化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4986-4997.DOI: 10.16085/j.issn.1000-6613.2021-0952
收稿日期:
2021-05-06
修回日期:
2021-07-09
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
张强
作者简介:
赵辰孜(1994—),女,博士,研究方向为固态锂电池。E-mail:基金资助:
ZHAO Chenzi1(), YUAN Hong2, LU Yang1, ZHANG Qiang1()
Received:
2021-05-06
Revised:
2021-07-09
Online:
2021-09-05
Published:
2021-09-13
Contact:
ZHANG Qiang
摘要:
开发下一代高安全性、高能量密度电池是电动汽车、可穿戴便携电子设备与可再生能源高效利用的关键。固态金属锂电池是极有希望的下一代电池体系。本文首先综述了固态电解质与界面特性,包括固态电解质中的离子传输机理和固态电解质分类,指出金属锂电极与固态电解质之间有限的固-固界面接触是固态金属锂电池实用化的重要挑战,其界面演变特性主导了固态电池的性能表现。界面演变是机械-化学-电化学耦合的过程。其次,文章综述了电池界面失效机制与构筑策略,指出界面失效包括枝晶状沉积引发的电池短路与空穴累积、副反应导致的电化学界面脱触等,使用界面润湿剂、引入界面缓冲层或构造三维多孔骨架结构化电极等是解决界面问题的重要手段。最后,文章总结指出,固态金属锂电池仍有巨大的进步空间,先进的理论研究和表征手段为进一步认识和理解固-固界面提供了新的机遇,通过界面化学、材料科学、系统工程等领域的交叉共融,有望共同推动下一代高安全、高能量密度固态储能技术的发展。
中图分类号:
赵辰孜, 袁洪, 卢洋, 张强. 固态金属锂负极界面研究进展[J]. 化工进展, 2021, 40(9): 4986-4997.
ZHAO Chenzi, YUAN Hong, LU Yang, ZHANG Qiang. Review on interfaces in solid-state lithium metal anodes[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4986-4997.
25 | MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4): 1-16. |
26 | ZHU G L, ZHAO C Z, YUAN H, et al. Interfacial redox behaviors of sulfide electrolytes in fast-charging all-solid-state lithium metal batteries[J]. Energy Storage Materials, 2020, 31: 267-273. |
27 | 赵辰孜. 基于固态电解质层的金属锂负极表面离子分布调控[D]. 北京: 清华大学, 2020. |
ZHAO C Z. Regulating ion distribution in solid-state electrolytes for lithium metal anodes [D].Beijing: Tsinghua University, 2020. | |
28 | DOUX J M, NGUYEN H, TAN D H S, et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(1): 1903253. |
29 | HOU L P, YUAN H, ZHAO C Z, et al. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-sulfur batteries[J]. Energy Storage Materials, 2020, 25: 436-442. |
30 | YUE J P, YAN M, YIN Y X, et al. Progress of the interface design in all-solid-state Li-S batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707533. |
31 | LEPLEY N D, HOLZWARTH N A W, DU Y A. Structures, Li+mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles[J]. Physical Review B, 2013, 88(10): 104103. |
32 | LIU Z C, FU W J, PAYZANT E A, et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4[J]. Journal of the American Chemical Society, 2013, 135(3): 975-978. |
33 | PARK K H, BAI Q, KIM D H, et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries[J]. Advanced Energy Materials, 2018, 8(18): 1800035. |
34 | WANG H, HOOD Z D, XIA Y N, et al. Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries[J]. Journal of Materials Chemistry A, 2016, 4(21): 8091-8096. |
35 | HOOD Z D, WANG H, PANDIAN A S, et al. Fabrication of sub-micrometer-thick solid electrolyte membranes of β-Li3PS4via tiled assembly of nanoscale, plate-like building blocks[J]. Advanced Energy Materials, 2018, 8(21): 1800014. |
36 | ZHOU L D, PARK K H, SUN X Q, et al. Solvent-engineered design of argyrodite Li6PS5X (X=Cl, Br, I) solid electrolytes with high ionic conductivity[J]. ACS Energy Letters, 2019, 4(1): 265-270. |
37 | SAHU G, LIN Z, LI J C, et al. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4[J]. Energy Environ. Sci., 2014, 7(3): 1053-1058. |
1 | KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: 16030. |
2 | LIANG Y R, XIAO Y, YAN C, et al. A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes[J]. Journal of Energy Chemistry, 2020, 48: 203-207. |
3 | LI W, XU H, YANG Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478. |
4 | ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252. |
5 | KIM H, CHOI W, YOON J, et al. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries[J]. Chemical Reviews, 2020, 120(14): 6934-6976. |
6 | WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14(10): 1026-1031. |
7 | HE X F, ZHU Y Z, MO Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8(1): 1-7. |
8 | WEBER D A, SENYSHYN A, WELDERT K S, et al. Structural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12[J]. Chemistry of Materials, 2016, 28(16): 5905-5915. |
9 | KWON O, HIRAYAMA M, SUZUKI K, et al. Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2-δS12[J]. Journal of Materials Chemistry A, 2015, 3(1): 438-446. |
10 | IWASAKI R, HORI S, KANNO R, et al. Weak anisotropic lithium-ion conductivity in single crystals of Li10GeP2S12[J]. Chemistry of Materials, 2019, 31(10): 3694-3699. |
11 | NITZAN A, RATNER M A. Conduction in polymers: dynamic disorder transport[J]. The Journal of Physical Chemistry, 1994, 98(7): 1765-1775. |
12 | TERAN A A, TANG M H, MULLIN S A, et al. Effect of molecular weight on conductivity of polymer electrolytes[J]. Solid State Ionics, 2011, 203(1): 18-21. |
13 | DAWSON J A, CANEPA P, FAMPRIKIS T, et al. Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries[J]. Journal of the American Chemical Society, 2018, 140(1): 362-368. |
14 | BRUCE P G, WEST A R. The A-C conductivity of polycrystalline LISICON, Li2+2xZn1-xGeO4, and a model for intergranular constriction resistances[J]. Journal of the Electrochemical Society, 1983, 130(3): 662-669. |
15 | MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007, 46(41): 7778-7781. |
16 | YU S, SIEGEL D J. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chemistry of Materials, 2017, 29(22): 9639-9647. |
17 | KOTOBUKI M, KANAMURA K, SATO Y, et al. Electrochemical properties of Li7La3Zr2O12 solid electrolyte prepared in argon atmosphere[J]. Journal of Power Sources, 2012, 199: 346-349. |
18 | CHEN C C, FU L J, MAIER J. Synergistic, ultrafast mass storage and removal in artificial mixed conductors[J]. Nature, 2016, 536(7615): 159-164. |
19 | CHEN C C, MAIER J. Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes[J]. Nature Energy, 2018, 3(2): 102-108. |
20 | SWIFT M W, QI Y. First-principles prediction of potentials and space-charge layers in all-solid-state batteries[J]. Physical Review Letters, 2019, 122(16): 167701. |
21 | NOMURA Y, YAMAMOTO K, HIRAYAMA T, et al. Direct observation of a Li-ionic space-charge layer formed at an electrode/solid-electrolyte interface[J]. Angewandte Chemie International Edition, 2019, 58(16): 5292-5296. |
22 | THOKCHOM J S, KUMAR B. The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass-ceramic[J]. Journal of Power Sources, 2010, 195(9): 2870-2876. |
23 | HARUYAMA J, SODEYAMA K, HAN L Y, et al. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chemistry of Materials, 2014, 26(14): 4248-4255. |
24 | HU J L, YAO Z G, CHEN K Y, et al. High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries[J]. Energy Storage Materials, 2020, 28: 37-46. |
38 | BROEK J VAN DEN, AFYON S, RUPP J L M. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors[J]. Advanced Energy Materials, 2016, 6(19): 1600736. |
39 | JIANG P, SHI Y, LI K, et al. Recent progress on the Li7La3Zr2O12(LLZO) solid electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 523-537. |
40 | CUSSEN E J. Structure and ionic conductivity in lithium garnets[J]. Journal of Materials Chemistry, 2010, 20(25): 5167. |
41 | CUSSEN E J, YIP T W S, O’NEILL G, et al. A comparison of the transport properties of lithium-stuffed garnets and the conventional phases Li3Ln3Te2O12[J]. Journal of Solid State Chemistry, 2011, 184(2): 470-475. |
42 | CHEN R J, QU W J, GUO X, et al. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons[J]. Materials Horizons, 2016, 3(6): 487-516. |
43 | GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor[J]. Inorganic Chemistry, 2011, 50(3): 1089-1097. |
44 | GAO L, LI J X, JU J G, et al. High-performance all-solid-state polymer electrolyte with fast conductivity pathway formed by hierarchical structure polyamide 6 nanofiber for lithium metal battery[J]. Journal of Energy Chemistry, 2021, 54: 644-654. |
45 | ZHANG B H, LIU Y L, LIU J, et al. “Polymer-in-ceramic” based poly(ε-caprolactone)/ceramic composite electrolyte for all-solid-state batteries[J]. Journal of Energy Chemistry, 2021, 52: 318-325. |
46 | YAN Y Y, JU J W, YU M Y, et al. In-situ polymerization integrating 3D ceramic framework in all solid-state lithium battery[J]. Journal of Inorganic Materials, 2020, 35(12): 1357. |
47 | TIKEKAR M D, CHOUDHURY S, TU Z Y, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1: 16114. |
48 | MONROE C, NEWMAN J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of the Electrochemical Society, 2005, 152(2): A396. |
49 | ZHOU W D, WANG S F, LI Y T, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society, 2016, 138(30): 9385-9388. |
50 | LIU W, LEE S W, LIN D C, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nature Energy, 2017, 2: 17035. |
51 | HALLINAN D T, MULLIN S A, STONE G M, et al. Lithium metal stability in batteries with block copolymer electrolytes[J]. Journal of the Electrochemical Society, 2013, 160(3): A464-A470. |
52 | CAPUANO F, CROCE F, SCROSATI B. Composite polymer electrolytes[J]. Journal of the Electrochemical Society, 1991, 138(7): 1918-1922. |
53 | HARRY K J, LIAO X X, PARKINSON D Y, et al. Electrochemical deposition and stripping behavior of lithium metal across a rigid block copolymer electrolyte membrane[J]. Journal of the Electrochemical Society, 2015, 162(14): A2699-A2706. |
54 | HARRY K J, HIGA K, SRINIVASAN V, et al. Influence of electrolyte modulus on the local current density at a dendrite tip on a lithium metal electrode[J]. Journal of the Electrochemical Society, 2016, 163(10): A2216-A2224. |
55 | YOUNG R J, LOVELL P A. Introduction to polymers[M]. 3rd ed. England: CRC Press, 2011. |
56 | KHURANA R, SCHAEFER J L, ARCHER L A, et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society, 2014, 136(20): 7395-7402. |
57 | ZENG X X, YIN Y X, LI N W, et al. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries[J]. Journal of the American Chemical Society, 2016, 138(49): 15825-15828. |
58 | CHAI J C, LIU Z H, MA J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2017, 4(2): 1600377. |
59 | LIU J, BAO Z N, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186. |
60 | YUAN H, NAN H X, ZHAO C Z, et al. Slurry-coated sulfur/sulfide cathode with Li metal anode for all-solid-state lithium-sulfur pouch cells[J]. Batteries & Supercaps, 2020, 3(7): 596-603. |
61 | LU Y, ZHAO C Z, YUAN H, et al. Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies[J]. Advanced Functional Materials, 2021, 31(18): 2009925. |
62 | HOU Z, ZHANG J L, WANG W H, et al. Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases[J]. Journal of Energy Chemistry, 2020, 45: 7-17. |
63 | CHEN L, QIU X M, BAI Z M, et al. Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework[J]. Journal of Energy Chemistry, 2021, 52: 210-217. |
64 | SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries? [J]. Advanced Energy Materials, 2021, 11(10): 2003416. |
65 | HAN F D, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196. |
66 | XU C, AHMAD Z, ARYANFAR A, et al. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes[J]. PNAS, 2017, 114(1): 57-61. |
67 | SWAMY T, PARK R, SHELDON B W, et al. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet[J]. Journal of the Electrochemical Society, 2018, 165(16): A3648-A3655. |
68 | PORZ L, SWAMY T, SHELDON B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Advanced Energy Materials, 2017, 7(20): 1701003. |
69 | AGUESSE F, MANALASTAS W, BUANNIC L, et al. Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3808-3816. |
70 | SONG Y L, YANG L Y, ZHAO W G, et al. Revealing the short-circuiting mechanism of garnet-based solid-state electrolyte[J]. Advanced Energy Materials, 2019, 9(21): 1900671. |
71 | WU B B, WANG S Y, LOCHALA J, et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries[J]. Energy & Environmental Science, 2018, 11(7): 1803-1810. |
72 | SHARAFI A, MEYER H M, NANDA J, et al. Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density[J]. Journal of Power Sources, 2016, 302: 135-139. |
73 | RAJ R, WOLFENSTINE J. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries[J]. Journal of Power Sources, 2017, 343: 119-126. |
74 | HAN F D, ZHU Y Z, HE X F, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8): 1501590. |
75 | WENZEL S, LEICHTWEISS T, KRÜGER D, et al. Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy[J]. Solid State Ionics, 2015, 278: 98-105. |
76 | WENZEL S, RANDAU S, LEICHTWEIß T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chemistry of Materials, 2016, 28(7): 2400-2407. |
77 | LEWIS J A, CORTES F J Q, BOEBINGER M G, et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure[J]. ACS Energy Letters, 2019, 4(2): 591-599. |
78 | LEUNG K, PEARSE A J, TALIN A A, et al. Kinetics-controlled degradation reactions at crystalline LiPON/LixCoO2 and crystalline LiPON/Li-metal interfaces[J]. ChemSusChem, 2018, 11(12): 1956-1969. |
79 | ZHANG W B, LEICHTWEIß T, CULVER S P, et al. The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 35888-35896. |
80 | HAN F D, GAO T, ZHU Y J, et al. A battery made from a single material[J]. Advanced Materials, 2015, 27(23): 3473-3483. |
81 | ZHAO C Z. Regulating ion distribution in solid-state electrolytes for lithium metal anodes [D]. Beijng: Tsinghua University, 2020. |
82 | ZHAO C Z, ZHAO B C, YAN C, et al. Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: a review[J]. Energy Storage Materials, 2020, 24: 75-84. |
83 | XU B Y, DUAN H N, LIU H Z, et al. Stabilization of garnet/liquid electrolyte interface using superbase additives for hybrid Li batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(25): 21077-21082. |
84 | WANG C H, SUN Q, LIU Y L, et al. Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: interfacial properties and effects of liquid electrolytes[J]. Nano Energy, 2018, 48: 35-43. |
85 | SHIN J H, HENDERSON W A, APPETECCHI G B, et al. Recent developments in the ENEA lithium metal battery project[J]. Electrochimica Acta, 2005, 50(19): 3859-3865. |
86 | HUO H Y, ZHAO N, SUN J Y, et al. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery[J]. Journal of Power Sources, 2017, 372: 1-7. |
87 | KIM H W, MANIKANDAN P, LIM Y J, et al. Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(43): 17025-17032. |
88 | ZHANG Z Z, ZHANG Q H, SHI J N, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J]. Advanced Energy Materials, 2017, 7(4): 1601196. |
89 | KIM H, DING Y, KOHL P A. LiSICON - ionic liquid electrolyte for lithium ion battery[J]. Journal of Power Sources, 2012, 198: 281-286. |
90 | SUN B, LIU K, LANG J L, et al. Ionic liquid enabling stable interface in solid state lithium sulfur batteries working at room temperature[J]. Electrochimica Acta, 2018, 284: 662-668. |
91 | LUO W, GONG Y H, ZHU Y Z, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte[J]. Journal of the American Chemical Society, 2016, 138(37): 12258-12262. |
92 | HAN X G, GONG Y H, FU K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579. |
93 | WANG C W, GONG Y H, LIU B Y, et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes[J]. Nano Letters, 2017, 17(1): 565-571. |
94 | LUO W, GONG Y H, ZHU Y Z, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Advanced Materials, 2017, 29(22): 1606042. |
95 | LIU B Y, GONG Y H, FU K, et al. Garnet solid electrolyte protected Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18809-18815. |
96 | CHINNAM P R, WUNDER S L. Engineered interfaces in hybrid ceramic-polymer electrolytes for use in all-solid-state Li batteries[J]. ACS Energy Letters, 2017, 2(1): 134-138. |
97 | WANG Q S, WEN Z Y, JIN J, et al. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries[J]. Chemical Communications, 2016, 52(8): 1637-1640. |
98 | CHENG Q, LI A J, LI N, et al. Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating[J]. Joule, 2019, 3(6): 1510-1522. |
99 | JIN Y, LIU K, LANG J L, et al. An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage[J]. Nature Energy, 2018, 3(9): 732-738. |
100 | FU Z H, CHEN X, ZHAO C Z, et al. Stress regulation on atomic bonding and ionic diffusivity: mechanochemical effects in sulfide solid electrolytes[J]. Energy & Fuels, 2021, DOI: 10.1021/acs.energyfuels.1c00488. |
101 | SHI P, ZHANG X Q, SHEN X, et al. A review of composite lithium metal anode for practical applications[J]. Advanced Materials Technologies, 2020, 5(1): 1900806. |
102 | LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308. |
103 | FU K K, GONG Y H, HITZ G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy & Environmental Science, 2017, 10(7): 1568-1575. |
104 | RANDAU S, WEBER D A, KÖTZ O, et al. Benchmarking the performance of all-solid-state lithium batteries[J]. Nature Energy, 2020, 5(3): 259-270. |
[1] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[2] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[3] | 李吉焱, 景艳菊, 邢郭宇, 刘美辰, 龙永, 朱照琪. 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42(7): 3611-3622. |
[4] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[5] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[6] | 赵珍珍, 郑喜, 王雪琪, 王涛, 冯英楠, 任永胜, 赵之平. 聚酰胺复合膜微孔支撑基底的研究进展[J]. 化工进展, 2023, 42(4): 1917-1933. |
[7] | 梁贻景, 马岩, 卢展烽, 秦福生, 万骏杰, 王志远. La1-x Sr x MnO3钙钛矿涂层的抗结焦性能[J]. 化工进展, 2023, 42(4): 1769-1778. |
[8] | 章建忠, 许升, 樊家澍, 费振宇, 王堃, 黄建, 崔峰波, 冉文华. 玻璃纤维浸润剂的分析与表征技术进展[J]. 化工进展, 2023, 42(2): 821-838. |
[9] | 毛停停, 李双福, 黄李茗铭, 周川玲, 韩凯. 面向水处理与有机溶剂回收的太阳能界面蒸发系统与材料[J]. 化工进展, 2023, 42(1): 178-193. |
[10] | 宋超, 叶学民, 李春曦. 纳米颗粒与表面活性剂的自组装行为对硅油-水界面性质影响的分子动力学[J]. 化工进展, 2022, 41(S1): 366-375. |
[11] | 陈沛嘉, 葛鑫, 梁伟杰, 尹爽, 张志聪, 吕健儿, 刘卫东, 陈友鹏, 葛建芳. 聚合物基热界面材料与导热性能研究进展[J]. 化工进展, 2022, 41(S1): 269-281. |
[12] | 张哲, 郎元路, 吴巧燕, 陈佳楠, 计宏伟, 李星泊, 马妍, 陶柳倩, 谯春艳, 王瑾悦. 冻结液滴融化过程中的表面及界面演化特性分析[J]. 化工进展, 2022, 41(S1): 1-14. |
[13] | 张猛, 李树谦, 张东, 马坤茹. 微细通道内蒸汽直接接触间歇凝结汽液相界面运动特性[J]. 化工进展, 2022, 41(9): 4644-4652. |
[14] | 蔡楚玥, 方晓明, 凌子夜, 张正国. 相变热界面材料导热增强及定形改善的研究进展[J]. 化工进展, 2022, 41(9): 4907-4917. |
[15] | 张赛晖, 李校阳, 高慧, 王丽丽. 制备聚酰胺复合膜中界面聚合反应添加剂研究进展[J]. 化工进展, 2022, 41(9): 4884-4894. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |