化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5818-5828.DOI: 10.16085/j.issn.1000-6613.2020-2175
侯丽敏1(), 闫笑2, 乔超越2, 付善聪2, 武文斐1,2()
收稿日期:
2020-10-30
修回日期:
2021-04-07
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
武文斐
作者简介:
侯丽敏(1988—),女,博士,讲师,研究方向为矿产资源综合利用、矿物催化剂、CLAS。E-mail:基金资助:
HOU Limin1(), YAN Xiao2, QIAO Chaoyue2, FU Shancong2, WU Wenfei1,2()
Received:
2020-10-30
Revised:
2021-04-07
Online:
2021-10-10
Published:
2021-10-25
Contact:
WU Wenfei
摘要:
因为稀土尾矿中矿物复杂的连生关系,使其部分矿物在脱硝反应过程中并不能充分暴露发挥作用。本文采用机械力微波活化稀土尾矿,利用正交试验方法研究机械力微波活化参数对稀土尾矿NH3-SCR脱硝性能的影响,借助XRD、SEM-EDS、H2-TPR、NH3-TPD、BET等表征手段分析了机械力微波活化对稀土尾矿性能的影响。实验结果表明,稀土尾矿对活化参数的敏感性为:球料比>转子转速>球磨时间=球直径比>微波焙烧时间=微波焙烧温度=微波焙烧功率,机械力微波活化最优参数为球磨2h、转子转速300r/min、球料比1∶1、球直径比1∶1∶1、微波焙烧温度250℃、微波焙烧时间20min、微波焙烧功率1100W,活化稀土尾矿脱硝效率最高提升了40%。活化后,稀土尾矿催化剂的比表面积、矿物分散度、表面酸性位数量和氧化还原性能均得到了提升,弱酸、中强酸和强酸活性中心均匀分布有利于脱硝反应。赤铁矿暴露程度越高,越有利于稀土尾矿脱硝反应过程。
中图分类号:
侯丽敏, 闫笑, 乔超越, 付善聪, 武文斐. 机械力-微波活化对稀土尾矿NH3-SCR脱硝性能的影响[J]. 化工进展, 2021, 40(10): 5818-5828.
HOU Limin, YAN Xiao, QIAO Chaoyue, FU Shancong, WU Wenfei. Effect of mechanical force and microwave on the NH3-SCR denitration of rare earth tailings[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5818-5828.
元素 | 质量分数 /% | 元素 | 质量分数 /% | 元素 | 质量分数 /% | 元素 | 质量分数 /% |
---|---|---|---|---|---|---|---|
Fe | 17.394 | Ca | 17.798 | Si | 8.804 | Mg | 3.104 |
Ce | 1.783 | Al | 1.485 | Na | 1.336 | P | 1.158 |
S | 0.718 | Ba | 0.997 | Nd | 0.683 | Mn | 0.926 |
K | 0.572 | Ti | 0.310 | Nb | 0.112 | Pr | 0.109 |
Sr | 0.099 | Th | 0.031 | Zn | 0.036 | V | 0.008 |
Sc | 0.010 | Pb | 0.017 | Cl | 0.077 | Co | 0.005 |
Pd | 0.003 | I | 0.006 | Zr | 0.004 | Sn | 0.005 |
Ni | 0.002 | Cr | 0.001 | Rb | 0.002 | Te | 0.0016 |
As | 0.0004 | W | 0.0005 | Cu | 0.0025 |
表1 稀土尾矿中主要元素的质量分数
元素 | 质量分数 /% | 元素 | 质量分数 /% | 元素 | 质量分数 /% | 元素 | 质量分数 /% |
---|---|---|---|---|---|---|---|
Fe | 17.394 | Ca | 17.798 | Si | 8.804 | Mg | 3.104 |
Ce | 1.783 | Al | 1.485 | Na | 1.336 | P | 1.158 |
S | 0.718 | Ba | 0.997 | Nd | 0.683 | Mn | 0.926 |
K | 0.572 | Ti | 0.310 | Nb | 0.112 | Pr | 0.109 |
Sr | 0.099 | Th | 0.031 | Zn | 0.036 | V | 0.008 |
Sc | 0.010 | Pb | 0.017 | Cl | 0.077 | Co | 0.005 |
Pd | 0.003 | I | 0.006 | Zr | 0.004 | Sn | 0.005 |
Ni | 0.002 | Cr | 0.001 | Rb | 0.002 | Te | 0.0016 |
As | 0.0004 | W | 0.0005 | Cu | 0.0025 |
试验序号 | 球磨时间/h | 球磨转速/r·min-1 | 球料比 | 球直径比 | 微波焙烧温度/℃ | 微波焙烧时间/min | 微波焙烧功率/W |
---|---|---|---|---|---|---|---|
1 | 1(2) | 1(300) | 1(1∶1) | 1(5∶3∶1) | 1(150) | 1(5) | 1(300) |
2 | 1 | 2(600) | 2(10∶1) | 2(1∶1∶1) | 2(250) | 2(20) | 2(700) |
3 | 1 | 3(900) | 3(20∶1) | 3(1∶3∶5) | 3(350) | 3(35) | 3(1100) |
4 | 2(8) | 1 | 1 | 2 | 2 | 3 | 3 |
5 | 2 | 2 | 2 | 3 | 3 | 1 | 1 |
6 | 2 | 3 | 3 | 1 | 1 | 2 | 2 |
7 | 3(14) | 1 | 2 | 1 | 3 | 2 | 3 |
8 | 3 | 2 | 3 | 2 | 1 | 3 | 1 |
9 | 3 | 3 | 1 | 3 | 2 | 1 | 2 |
10 | 1 | 1 | 3 | 3 | 2 | 2 | 1 |
11 | 1 | 2 | 1 | 1 | 3 | 3 | 2 |
12 | 1 | 3 | 2 | 2 | 1 | 1 | 3 |
13 | 2 | 1 | 2 | 3 | 1 | 3 | 2 |
14 | 2 | 2 | 3 | 1 | 2 | 1 | 3 |
15 | 2 | 3 | 1 | 2 | 3 | 2 | 1 |
16 | 3 | 1 | 3 | 2 | 3 | 1 | 2 |
17 | 3 | 2 | 1 | 3 | 1 | 2 | 3 |
18 | 3 | 3 | 2 | 1 | 2 | 3 | 1 |
表2 正交试验方案
试验序号 | 球磨时间/h | 球磨转速/r·min-1 | 球料比 | 球直径比 | 微波焙烧温度/℃ | 微波焙烧时间/min | 微波焙烧功率/W |
---|---|---|---|---|---|---|---|
1 | 1(2) | 1(300) | 1(1∶1) | 1(5∶3∶1) | 1(150) | 1(5) | 1(300) |
2 | 1 | 2(600) | 2(10∶1) | 2(1∶1∶1) | 2(250) | 2(20) | 2(700) |
3 | 1 | 3(900) | 3(20∶1) | 3(1∶3∶5) | 3(350) | 3(35) | 3(1100) |
4 | 2(8) | 1 | 1 | 2 | 2 | 3 | 3 |
5 | 2 | 2 | 2 | 3 | 3 | 1 | 1 |
6 | 2 | 3 | 3 | 1 | 1 | 2 | 2 |
7 | 3(14) | 1 | 2 | 1 | 3 | 2 | 3 |
8 | 3 | 2 | 3 | 2 | 1 | 3 | 1 |
9 | 3 | 3 | 1 | 3 | 2 | 1 | 2 |
10 | 1 | 1 | 3 | 3 | 2 | 2 | 1 |
11 | 1 | 2 | 1 | 1 | 3 | 3 | 2 |
12 | 1 | 3 | 2 | 2 | 1 | 1 | 3 |
13 | 2 | 1 | 2 | 3 | 1 | 3 | 2 |
14 | 2 | 2 | 3 | 1 | 2 | 1 | 3 |
15 | 2 | 3 | 1 | 2 | 3 | 2 | 1 |
16 | 3 | 1 | 3 | 2 | 3 | 1 | 2 |
17 | 3 | 2 | 1 | 3 | 1 | 2 | 3 |
18 | 3 | 3 | 2 | 1 | 2 | 3 | 1 |
试验序号 | 球磨时间/h | 球磨转速/r·min-1 | 球料比 | 球直径比 | 微波焙烧温度/℃ | 微波焙烧时间/min | 微波焙烧功率/W | 指标 |
---|---|---|---|---|---|---|---|---|
1 | 1(2) | 1(300) | 1(1∶1) | 1(5∶3∶1) | 1(150) | 1(5) | 1(300) | 0.40 |
2 | 1 | 2(600) | 2(10∶1) | 2(1∶1∶1) | 2(250) | 2(20) | 2(700) | 0.30 |
3 | 1 | 3(900) | 3(20∶1) | 3(1∶3∶5) | 3(350) | 3(35) | 3(1100) | 0.18 |
4 | 2(8) | 1 | 1 | 2 | 2 | 3 | 3 | 0.46 |
5 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 0.20 |
6 | 2 | 3 | 3 | 1 | 1 | 2 | 2 | 0.12 |
7 | 3(14) | 1 | 2 | 1 | 3 | 2 | 3 | 0.32 |
8 | 3 | 2 | 3 | 2 | 1 | 3 | 1 | 0.07 |
9 | 3 | 3 | 1 | 3 | 2 | 1 | 2 | 0.36 |
10 | 1 | 1 | 3 | 3 | 2 | 2 | 1 | 0.43 |
11 | 1 | 2 | 1 | 1 | 3 | 3 | 2 | 0.41 |
12 | 1 | 3 | 2 | 2 | 1 | 1 | 3 | 0.37 |
13 | 2 | 1 | 2 | 3 | 1 | 3 | 2 | 0.36 |
14 | 2 | 2 | 3 | 1 | 2 | 1 | 3 | 0.19 |
15 | 2 | 3 | 1 | 2 | 3 | 2 | 1 | 0.38 |
16 | 3 | 1 | 3 | 2 | 3 | 1 | 2 | 0.36 |
17 | 3 | 2 | 1 | 3 | 1 | 2 | 3 | 0.41 |
18 | 3 | 3 | 2 | 1 | 2 | 3 | 1 | 0.11 |
T1 | 2.09 | 2.32 | 2.42 | 1.54 | 1.73 | 1.88 | 1.59 | |
T2 | 1.71 | 1.58 | 1.65 | 2.18 | 1.85 | 1.95 | 1.91 | |
T3 | 1.62 | 1.52 | 1.35 | 1.94 | 1.84 | 1.59 | 1.92 | |
0.348 | 0.387 | 0.403 | 0.257 | 0.288 | 0.313 | 0.265 | ||
0.285 | 0.263 | 0.275 | 0.363 | 0.308 | 0.325 | 0.318 | ||
0.270 | 0.253 | 0.225 | 0.323 | 0.307 | 0.265 | 0.320 | ||
R | 0.078 | 0.150 | 0.210 | 0.020 | 0.030 | 0.010 | 0.050 | |
SSj | 0.0207 | 0.0662 | 0.01015 | 0.03804 | 0.00148 | 0.01214 | 0.01174 | |
SSt | 0.25678 | |||||||
SSe | 0.00490 |
表3 正交试验结果分析
试验序号 | 球磨时间/h | 球磨转速/r·min-1 | 球料比 | 球直径比 | 微波焙烧温度/℃ | 微波焙烧时间/min | 微波焙烧功率/W | 指标 |
---|---|---|---|---|---|---|---|---|
1 | 1(2) | 1(300) | 1(1∶1) | 1(5∶3∶1) | 1(150) | 1(5) | 1(300) | 0.40 |
2 | 1 | 2(600) | 2(10∶1) | 2(1∶1∶1) | 2(250) | 2(20) | 2(700) | 0.30 |
3 | 1 | 3(900) | 3(20∶1) | 3(1∶3∶5) | 3(350) | 3(35) | 3(1100) | 0.18 |
4 | 2(8) | 1 | 1 | 2 | 2 | 3 | 3 | 0.46 |
5 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 0.20 |
6 | 2 | 3 | 3 | 1 | 1 | 2 | 2 | 0.12 |
7 | 3(14) | 1 | 2 | 1 | 3 | 2 | 3 | 0.32 |
8 | 3 | 2 | 3 | 2 | 1 | 3 | 1 | 0.07 |
9 | 3 | 3 | 1 | 3 | 2 | 1 | 2 | 0.36 |
10 | 1 | 1 | 3 | 3 | 2 | 2 | 1 | 0.43 |
11 | 1 | 2 | 1 | 1 | 3 | 3 | 2 | 0.41 |
12 | 1 | 3 | 2 | 2 | 1 | 1 | 3 | 0.37 |
13 | 2 | 1 | 2 | 3 | 1 | 3 | 2 | 0.36 |
14 | 2 | 2 | 3 | 1 | 2 | 1 | 3 | 0.19 |
15 | 2 | 3 | 1 | 2 | 3 | 2 | 1 | 0.38 |
16 | 3 | 1 | 3 | 2 | 3 | 1 | 2 | 0.36 |
17 | 3 | 2 | 1 | 3 | 1 | 2 | 3 | 0.41 |
18 | 3 | 3 | 2 | 1 | 2 | 3 | 1 | 0.11 |
T1 | 2.09 | 2.32 | 2.42 | 1.54 | 1.73 | 1.88 | 1.59 | |
T2 | 1.71 | 1.58 | 1.65 | 2.18 | 1.85 | 1.95 | 1.91 | |
T3 | 1.62 | 1.52 | 1.35 | 1.94 | 1.84 | 1.59 | 1.92 | |
0.348 | 0.387 | 0.403 | 0.257 | 0.288 | 0.313 | 0.265 | ||
0.285 | 0.263 | 0.275 | 0.363 | 0.308 | 0.325 | 0.318 | ||
0.270 | 0.253 | 0.225 | 0.323 | 0.307 | 0.265 | 0.320 | ||
R | 0.078 | 0.150 | 0.210 | 0.020 | 0.030 | 0.010 | 0.050 | |
SSj | 0.0207 | 0.0662 | 0.01015 | 0.03804 | 0.00148 | 0.01214 | 0.01174 | |
SSt | 0.25678 | |||||||
SSe | 0.00490 |
影响因素 | 离差平方和 | 自由度 | 方差 | 统计量 | 重要程度 |
---|---|---|---|---|---|
球磨时间 | 0.02074 | 2 | 0.01037 | 4.23356 | [*] |
转子转速 | 0.66200 | 2 | 0.03309 | 13.20567 | (*) |
球料比 | 0.10150 | 2 | 0.05077 | 20.72335 | * |
球直径比 | 0.03800 | 2 | 0.01902 | 7.764172 | [*] |
微波焙烧温度 | 0.00150 | 2 | 0.00074 | 0.30158 | |
微波焙烧时间 | 0.01210 | 2 | 0.00607 | 2.47845 | |
微波焙烧功率 | 0.01170 | 2 | 0.00587 | 2.39682 | |
误差 | 0.00490 | 2 | 0.00245 | — |
表4 方差分析
影响因素 | 离差平方和 | 自由度 | 方差 | 统计量 | 重要程度 |
---|---|---|---|---|---|
球磨时间 | 0.02074 | 2 | 0.01037 | 4.23356 | [*] |
转子转速 | 0.66200 | 2 | 0.03309 | 13.20567 | (*) |
球料比 | 0.10150 | 2 | 0.05077 | 20.72335 | * |
球直径比 | 0.03800 | 2 | 0.01902 | 7.764172 | [*] |
微波焙烧温度 | 0.00150 | 2 | 0.00074 | 0.30158 | |
微波焙烧时间 | 0.01210 | 2 | 0.00607 | 2.47845 | |
微波焙烧功率 | 0.01170 | 2 | 0.00587 | 2.39682 | |
误差 | 0.00490 | 2 | 0.00245 | — |
催化剂 | 峰值温度/℃ | 峰面积 | ||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | S1 | S2 | S3 | |
稀土尾矿 | 159 | 253 | 477 | 216 | 432 | 209 |
3号催化剂 | 147 | 316 | 464 | 578 | 1021 | 303 |
4号催化剂 | 137 | 327 | 473 | 226 | 291 | 350 |
13号催化剂 | 159 | 338 | 474 | 373 | 515 | 103 |
表5 稀土尾矿及活化稀土尾矿催化剂表面酸性位种类定量分析
催化剂 | 峰值温度/℃ | 峰面积 | ||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | S1 | S2 | S3 | |
稀土尾矿 | 159 | 253 | 477 | 216 | 432 | 209 |
3号催化剂 | 147 | 316 | 464 | 578 | 1021 | 303 |
4号催化剂 | 137 | 327 | 473 | 226 | 291 | 350 |
13号催化剂 | 159 | 338 | 474 | 373 | 515 | 103 |
1 | BONINGARI T, SMIRNIOTIS P G. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement[J]. Current Opinion in Chemical Engineering, 2016, 13: 133-141. |
2 | 陆强, 裴鑫琦, 徐明新, 等. SCR脱硝催化剂抗砷中毒改性优化与再生研究进展[J]. 化工进展, 2021, 40(5): 2365-2374. |
LU Qiang, PEI Xinqi, XU Mingxin, et al. Progress in the development and regeneration of SCR catalysts for anti-arsenic poisoning[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2365-2374. | |
3 | 环境保护部. 钢铁烧结、球团工业大气污染物排放标准: [S]. 北京: 中国环境科学出版社, 2012. |
Minsitey of Environment Protection of the People’s Republic of China. Emission standard of air pollutants for sintering and pelletizing of iron and steel industry: [S]. Beijing: China Environment Science Press, 2012. | |
4 | DELMAS R, SER A D, JAMBERT C. Global inventory of NOx sources[J]. Nutrient Cycling in Agroecosystems, 1997, 48(1): 51-60. |
5 | 刘勇军, 王雪娇, 巩梦丹, 等. 氮氧化物控制技术现状与进展[J]. 四川环境, 2014, 33(6): 115-117. |
LIU Yongjun, WANG Xuejiao, GONG Mengdan, et al. Current situation and progress of nitrogen oxide pollution control technology[J]. Sichuan Environment, 2014, 33(6): 115-117. | |
6 | FU M F, LI C T, LU P, et al. A review on selective catalytic reduction of NOx by supported catalysts at 100-300℃—Catalysts, mechanism, kinetics[J]. Catalysis Science & Technology, 2014, 4(1): 14-25. |
7 | LI J, CHANG H, MA L, et al. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review[J]. Catalysis Today, 2011, 175(1): 147-156. |
8 | HUANG B, HUANG R, JIN D, et al. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides[J]. Catalysis Today, 2007, 126(3-4): 279-283. |
9 | WNAG X B, GUI K T. Fe2O3 particles as superior catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Environmental Sciences, 2013, 25(12): 2469-2475. |
10 | KAPTEIJN F, SINGOREDJO L, ANDREINI A, et al. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B: Environmental, 1994, 3(2/3): 173-189. |
11 | WANG X B, WU S G, ZOU W X, et al. Fe-Mn/Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Chinese Journal of Catalysis, 2016, 37(8): 1314-1323. |
12 | 章贤臻, 王世磊, 李运姣, 等. 天然锰矿低温NH3-SCR烟气脱硝实验研究[J]. 矿产保护与利用, 2019, 39(3): 167-172. |
ZHANG Xianzhen, WANG Shilei, LI Yunjiao, et al. Technological study of selective catalytic reduction of NO with NH3 over natural manganese ore catalysts at low temperature[J]. Conservation and Utilization of Mineral Resources, 2019, 39(3): 167-172. | |
13 | 徐永鹏, 刘海波, 陈冬, 等. 酸浸天然锰矿石低温氧化脱硝性能研究[J]. 合肥工业大学学报(自然科学版), 2017, 40(8): 1133-1138, 1143. |
XU Yongpeng, LIU Haibo, CHEN Dong, et al. Performance of acid dipping of natural manganese ore for denitration with low temperature oxidation[J]. Journal of Hefei University of Technology (Natural Science), 2017, 40(8): 1133-1138, 1143. | |
14 | 卢慧霞, 归柯庭. 铁矿石SCR低温脱硝催化剂的改性研究[J]. 动力工程学报, 2017, 37(9): 726-731. |
LU Huixia, GUI Keting. Study on modification of iron ore catalysts for low-temperature SCR denitrification[J]. Journal of Chinese Society of Power Engineering, 2017, 37(9): 726-731. | |
15 | ZHANG Y, LIN H, DONG Y B, et al. Coupling relationship between multicomponent recovery of rare earth tailings[J]. Rare Metals, 2017, 36(3): 220-228. |
16 | WANG L, LIANG T. Accumulation and fractionation of rare earth elements in atmospheric particulates around a mine tailing in Baotou, China[J]. Atmospheric Environment, 2014, 88: 23-29. |
17 | 郑强. 综合回收白云鄂博弱磁尾矿中铁、稀土、氟和磷的研究[D]. 沈阳: 东北大学, 2017. |
ZHENG Qiang. Studies on comprehensive recovery of iron, rare earth, fluorine, and phosphorus from Bayan Obo weakly magnetic tailings[D]. Shenyang: Northeastern University, 2017. | |
18 | 付强, 金建文, 李磊. 白云鄂博尾矿库中铁的赋存状态研究[J]. 矿冶, 2017, 26(3): 94-98. |
FU Qiang, JIN Jianwen, LI Lei. The study of iron occurrence state in Baiyun Obo tailings[J]. Mining & Metallurgy, 2017, 26(3): 94-98. | |
19 | 张悦, 林海, 董颖博, 等. 白云鄂博地区尾矿中铁、铌、稀土、萤石综合回收研究[J]. 稀有金属, 2017, 41(7): 799-809. |
ZHANG Yue, LIN Hai, DONG Yingbo, et al. Comprehensive recovery of iron, niobium, rare earth and fluorite in Bayan Obo tailings[J]. Chinese Journal of Rare Metals, 2017, 41(7): 799-809. | |
20 | 付强, 金建文, 李磊, 等. 白云鄂博尾矿中稀土的赋存状态研究[J]. 稀土, 2017, 38(5): 103-110. |
FU Qiang, JIN Jianwen, LI Lei, et al. The study of REE occurrence state in Bayan Obo tailings[J]. Chinese Rare Earths, 2017, 38(5): 103-110. | |
21 | 宋增凯, 陈菓, 彭金辉, 等. 微波加热技术在典型冶金工艺中的应用研究进展[J]. 矿冶, 2014, 23(3): 57-63. |
SONG Zengkai, CHEN Guo, PENG Jinhui, et al. Research progress of application of microwave heating in typical metallurgical technology[J]. Mining & Metallurgy, 2014, 23(3): 57-63. | |
22 | GONG Z J, WU W F, ZHAO Z W, et al. Synergy between ferric oxide and rare earth oxides in rare earth tailings for the denitration of semi-coke[J]. Catalysis Today, 2018, 318: 175-179. |
23 | GONG Z J, WU W F, ZHAO Z W, et al. Combination of catalytic combustion and catalytic denitration on semi-coke with Fe2O3 and CeO2[J]. Catalysis Today, 2018, 318: 59-65. |
24 | 龚志军, 武文斐, 张凯, 等. 白云鄂博稀土矿物催化半焦燃烧与脱硝特性的研究[J]. 中国稀土学报, 2018, 36(5): 564-570. |
GONG Zhijun, WU Wenfei, ZHANG Kai, et al. Characteristics of char combustion and NOx abatement catalyzed with rare earth ore[J]. Journal of the Chinese Society of Rare Earths, 2018, 36(5): 564-570. | |
25 | QI G, YANG R T, CHANG R. MnOx-CeOx mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B: Environmental, 2004, 51(2): 93-106. |
26 | 程蕾. 高能球磨法制备Mg2TiO4、MgO纳米粉体及其陶瓷的微波介电性能研究[D]. 西安: 陕西师范大学, 2013. |
CHENG Lei. Microwave dielectric properties of Mg2TiO4 and MgO nano powders and the ceramics prepared by high energy ball milling[D]. Xi’an: Shaanxi Normal University, 2013. | |
27 | 吴清军. 高能球磨法制备SiC/Al复合材料[D]. 昆明: 昆明理工大学, 2012. |
WU Qingjun. SiC/Al composites prepared by high energy ball milling[D]. Kunming: Kunming University of Science and Technology, 2012. | |
28 | WANG X Y, ZHENG J S, FU R, et al. Effect of microwave power and irradiation time on the performance of Pt/C catalysts synthesized by pulse-microwave assisted chemical reduction[J]. Chinese Journal of Catalysis, 2011, 32(4): 599-605. |
29 | 黄宇坤. 微波强化分解包头稀土矿清洁工艺的基础研究[D]. 沈阳: 东北大学, 2017. |
HUANG Yukun. A fundamental study on a cleaning process of mixed rare earth ore from Baotou decomposed with microwave heating[D]. Shenyang: Northeastern University, 2017. | |
30 | 雷鹰. 微波强化还原低品位钛精矿新工艺及理论研究[D]. 昆明: 昆明理工大学, 2011. |
LEI Ying. New technology and theoretical study on microwave enhanced reduction of low grade titanium concentrate[D]. Kunming: Kunming University of Science and Technology, 2011. | |
31 | 滕兆龙. 锰基复合柱撑蒙脱土催化剂制备与脱硝活性研究[D]. 沈阳: 东北大学, 2018. |
TENG Zhaolong. Preparation and denitration activity of manganese base composite pillared clay catalyst[D]. Shenyang: Northeastern University, 2018. | |
32 | 刘文卿. 实验设计[M]. 北京: 清华大学出版社, 2007. |
LIU Wenqing. Experimental design[M]. Beijing: Tsinghua University Press, 2007. | |
33 | 左亚军. 基于正交试验法的注塑机合模机构的优化设计研究[D]. 广州: 广东工业大学, 2012. |
ZUO Yajun. Research on optimal design of clamping mechanism for an injection machine using orthogonal design method[D]. Guangzhou: Guangdong University of Technology, 2012. | |
34 | 成岳, 夏光华. 科学研究与工程试验设计方法[M]. 武汉: 武汉理工大学出版社, 2005. |
CHENG Yue, XIA Guanghua. Design method of scientific research and engineering experiment[M]. Wuhan: Wuhan University of Technology Press, 2005. | |
35 | WEI M Q, YU Q B, MU T T, et al. Preparation and characterization of waste ion-exchange resin-based activated carbon for CO2 capture[J]. Adsorption, 2016, 22(3): 385-396. |
36 | WEI M Q, YU Q B, DUAN W J, et al. CO2 adsorption and desorption performance of waste ion-exchange resin-based activated carbon[J]. Environmental Progress & Sustainable Energy, 2018, 37(2): 703-711. |
37 | 杨洋, 胡准, 米容立, 等. Mn负载量对nMnOx/TiO2催化剂NH3-SCR催化性能的影响[J]. 分子催化, 2020, 34(4): 313-322. |
YANG Yang, HU Zhun, MI Rongli, et al. Effect of Mn loading on catalytic performance of nMnOx/TiO2 in NH3-SCR reaction[J]. Journal of Molecular Catalysis, 2020, 34(4): 313-322. | |
38 | 周超, 赵阳, 徐佳, 等. pH值对浸渍法制备的铈钨钛脱硝催化剂的影响[J]. 稀土, 2020, 41(5): 59-69. |
ZHOU Chao, ZHAO Yang, XU Jia, et al. Effect of pH on denitration performance of CeWTi catalyst[J]. Chinese Rare Earths, 2020, 41(5): 59-69. | |
39 | ZHU X B, WANG Y L, HUANG Y, et al. Selective catalytic reduction of NO with NH3 over Ce-W-Ti oxide catalysts prepared by solvent combustion method[J]. Applied Sciences, 2018, 8(12): 2430-2439. |
40 | 余雅昕. 铁基NH3-SCR催化剂的低温脱硝性能及抗SO2中毒机制研究[D]. 南京: 南京大学, 2020. |
YU Yaxin. Study on the mechanism of SO2 resistance and the catalytic performance in low-temperature selective catalytic reduction of NO by NH3 over Fe-based catalysts[D]. Nanjing: Nanjing University, 2020. | |
41 | 黄秀兵, 王鹏, 陶进长, 等. CeO2修饰Mn-Fe-O复合材料及其NH3-SCR脱硝催化性能[J]. 无机材料学报, 2020, 35(5): 573-580. |
HUANG Xiubing, WANG Peng, TAO Jinzhang, et al. CeO2 modified Mn-Fe-O composites and their catalytic performance for NH3-SCR of NO[J]. Journal of Inorganic Materials, 2020, 35(5): 573-580. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |