1 |
CHAUVY Remi, MEUNIER Nicolas, THOMAS Diane, et al. Selecting emerging CO2 utilization products for short- to mid-term deployment[J]. Applied Energy, 2019, 236: 662-680.
|
2 |
LIANG Z W, RONGWONG W, LIU H L, et al. Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents[J]. International Journal of Greenhouse Gas Control, 2015, 40: 26-54.
|
3 |
BHOWN A S, FREEMAN B C. Analysis and status of post-combustion carbon dioxide capture technologies[J]. Environmental Science & Technology, 2011, 45(20): 8624-8632.
|
4 |
HASZELDINE R S. Carbon capture and storage: how green can black be?[J]. Science, 2009, 325(5948): 1647-1652.
|
5 |
FIROOZABADI A, MYINT P C. Prospects for subsurface CO2 sequestration[J]. AIChE Journal, 2010, 56(6): 1398-1405.
|
6 |
FURUKAWA Hiroyasu, CORDOVA Kyle, KEEFFE Michael, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341: 123-144.
|
7 |
GASSENSMITH Jeremiah, FURUKAWA Hiroyasu, SMALDONE R A, et al. Strong and reversible binding of carbon dioxide in a green metal-organic framework[J]. Journal of the American Chemical Society, 2011,133(39): 15312-15315.
|
8 |
MISHRA Prashant, MEKALA Samuel, DREISBACH Freisbach, et al. Adsorption of CO2, CO, CH4 and N2 on a zinc based metal organic framework[J]. Separation and Purification Technology, 2012, 94: 124-130.
|
9 |
ADATOZ Elda, AVCI Ahmet, KESKIN Seda. Opportunities and challenges of MOF-based membranes in gas separations[J]. Separation and Purification Technology, 2015, 152: 207-237.
|
10 |
KERTIK Aylin, Lik WEE, PFANNMOLLER Martin, et al. Highly selective gas separation membrane using in situ amorphised metal-organic frameworks[J]. Energy Environmental & Science, 2017, 10(11): 2342-2351.
|
11 |
PARK K S, NI Z, CÔTÉ A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191.
|
12 |
GADIPELLI Srinivas, TRAVIS Will, ZHOU Wei, et al. A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake[J]. Energy Environmental Science, 2014, 7(7): 2232-2238.
|
13 |
LIU H, LIU B, LIN L C, et al. A hybrid absorption-adsorption method to efficiently capture carbon[J]. Nature Communication, 2014, 5: 5147.
|
14 |
Fang JOU, MATHER Alan, OTTO Frederick. The solubility of CO2 in a 30 mass percent monoethanolamine solution[J]. The Canadian Journal of Chemical Engineering, 1995, 73(1): 140-147.
|
15 |
CHOWDHURY Firoz, YAMAD Hidetaka, HIGASHII Takayuki, et al. CO2 capture by tertiary amine absorbents: a performance comparison study[J]. Ind. Eng. Chem. Res., 2013, 52(24): 8323-8331.
|
16 |
WILCOX Jennifer. Carbon Capture[M]. New York: Springer, 2012.
|
17 |
ANTHONY Jennifer, MAGINN Edward, BRENNECKE Joan. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate[J]. J. Phys. Chem. B, 2002, 106(29): 7315-7320.
|
18 |
ROCHELLE Gary. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654.
|
19 |
WANG C M, LUO X Y, LUO H M, et al. Tuning the basicity of ionic liquids for equimolar CO2 capture[J]. Angewandte Chemie International Edition, 2011, 50(21): 4918-4922.
|
20 |
LIU Huang, PAN Yong, LIU Bei, et al. Tunable integration of absorption membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature[J]. Scientific Reports, 2016, 6: 21114.
|
21 |
LEI Zhiggang, DAI Cheng, SONG Wen. Adsorptive absorption: a preliminary experimental and modeling study on CO2 solubility[J]. Chemical Engineering Science, 2015, 127: 260-268.
|