1 |
孙皓, 宋程威, 庞越鹏, 等. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
|
|
SUN Hao, SONG Chengwei, PANG Yuepeng, et al. Functional design of separator for Li-S batteries[J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
|
2 |
PANG Q, LIANG X, KWOK C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016, 1: 16132.
|
3 |
CHEN J Z, HENDERSON W A, PAN H L, et al. Improving lithium-sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels[J]. Nano Letters, 2017, 17(5): 3061-3067.
|
4 |
XUE W J, SHI Z, SUO L M, et al. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities[J]. Nature Energy, 2019, 4(5): 374-382.
|
5 |
SHIN W, ZHU L D, JIANG H, et al. Fluorinated co-solvent promises Li-S batteries under lean-electrolyte conditions[J]. Materials Today, 2020, 40: 63-71.
|
6 |
LI M, ZHANG Y, BAI Z, et al. A lithium-sulfur battery using a 2D current collector architecture with a large-sized sulfur host operated under high areal loading and low E/S ratio[J]. Advanced Materials, 2018, 30(46): e1804271.
|
7 |
王杰, 孙晓刚, 陈珑, 等. 多壁碳纳米管夹层抑制锂硫电池穿梭效应[J]. 化工进展, 2018, 37(3): 1070-1075.
|
|
WANG Jie, SUN Xiaogang, CHEN Long, et al. Multi-walled carbon nanotube interlayer for checking of the shuttle effect of lithium-sulphur battery[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1070-1075.
|
8 |
YAGHI O M, LI H L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 1995, 117(41): 10401-10402.
|
9 |
阮艳莉, 查煜澄, 张萌. 有机金属框架衍生物的制备及其在锂硫电池隔膜改性中的应用[J]. 天津工业大学学报, 2020, 39(5): 56-60.
|
|
RUAN Yanli, ZHA Yucheng, ZHANG Meng. Preparation of organometallic framework derivatives and its application in separator modification of lithium-sulfur batteries[J]. Journal of Tiangong University, 2020, 39(5): 56-60.
|
10 |
ZHAO R, LIANG Z B, ZOU R Q, et al. Metal-organic frameworks for batteries[J]. Joule, 2018, 2(11): 2235-2259.
|
11 |
WANG Z Q, HUANG W Y, HUA J C, et al. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries[J]. Small Methods, 2020, 4(7): 2000082.
|
12 |
ZHAO Z X, WANG S, LIANG R, et al. Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li-S batteries[J]. J. Mater. Chem. A, 2014, 2(33): 13509-13512.
|
13 |
BAI S Y, LIU X Z, ZHU K, et al. Metal-organic framework-based separator for lithium-sulfur batteries[J]. Nature Energy, 2016, 1: 16094.
|
14 |
HONG X J, SONG C L, YANG Y, et al. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries[J]. ACS Nano, 2019, 13(2): 1923-1931.
|
15 |
邵姣婧, 吴旭, 龙翔, 等. 硫-纳米碳复合柔性正极材料的制备及其在锂硫电池中的应用[J]. 贵州大学学报(自然科学版), 2020, 37(5): 67-77.
|
|
SHAO Jiaojing, WU Xu, LONG Xiang, et al. Preparation of freestanding sulfur-nanocarbon composites as the cathodes of flexible lithium-sulfur batteries[J]. Journal of Guizhou University (Natural Sciences), 2020, 37(5): 67-77.
|
16 |
HE Yibo, CHANG Zhi, WU Shichao, et al. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries[J]. Advanced Energy Materials, 2018, 8(34): 1802130.1-1802130.9.
|
17 |
JIANG H Q, LIU X C, WU Y S, et al. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries[J]. Angewandte Chemie (International Ed in English), 2018, 57(15): 3916-3921.
|
18 |
ZHOU C, HE Q, LI Z H, et al. A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2020, 395: 124979.
|
19 |
HAO Guangping, TANG Cheng, ZHANG En, et al. Thermal exfoliation of layered metal-organic frameworks into ultrahydrophilic graphene stacks and their applications in Li-S batteries[J]. Advanced Materials, 2017, 29(37): 1702829.1.
|
20 |
YANG M J, HU X H, FANG Z S, et al. Bifunctional MOF-derived carbon photonic crystal architectures for advanced Zn-air and Li-S batteries: highly exposed graphitic nitrogen matters[J]. Advanced Functional Materials, 2017, 27(36): 1701971.
|
21 |
HONG X J, TANG X Y, WEI Q, et al. Efficient encapsulation of small S2-4 molecules in MOF-derived flowerlike nitrogen-doped microporous carbon nanosheets for high-performance Li-S batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9435-9443.
|
22 |
CAI J S, SONG Y Z, CHEN X, et al. MOF-derived conductive carbon nitrides for separator-modified Li-S batteries and flexible supercapacitors[J]. Journal of Materials Chemistry A, 2020, 8(4): 1757-1766.
|
23 |
JIANG G Y, ZHENG N, CHEN X, et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries[J]. Chemical Engineering Journal, 2019, 373: 1309-1318.
|
24 |
GAO X, DU Y, ZHOU J W, et al. Large-scale production of MOF-derived coatings for functional interlayers in high-performance Li-S batteries[J]. ACS Applied Energy Materials, 2018, 1(12): 6986-6991.
|
25 |
JIN W W, ZOU J Z, ZENG S Z, et al. Tailoring the structure of clew-like carbon skeleton with 2D Co-MOF for advanced Li-S cells[J]. Applied Surface Science, 2019, 469: 404-413.
|
26 |
SONG C L, LI G H, YANG Y, et al. 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li-S battery[J]. Chemical Engineering Journal, 2020, 381: 122701.
|
27 |
ZHANG N, YANG Y, FENG X R, et al. Sulfur encapsulation by MOF-derived CoS2 embedded in carbon hosts for high-performance Li-S batteries[J]. Journal of Materials Chemistry A, 2019, 7(37): 21128-21139.
|
28 |
LI W, QIAN J, ZHAO T, et al. Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure[J]. Advanced Scienc, 2019, 6(16): 1802362.
|
29 |
ZHANG H, MA J, HUANG M L, et al. MOF-derived Co9S8/C hollow polyhedra grown on 3D graphene aerogel as efficient polysulfide mediator for long-life Li-S batteries[J]. Materials Letters, 2020, 277: 128331.
|
30 |
WANG Z, WANG B, YANG Y, et al. Mixed-metal-organic framework with effective Lewis acidic sites for sulfur confinement in high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(37): 20999-21004.
|
31 |
SALUNKHE R R, KANETI Y V, KIM J, et al. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications[J]. Accounts of Chemical Research, 2016, 49(12): 2796-2806.
|
32 |
YU J, MU C, YAN B Y, et al. Nanoparticle/MOF composites: preparations and applications[J]. Materials Horizons, 2017, 4(4): 557-569.
|
33 |
XU G Y, NIE P, DOU H, et al. Exploring metal organic frameworks for energy storage in batteries and supercapacitors[J]. Materials Today, 2017, 20(4): 191-209.
|
34 |
LI X X, ZHENG S S, JIN L, et al. Metal-organic framework-derived carbons for battery applications[J]. Advanced Energy Materials, 2018, 8(23): 1800716.
|
35 |
HU M, REBOUL J, FURUKAWA S, et al. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon[J]. Journal of the American Chemical Society, 2012, 134(6): 2864-2867.
|
36 |
XU H, DENG Y F, SHI Z C, et al. Graphene-encapsulated sulfur (GES) composites with a core-shell structure as superior cathode materials for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(47): 15142.
|
37 |
HUANG J Q, LIU X F, ZHANG Q, et al. Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from -40 to 60℃[J]. Nano Energy, 2013, 2(2): 314-321.
|
38 |
刘悦, 富家伟, 洪晓东. 导电高分子材料在锂硫电池中的应用研究进展[J]. 工程塑料应用, 2020, 48(8): 144-148, 152.
|
|
LIU Yue, FU Jiawei, HONG Xiaodong. Progress in application of conductive polymers in lithium-sulfur batteries[J]. Engineering Plastics Application, 2020, 48(8): 144-148, 152.
|
39 |
李执灏, 曾鹏, 陈曼芳, 等. 锂硫电池用金属基催化材料的研究进展[J]. 电池, 2020, 50(5): 492-495.
|
|
LI Zhihao, ZENG Peng, CHEN Manfang, et al. Research progress in metal-based catalytic materials for lithium-sulfur battery[J]. Battery Bimonthly, 2020, 50(5): 492-495.
|
40 |
HAO Guangping, TANG Cheng, ZHANG En, et al.Thermal exfoliation of layered metal-organic frameworks into ultrahydrophilic graphene stacks and their applications in Li-S batteries[J]. Advanced Materials, 2017, 29(37): 1702829.
|
41 |
SUN J K, XU Q. From metal-organic framework to carbon: toward controlled hierarchical pore structures via a double-template approach[J]. Chemical Communications, 2014, 50(88): 13502-13505.
|
42 |
LI J, ZHU Q L, XU Q. Pd nanoparticles supported on hierarchically porous carbons derived from assembled nanoparticles of a zeolitic imidazolate framework (ZIF-8) for methanol electrooxidation[J]. Chemical Communications, 2015, 51(54): 10827-10830.
|
43 |
DUTTA S, BHAUMIK A, WU K C W. Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications[J]. Energy Environ. Sci., 2014, 7(11): 3574-3592.
|
44 |
MI K, JIANG Y, FENG J K, et al. Hierarchical carbon nanotubes with a thick microporous wall and inner channel as efficient scaffolds for lithium-sulfur batteries[J]. Advanced Functional Materials, 2016, 26(10): 1571-1579.
|
45 |
ESTEVEZ L, DUA R, BHANDARI N, et al. A facile approach for the synthesis of monolithic hierarchical porous carbons - high performance materials for amine based CO2 capture and supercapacitor electrode[J]. Energy & Environmental Science, 2013, 6(6): 1785.
|
46 |
LI Z, WU H B, LOU X W. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries[J]. Energy & Environmental Science, 2016, 9(10): 3061-3070.
|
47 |
XING W N, TU W G, HAN Z H, et al. Template-induced high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution[J]. ACS Energy Letters, 2018, 3(3): 514-519.
|
48 |
CAI J, HUANG J, WANG S, et al. Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources[J]. Advanced Materials, 2019, 31(15): e1806314.
|
49 |
JI J, WEN J, SHEN Y, et al. Simultaneous noncovalent modification and exfoliation of 2D carbon nitride for enhanced electrochemiluminescent biosensing[J]. Journal of the American Chemical Society, 2017, 139(34): 11698-11701.
|
50 |
WU G, HU Y, LIU Y, et al. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator[J]. Nature Communications, 2015, 6: 7258.
|
51 |
唐钰茭, 田东旭, 燕希强. COF-42: 一种理想的锂硫电池锚定材料[J]. 原子与分子物理学报, 2021, 38(1): 118-124.
|
|
TANG Yujiao, TIAN Dongxu, YAN Xiqiang. COF-42: an ideal anchoring material for lithium-sulfur batteries[J]. Journal of Atomic and Molecular Physics, 2021, 38(1): 118-124.
|
52 |
LIU H, CHENG X B, XU R, et al. Plating/stripping behavior of actual lithium metal anode[J]. Advanced Energy Materials, 2019, 9(44): 1902254.
|
53 |
KOO D, KWON B, LEE J, et al. Asymmetric behaviour of Li/Li symmetric cells for Li metal batteries[J]. Chemical Communications, 2019, 55(65): 9637-9640.
|
54 |
王维坤, 王安邦, 金朝庆. 锂硫电池的实用化挑战[J]. 储能科学与技术, 2020, 9(2): 593-597.
|
|
WANG Weikun, WANG Anbang, JIN Zhaoqing. Challenges on practicalization of lithium sulfur batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 593-597.
|
55 |
孙宇恒, 高铭达, 李慧, 等. 金属有机骨架材料在金属锂电池界面的应用[J]. 物理化学学报, 2021, 37(1): 45-60.
|
|
SUN Yuheng, GAO Mingda, LI Hui, et al. Application of metal-organic frameworks to the interface of lithium metal batteries[J]. Acta Physico-Chimica Sinica, 2021, 37(1): 45-60.
|
56 |
LYU Z Y, LIM G J H, GUO R, et al. 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability[J]. Energy Storage Materials, 2020, 24: 336-342.
|
57 |
WANG T S, LIU X B, ZHAO X D, et al. Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries[J]. Advanced Functional Materials, 2020, 30(16): 2000786.
|
58 |
JIANG G Y, JIANG N, ZHENG N, et al. MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes[J]. Energy Storage Materials, 2019, 23: 181-189.
|
59 |
DENG N P, WANG L Y, FENG Y, et al. Co-based and Cu-based MOFs modified separators to strengthen the kinetics of redox reaction and inhibit lithium-dendrite for long-life lithium-sulfur batteries[J]. Chemical Engineering Journal, 2020, 388: 124241.
|
60 |
郭志坤. 人造SEI膜界面调控金属锂负极及电化学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
GUO Zhikun. Study on artificial SEI films interfacial contral for lithium metal anode and electrochemical properties[D]. Harbin: Harbin Institute of Technology, 2019.
|