聪达, 吴明格, 等. 多蛇形流道几何特征的数值研究[J]. 电池工业, 2012, 17(4): 221-226. |
WU Mengfei, LU Congda, WU Mingge, et al. Numerical study on the geometrical feature of multiple serpentine flow channels[J]. Chinese Battery Industry, 2012, 17(4): 221-226. | |
25 | WANG X D, YAN W M, DUAN Y Y, et al. Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field[J]. Energy Convers. Manage., 2010, 51: 959-968. |
26 | 叶东浩, 詹志刚. PEM燃料电池双极板流场结构研究进展[J]. 电池工业, 2010, 15(6): 376-380. |
YE Donghao, ZHAN Zhigang. Research progress of bipolar plate flow field structure of PEMFC[J]. Chinese Battery Industry, 2010, 15(6): 376-380. | |
27 | HUANG C, LIN J. Optimal gas channel shape design for a serpentine PEMFC: theoretical and experimental studies[J]. J. Electrochem. Soc., 2009, 156(1): B178. |
28 | MANSO A P, MARZO F F, BARRANCO J, et al. Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review[J]. Inter. J. Hydrogen Energy, 2012, 37(20): 15256-15287. |
29 | SHIMPALEE S, GREENWAY S, VAN ZEE J W. The impact of channel path length on PEMFC flow-field design[J]. J. Power Sources, 2006, 160(1): 398-406. |
30 | 张劲, 郭志斌, 张巨佳, 等. 聚醚砜-聚乙烯吡咯烷酮高温聚合物电解质膜及燃料电池堆性能研究[J]. 化工学报, 2021, 72(1): 589-596. |
ZHANG Jin, GUO Zhibin, ZHANG Jujia, et al. Study on performance of polyethersulfone-polyvinylpyrrolidone high temperature polymer electrolyte membrane and fuel cell stack[J]. CIESC Journal, 2021, 72(1): 589-596. | |
31 | SINGDEO D, DEY T, GAIKWAD S, et al. A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell[J]. Appl. Energy, 2017, 195: 13-22. |
32 | SHIMPALEE S, GREENWAY S, SPUCKLER D, et al. Predicting water and current distributions in a commercial-size PEMFC[J]. J. Power Sources, 2004, 135(1/2): 79-87. |
33 | 肖宽, 潘牧, 詹志刚, 等. PEMFC双极板流场结构研究现状[J]. 电源技术, 2018, 42(1): 153-156. |
XIAO Kuan, PAN Mu, ZHAN Zhigang, et al. Research statues of bipolar plate flow field structure of PEMFC[J]. Chinese Journal of Power Sources, 2018, 42(1): 153-156. | |
34 | ABDUL RASHEED R K, QUAN L, ZHANG C Z, et al. A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs)[J]. Int. J. Hydrogen Energy, 2017, 42(5): 3142-3165. |
35 | CHOI K S, KIM H M, MOON S M. Numerical studies on the geometrical characterization of serpentine flow-field for efficient PEMFC[J]. Int. J. Hydrogen Energy, 2011, 36(2): 1613-1627. |
36 | 卢善富, 相艳, 蒋三平. 一种燃料电池用的高温质子交换膜及制备方法: CN102376961A[P]. 2012-03-14. |
LU Shanfu, XIANG Yan, JIANG Sanping. High temperature proton exchange membrane for fuel cell, and preparation method thereof: CN102376961A[P]. 2012-03-14. | |
37 | XU X, WANG H N, LU S F, et al. A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells[J]. J. Power Sources, 2015, 286: 458-463. |
38 | BAI H J, WANG H N, ZHANG J, et al. Simultaneously enhancing ionic conduction and mechanical strength of poly(ether sulfones)-poly(vinyl pyrrolidone) membrane by introducing graphitic carbon nitride nanosheets for high temperature proton exchange membrane fuel cell application[J]. J. Membr. Sci., 2018, 558:26-33. |
39 | LU S F, XIU R J, XU X, et al. Polytetrafluoroethylene(PTFE) reinforced poly(ethersulphone)-poly(vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells[J]. J. Membr. Sci., 2014, 464: 1-7. |
40 | ZHANG J J, ZHANG J, BAI H J, et al. A new high temperature polymer electrolyte membrane based on tri-functional group grafted polysulfone for fuel cell application[J]. J. Membr. Sci., 2019, 572: 496-503. |
[1] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[2] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[3] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[4] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[5] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[6] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[7] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[8] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[9] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[10] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[11] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[12] | 卢兴福, 戴波, 杨世亮. 转鼓内圆柱形颗粒混合的超二次曲面离散单元法模拟[J]. 化工进展, 2023, 42(5): 2252-2261. |
[13] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[14] | 马润梅, 杨海超, 李正大, 李双喜, 赵祥, 章国庆. 表面强化镀层对高速轴承腔密封端面变形及摩擦磨损影响分析[J]. 化工进展, 2023, 42(4): 1688-1697. |
[15] | 张成松, 张静, 龚斌, 李明洋, 袁佳新, 李宏业. 自吸射流柔性搅拌桨振动特性[J]. 化工进展, 2023, 42(4): 1728-1738. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |