化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5337-5347.DOI: 10.16085/j.issn.1000-6613.2020-2156
徐婉怡1,2(), 王红霞1,2, 崔小迷3, 张早校1,2()
收稿日期:
2020-10-27
修回日期:
2021-02-18
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
张早校
作者简介:
徐婉怡(1997—),女,硕士研究生,研究方向为氧热法煤制电石工艺优化。E-mail:基金资助:
XU Wanyi1,2(), WANG Hongxia1,2, CUI Xiaomi3, ZHANG Zaoxiao1,2()
Received:
2020-10-27
Revised:
2021-02-18
Online:
2021-10-10
Published:
2021-10-25
Contact:
ZHANG Zaoxiao
摘要:
我国电石产量位居世界第一,电石生产已成为我国化工领域的重要环节。电热法是目前工业上应用最广的电石生产方法,但由于其高能耗、高污染、高投入、低产出等诸多弊端,如何对传统电石工艺进行转型升级改造,发展节能降耗、原料及附加产品综合高效利用的大型一体化电石产业链成为了时下研究的热点。氧热法具有能耗低、物耗低、能效高、污染少的特点,已经成为替代电热法生产电石的新选择。为此,本文围绕氧热法煤制电石工艺、煤制电石多联产技术、电石清洁生产三方面对煤制电石新工艺进行综述,对国内外氧热法制电石研究进展进行总结分析。在此基础上文章对煤制电石与化工/动力系统多联产工艺和电石渣综合利用与废气捕集技术路线进行了分析与讨论,并对进一步值得研究的重点方向进行了展望,为煤制电石清洁高效生产的理论研究、工程实践、系统运行提供了参考。
中图分类号:
徐婉怡, 王红霞, 崔小迷, 张早校. 电石制备清洁生产和工程化研究进展[J]. 化工进展, 2021, 40(10): 5337-5347.
XU Wanyi, WANG Hongxia, CUI Xiaomi, ZHANG Zaoxiao. Research progress on cleaner production and engineering of calcium carbide preparation[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5337-5347.
生产技术 | 各组分质量分数/% | |||||||
---|---|---|---|---|---|---|---|---|
H2 | CaO | CO | N2 | CO2 | O2 | H2S | H2O | |
电热法 | 0.86 | 2.8 | 0.09 | 17.5 | 77.7 | 0.25 | 0.4 | 0.4 |
氧热法 | 0.37 | 0.08 | 91.8 | 1.7 | 0.9 | 3.7 | 0.15 | 1.3 |
表1 电石炉气成分表[6]
生产技术 | 各组分质量分数/% | |||||||
---|---|---|---|---|---|---|---|---|
H2 | CaO | CO | N2 | CO2 | O2 | H2S | H2O | |
电热法 | 0.86 | 2.8 | 0.09 | 17.5 | 77.7 | 0.25 | 0.4 | 0.4 |
氧热法 | 0.37 | 0.08 | 91.8 | 1.7 | 0.9 | 3.7 | 0.15 | 1.3 |
序号 | 项目 | 原料 | 产品 | 成熟度 | 典型技术方法 |
---|---|---|---|---|---|
1 | 合成气制甲醇 甲醇制乙烯 | 合成气 甲醇 | 甲醇 乙烯、丙烯 | C P | ICI、Lurgi UOP、中科院大连化学物理研究所 |
2 | CO制光气 | CO、Cl2 | 光气 | C | 通用电气公司 拜尔材料科学股份有限公司 |
3 | 合成气制燃料油 | 合成气 | 烯烃、烷烃 | C | 南非Sasol,Shell,Arge,Kellog |
4 | CO制草酸二甲酯 草酸二甲酯制乙二醇 | CO、亚硝酸甲酯 草酸二甲酯H2 | 草酸二甲酯 乙二醇、甲醇 | P P | 日本宇部工业公司 华东理工大学 上海浦景化工公司 |
5 | CO制丙烯酸 | 乙炔CO H2O | 丙烯酸 | I | 德国WJ-Reppe |
6 | CO制甲酸甲酯 | CO、甲醇 | 甲酸甲酯 | I | 美国科学设计公司 德国巴斯夫公司 |
7 | CO制甲酰胺 | CO、氨气、甲醇 | 甲酰胺 | I | — |
8 | CO制二甲基甲酰胺 | CO、二甲胺 | 二甲基甲酰胺 | I | 日本化学品公司 三菱瓦斯化学集团公司 Du Pont |
9 | CO制乙醇 | CO、H2 | 乙醇 乙醛乙酸 | P | 中科院大连化学物理研究所 中国成达化学工程公司 |
10 | CO制低碳混合醇 | CO、H2 | 低碳混合醇 | L | 天津大学 Pacific Northwest National Lab |
11 | CO用于合成氨 | 合成气、氮气 | 氨气 | C | 中国五环工程有限公司,TOPSE,Linder公司 |
12 | CO制甲酸 | CO、H2、H2O | 甲酸 | C | 美国SD-Bethlehem Leonard,德国巴斯夫公司 |
13 | CO制乙酸 | CO、甲醇 | 乙酸 | I | 孟山都法(塞拉尼斯公司) |
14 | CO制二甲醚 | CO、H2 | 二甲醚 | I | 美国空气产品和化学品公司 日本钢管公司(NKK) |
表2 CO利用技术路线汇总表
序号 | 项目 | 原料 | 产品 | 成熟度 | 典型技术方法 |
---|---|---|---|---|---|
1 | 合成气制甲醇 甲醇制乙烯 | 合成气 甲醇 | 甲醇 乙烯、丙烯 | C P | ICI、Lurgi UOP、中科院大连化学物理研究所 |
2 | CO制光气 | CO、Cl2 | 光气 | C | 通用电气公司 拜尔材料科学股份有限公司 |
3 | 合成气制燃料油 | 合成气 | 烯烃、烷烃 | C | 南非Sasol,Shell,Arge,Kellog |
4 | CO制草酸二甲酯 草酸二甲酯制乙二醇 | CO、亚硝酸甲酯 草酸二甲酯H2 | 草酸二甲酯 乙二醇、甲醇 | P P | 日本宇部工业公司 华东理工大学 上海浦景化工公司 |
5 | CO制丙烯酸 | 乙炔CO H2O | 丙烯酸 | I | 德国WJ-Reppe |
6 | CO制甲酸甲酯 | CO、甲醇 | 甲酸甲酯 | I | 美国科学设计公司 德国巴斯夫公司 |
7 | CO制甲酰胺 | CO、氨气、甲醇 | 甲酰胺 | I | — |
8 | CO制二甲基甲酰胺 | CO、二甲胺 | 二甲基甲酰胺 | I | 日本化学品公司 三菱瓦斯化学集团公司 Du Pont |
9 | CO制乙醇 | CO、H2 | 乙醇 乙醛乙酸 | P | 中科院大连化学物理研究所 中国成达化学工程公司 |
10 | CO制低碳混合醇 | CO、H2 | 低碳混合醇 | L | 天津大学 Pacific Northwest National Lab |
11 | CO用于合成氨 | 合成气、氮气 | 氨气 | C | 中国五环工程有限公司,TOPSE,Linder公司 |
12 | CO制甲酸 | CO、H2、H2O | 甲酸 | C | 美国SD-Bethlehem Leonard,德国巴斯夫公司 |
13 | CO制乙酸 | CO、甲醇 | 乙酸 | I | 孟山都法(塞拉尼斯公司) |
14 | CO制二甲醚 | CO、H2 | 二甲醚 | I | 美国空气产品和化学品公司 日本钢管公司(NKK) |
1 | HUO H L, LIU X L, WEN Z, et al. Case study of a novel low rank to calcium carbide process based on techno-economic assessment[J]. Energy, 2021, 228: 120566. |
2 | 任其龙. 低阶煤高值转化制备基础化工原料关键技术及应用[J]. 化工进展, 2016, 35(12): 4101-4102. |
REN Qilong. Key technologies and application of producing basic chemical materials from low-rank coal[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4101-4102. | |
3 | 胡文军. 电石生产工艺技术的改进与优化[J]. 化工设计通讯, 2018, 44(8): 55. |
HU Wenjun. Improvement and optimization of the process technology of calcium carbide production[J]. Chemical Engineering Design Communications, 2018, 44(8): 55. | |
4 | 廖玉清. 国内外电石生产技术开发动向[J]. 煤化工, 1990, 18(3): 48-52. |
LIAO Yuqing. Development trend of calcium carbide production technology at home and abroad[J]. Coal Chemical Industry, 1990, 18(3): 48-52. | |
5 | 王仁醒, 纪雷鸣, 刘清雅, 等. 氧热法电石生产技术研发进展[J]. 化工学报, 2014, 65(7): 2417-2425. |
WANG Renxing, JI Leiming, LIU Qingya, et al. Development of auto-thermal production of calcium carbide[J]. CIESC Journal, 2014, 65(7): 2417-2425. | |
6 | MI Y, ZHENG D X, GUO J, et al. Assessment of energy use and carbon footprint for low-rank coal-based oxygen-thermal and electro-thermal calcium carbide manufacturing processes[J]. Fuel Processing Technology, 2014, 119: 305-315. |
7 | LI G D, LIU Q Y, LIU Z Y, et al. Production of calcium carbide from fine biochars[J]. Angewandte Chemie International Edition, 2010, 49(45): 8480-8483. |
8 | LI G D, LIU Q Y, LIU Z Y. CaC2 production from pulverized coke and CaO at low temperatures—influence of minerals in coal-derived coke[J]. Industrial & Engineering Chemistry Research, 2012, 51(33): 10748-10754. |
9 | 徐才福, 陈雪枫, 徐建民, 等. 氧热法反应制备电石和合成气的方法及电石反应器: CN102153085B[P]. 2013-10-16. |
XU Caifu, CHEN Xuefeng, XU Jianmin, et al. Method of preparing calcium carbide and synthesis gas through thermal oxidation reaction and calcium reactor: CN102153085B[P]. 2013-10-16. | |
10 | 刘陆, 杨鹏远, 刘辉. 氧热法电石合成的反应平衡和热匹配分析[J]. 北京化工大学学报(自然科学版), 2012, 39(2): 1-6. |
LIU Lu, YANG Pengyuan, LIU Hui. Thermodynamic analysis of calcium carbide synthesis and its thermal coupling with coke combustion[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2012, 39(2): 1-6. | |
11 | 杨鹏远, 刘陆, 刘辉. 氧热法电石合成淤浆鼓泡床反应器的流动特性[J]. 北京化工大学学报(自然科学版), 2012, 39(3): 1-6. |
YANG Pengyuan, LIU Lu, LIU Hui. Applicability and hydrodynamics of a slurry bubble column reactor for oxygen-heating calcium carbide production[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2012, 39(3): 1-6. | |
12 | 刘振宇, 刘清雅. 煤分级转化残焦制备电石的低能耗新技术原理研究报告[J]. 科技创新导报, 2016, 13(6): 161. |
LIU Zhenyu, LIU Qingya. Preparation of calcium carbide using the pyrolysis derived coke[J]. Science and Technology Innovation Herald, 2016, 13(6): 161. | |
13 | 于洋, 李文涛, 窦雅玲, 等. 氧热法电石生产气流床反应器性能的数值模拟[J]. 北京化工大学学报(自然科学版), 2013, 40(3): 27-31. |
YU Yang, LI Wentao, DOU Yaling, et al. Simulation of the reaction performance of a fluid bed reactor for oxygen-heated calcium carbide production[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2013, 40(3): 27-31. | |
14 | 黄迪, 曾剑桥, 刘辉. 复合移动床电石反应器中颗粒运动的离散单元法模拟[J]. 化工进展, 2014, 33(10): 2576-2582. |
HUANG Di, ZENG Jianqiao, LIU Hui. Discrete element method simulation of particle flow in a combined-moving bed reactor for carbide production[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2576-2582. | |
15 | 曾剑桥, 黄迪, 刘辉. 复合床电石反应器布料器性能实验[J]. 北京化工大学学报(自然科学版), 2014, 41(5): 25-30. |
ZENG Jianqiao, HUANG Di, LIU Hui. Particle distributing performance of rotational plates in a combined-moving bed reactor for carbide production[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2014, 41(5): 25-30. | |
16 | 赵欣磊, 祁娟, 马艺桠, 等. 复合床电石反应器用固体布料器性能实验[J]. 北京化工大学学报(自然科学版), 2015, 42(3): 28-32. |
ZHAO Xinlei, QI Juan, MA Yiya, et al. Performance of a solid particle distribution device used in a multi-bed reactor for calcium carbide production[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2015, 42(3): 28-32. | |
17 | CHEN X H, ZHENG D X, CHEN J. An approach to obtain Heat Integration scheme with higher viability for complex system[J]. Energy, 2014, 78: 720-731. |
18 | WU W, WEN F, SHI B. Assessing the commercial potential of IGCC polygeneration/power plants integrated with chemical-looping processes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112: 296-305. |
19 | HUANG H, YANG S Y, CUI P Z. Design concept for coal-based polygeneration processes of chemicals and power with the lowest energy consumption for CO2 capture[J]. Energy Conversion and Management, 2018, 157: 186-194. |
20 | 伊欣欣, 郑丹星, 陈小辉, 等. 电石炉气制清洁燃料的工艺对比与分析[J]. 工程热物理学报, 2016, 37(3): 475-481. |
YI Xinxin, ZHENG Danxing, CHEN Xiaohui, et al. Evaluation of calcium carbide furnace off-gas-based clean fuels manufacturing processes[J]. Journal of Engineering Thermophysics, 2016, 37(3): 475-481. | |
21 | 陆泳宇, 阎维平, 姜平. 燃煤电站氧热法联产电石的热力计算与分析[J]. 化工进展, 2015, 34(1): 102-107. |
LU Yongyu, YAN Weiping, JIANG Ping. Thermal calculation and analysis of oxygen-fuel calcium carbide production in coal-fired power station combined calcium carbide multi-generation system[J]. Chemical Industry and Engineering Progress, 2015, 34(1): 102-107. | |
22 | 陆泳宇. 燃煤电站联产电石系统的性能计算、分析及评价[D]. 北京: 华北电力大学, 2015. |
LU Yongyu. Performance calculation, analysis and evaluation of coal-fired power station combined calcium carbide multi-generation system[D]. Beijing: North China Electric Power University, 2015. | |
23 | 蔡建利, 邓勇, 陈仁宏, 等. 碳化钙制造设备及方法: CN104609422A[P]. 2015-05-13. |
CAI Jianli, DENG Yong, CHEN Renhong, et al. The equipment and method of the calcium carbide manufacturing: CN104609422 A[P]. 2015-05-13. | |
24 | CARREIRO L G, BURKE A A, DUBOIS L. Co-generation of acetylene and hydrogen for a carbide-based fuel system[J]. Fuel Processing Technology, 2010, 91(9): 1028-1032. |
25 | BURKE A A, CARREIRO L G, GREENE E S. Carbide-based fuel system for undersea vehicles[J]. Journal of Power Sources, 2008, 176(1): 299-305. |
26 | CHEN X H, ZHENG D X, YI X X, et al. Optimal design of process configuration for a cascade coproduction system to produce furnace off-gas-based clean fuels and chemicals[J]. Chemical Engineering Research and Design, 2016, 109: 780-790. |
27 | CHEN X, GUO J, ZHENG D, et al. Heat integtation for low-rank coal based pyrolysisi polygeneration systems[C]//ECOS 2013—26th International Conference on Efficiency, Cost, Optimization, Simulation and Environment Impact of Energy Systems, 2013. |
28 | JIANG M, WANG Z H, NING P, et al. Dust removal and purification of calcium carbide furnace off-gas[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(3): 901-907. |
29 | 葛臣. 氧热法制电石多联产系统工艺研究及工程设计[D]. 北京: 北京化工大学, 2017. |
GE Chen. Investigation and engineering design of oxy-thermal calcium carbide poly-generation system[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
30 | WANG J, YANG Y, JIA Q, et al. Solid-waste-derived carbon dioxide-capturing materials[J]. ChemSusChem, 2019, 12(10): 2055-2082. |
31 | 江军. 电石炉净化灰回收利用工艺技术研究[D]. 北京: 北京化工大学, 2015. |
JIANG Jun. The recycling technology research of purification ash from calcium carbide furnace[D]. Beijing: Beijing University of Chemical Technology, 2015. | |
32 | 胡文军. 电石生产企业的节能降耗[J]. 聚氯乙烯, 2018, 46(4): 43-46. |
HU Wenjun. Energy saving and consumption reduction of calcium carbide production enterprises[J]. Polyvinyl Chloride, 2018, 46(4): 43-46. | |
33 | RODYGIN K S, LOTSMAN K A, ANANIKOV V P. Calcium carbide looping system for acetaldehyde manufacturing from virtually any carbon source[J]. ChemSusChem, 2020, 13(14): 3679-3685. |
34 | 邓建民, 杨国强. 电石炉烟气的处理及综合利用[J]. 聚氯乙烯, 2016, 44(9): 40-42, 44. |
DENG Jianmin, YANG Guoqiang. Treatment and comprehensive utilization of flue gas from calcium carbide furnace[J]. Polyvinyl Chloride, 2016, 44(9): 40-42, 44. | |
35 | LI S, GAO L, JIN H G. Realizing low life cycle energy use and GHG emissions in coal based polygeneration with CO2 capture[J]. Applied Energy, 2017, 194: 161-171. |
36 | RODYGIN K S, VIKENTEVA Y A, ANANIKOV V P. Calcium-based sustainable chemical technologies for total carbon recycling[J]. ChemSusChem, 2019, 12(8): 1483-1516. |
37 | CHEN X H, ZHENG D X. Thermodynamic characteristics of reactants and energy conversion in steam reforming of calcium carbide furnace off-gas to produce hydrogen[J]. International Journal of Hydrogen Energy, 2014, 39(21): 10996-11005. |
38 | YI X, ZHENG D, CHEN X, et al. Evaluation of two dimethyl ether processes manufactured by calcium carbide furnace off-gas[C]//ECOS 2015—28th International Conference on Efficiency, Cost, Optimization, Simulation and Environment Impact of Energy Systems, 2015. |
39 | YANG J, LIU S Y, MA L P, et al. Mechanism analysis of carbide slag capture of CO2via a gas-liquid-solid three-phase fluidization system[J]. Journal of Cleaner Production, 2021, 279: 123712. |
40 | SUN Z W, WANG S W, ZHOU Q L, et al. Experimental study on desulfurization efficiency and gas-liquid mass transfer in a new liquid-screen desulfurization system[J]. Applied Energy, 2010, 87(5): 1505-1512. |
41 | 董文博. 电石渣综合利用途径探讨[J]. 河南化工, 2020, 37(6): 10-11, 16. |
DONG Wenbo. Approach to comprehensive utilization of carbide slag[J]. Henan Chemical Industry, 2020, 37(6): 10-11, 16. | |
42 | SUN R Y, LI Y J, ZHAO J L, et al. CO2 capture using carbide slag modified by propionic acid in calcium looping process for hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(31): 13655-13663. |
43 | YANG J, CHENG J X, HUANG S J. CO2 emissions performance and reduction potential in China's manufacturing industry: a multi-hierarchy meta-frontier approach[J]. Journal of Cleaner Production, 2020, 255: 120226. |
44 | ARULRAJAH A, MOHAMMADINIA A, PHUMMIPHAN I, et al. Stabilization of recycled demolition aggregates by geopolymers comprising calcium carbide residue, fly ash and slag precursors[J]. Construction and Building Materials, 2016, 114: 864-873. |
45 | CAI J J, WANG S Z, ZENG R H, et al. CaO-based chemical looping gasification of biomass for the production of hydrogen-enriched gas and CO2 negative emissions: a review[J]. International Journal of Energy for a Clean Environment, 2018, 19(3/4): 257-302. |
46 | PEREJÓN A, ROMEO L M, LARA Y, et al. The calcium-looping technology for CO2 capture: on the important roles of energy integration and sorbent behavior[J]. Applied Energy, 2016, 162: 787-807. |
47 | SUN Z C, YU F C, LI F X, et al. Experimental study of HCl capture using CaO sorbents: activation, deactivation, reactivation, and ionic transfer mechanism[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 6034-6043. |
48 | MENDIARA T, GARCÍA-LABIANO F, ABAD A, et al. Negative CO2 emissions through the use of biofuels in chemical looping technology: a review[J]. Applied Energy, 2018, 232: 657-684. |
49 | AWASTHI M K, SARSAIYA S, PATEL A, et al. Refining biomass residues for sustainable energy and bio-products: an assessment of technology, its importance, and strategic applications in circular bio-economy[J]. Renewable and Sustainable Energy Reviews, 2020, 127: 109876. |
50 | LUO M, YI Y, WANG S Z, et al. Review of hydrogen production using chemical-looping technology[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 3186-3214. |
51 | WANG J S, ANTHONY E J. Clean combustion of solid fuels[J]. Applied Energy, 2008, 85(2/3): 73-79. |
52 | SKOCZKOWSKI T, VERDOLINI E, BIELECKI S, et al. Technology innovation system analysis of decarbonisation options in the EU steel industry[J]. Energy, 2020, 212: 118688. |
53 | CAI J J, WANG S Z, XIAO Z Z. A study on the CO2 capture and attrition performance of construction and demolition waste[J]. Fuel, 2018, 222: 232-242. |
54 | CAI J J, YAN F, LUO M, et al. Highly stable CO2 capture performance of binary doped carbide slag synthesized through liquid precipitation method[J]. Fuel, 2020, 280: 118575. |
55 | HE Z R, LI Y J, ZHANG W, et al. Effect of re-carbonation on CO2 capture by carbide slag and energy consumption in the calciner[J]. Energy Conversion and Management, 2017, 148: 1468-1477. |
56 | SALAUDEEN S A, ACHARYA B, DUTTA A. CaO-based CO2 sorbents: a review on screening, enhancement, cyclic stability, regeneration and kinetics modelling[J]. Journal of CO2 Utilization, 2018, 23: 179-199. |
57 | 郭琳琳, 范小振, 张文育, 等. 电石渣制备高附加值碳酸钙的研究进展[J]. 化工进展, 2017, 36(1): 364-371. |
GUO Linlin, FAN Xiaozhen, ZHANG Wenyu, et al. Research progress on preparation of calcium carbonate with carbide slag[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 364-371. | |
58 | WU H, YANG L J, YAN J P, et al. Improving the removal of fine particles by heterogeneous condensation during WFGD processes[J]. Fuel Processing Technology, 2016, 145: 116-122. |
59 | XU Y Q, DING H R, LUO C, et al. Effect of lignin, cellulose and hemicellulose on calcium looping behavior of CaO-based sorbents derived from extrusion-spherization method[J]. Chemical Engineering Journal, 2018, 334: 2520-2529. |
60 | SCALA F. Attrition during steam gasification of lignite char in a fluidized bed reactor[J]. Fuel Processing Technology, 2016, 141: 38-43. |
61 | CHEN H Q, LIU W Q, SUN J, et al. Routine investigation of CO2 sorption enhancement for extruded-spheronized CaO-based pellets[J]. Energy & Fuels, 2017, 31(9): 9660-9667. |
62 | MULEY S, NANDGUDE T, PODDAR S. Extrusion-spheronization a promising pelletization technique: in-depth review[J]. Asian Journal of Pharmaceutical Sciences, 2016, 11(6): 684-699. |
63 | WANG X, LI Y J, ZHANG W, et al. Simultaneous SO2 and NO removal by pellets made of carbide slag and coal char in a bubbling fluidized-bed reactor[J]. Process Safety and Environmental Protection, 2020, 134: 83-94. |
64 | ZHANG J Q, WANG Z S, LI T, et al. Preparation of CaO-containing carbon pellet from recycling of carbide slag: effects of temperature and H3PO4[J]. Waste Management, 2019, 84: 64-73. |
65 | DULAIMI A, SHANBARA H K, AL-RIFAIE A. The mechanical evaluation of cold asphalt emulsion mixtures using a new cementitious material comprising ground-granulated blast-furnace slag and a calcium carbide residue[J]. Construction and Building Materials, 2020, 250: 118808. |
66 | LIU Y Y, CHANG C W, NAMDAR A, et al. Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue[J]. Construction and Building Materials, 2019, 221: 1-11. |
67 | POURABBAS BILONDI M, TOUFIGH M M, TOUFIGH V. Using calcium carbide residue as an alkaline activator for glass powder-clay geopolymer[J]. Construction and Building Materials, 2018, 183: 417-428. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[3] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[4] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[5] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[8] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[9] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[10] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[11] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[12] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[13] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[14] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[15] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |