化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5577-5589.DOI: 10.16085/j.issn.1000-6613.2020-2061
郭海燕(), 彭东来, 冯孝权, 金业豪, 田志红, 王景(), 张亚涛()
收稿日期:
2020-10-13
修回日期:
2020-12-14
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
王景,张亚涛
作者简介:
郭海燕(1995—),女,硕士研究生,研究方向为气体膜分离。E-mail:基金资助:
GUO Haiyan(), PENG Donglai, FENG Xiaoquan, JIN Yehao, TIAN Zhihong, WANG Jing(), ZHANG Yatao()
Received:
2020-10-13
Revised:
2020-12-14
Online:
2021-10-10
Published:
2021-10-25
Contact:
WANG Jing,ZHANG Yatao
摘要:
PIM-1由自身扭曲且刚性的单体组成,具有比表面积高、热稳定性好和结构简单等优点,是最具代表性的一种自具微孔聚合物。与传统有机聚合物膜相比,PIM-1膜可表现出极高的气体渗透性,在气体分离领域展现出巨大的研究价值与应用潜力。因此概括并总结PIM-1膜在气体分离领域的研究进展,同时梳理制约PIM-1膜的发展的关键问题及解决策略十分有必要。本文首先概述了气体分离膜的性能指标及气体在膜内的传递模型,重点总结了近二十年来PIM-1膜在气体分离中的主要研究进展,包括纯PIM-1膜、改性PIM-1膜和PIM-1混合基质膜的设计制备及气体分离性能,并分析了不同改性方法和制膜策略对膜气体分离性能的影响以及膜内结构与性能之间的关系。最后,文章对PIM-1膜在实现工业应用前亟待解决的问题以及未来的研究重点进行了总结和展望,如继续致力于PIM-1膜对气体的渗透选择性提高,同时加强膜稳定性与超薄化的研究。
中图分类号:
郭海燕, 彭东来, 冯孝权, 金业豪, 田志红, 王景, 张亚涛. 自具微孔聚合物PIM-1膜在气体分离领域的研究进展[J]. 化工进展, 2021, 40(10): 5577-5589.
GUO Haiyan, PENG Donglai, FENG Xiaoquan, JIN Yehao, TIAN Zhihong, WANG Jing, ZHANG Yatao. Progress in the membranes of polymers of intrinsic micro-porosity PIM-1 for gas separation[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5577-5589.
膜类型 | 渗透性(Pi)/cm3(STP)·cm-3·(cmHg)-1 | 选择性(ɑi/j=Pi/Pj) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H2 | CO2 | O2 | CH4 | N2 | C3H6 | C3H8 | H2/N2 | O2/N2 | CO2/CH4 | CO2/N2 | C3H6/C3H8 | |
纤维素-2.45[ | 12 | 4.8 | 0.82 | 0.15 | 0.15 | 15.2 | 5.8 | 80 | 5.5 | 32 | 32 | 2.6 |
聚砜 [ | 14 | 5.6 | 1.4 | 0.25 | 0.25 | 25.0 | 17.8 | 56 | 5.6 | 22.4 | 22.4 | 1.4 |
聚苯醚[ | — | 90 | 16.7 | 5.4 | 3.7 | 9 | 2.1 | — | 4.5 | 16.7 | 24.3 | 4.3 |
聚酰亚胺[ | 480 | 653 | 131 | 25.3 | 39.1 | 30 | 2.7 | 12.3 | 3.4 | 25.8 | 16.7 | 11 |
聚醚酰胺-1657[ | — | 55.8 | 4.7 | 3.1 | 1.4 | — | — | — | 3.4 | 18 | 39.8 | — |
自聚微孔聚合物-1[ | 1300 | 2300 | 370 | 125 | 92 | 1575 | 205 | 14.1 | 4.0 | 18.4 | 25 | 7.7 |
表1 部分传统聚合物膜与纯PIM-1膜的气体分离性能
膜类型 | 渗透性(Pi)/cm3(STP)·cm-3·(cmHg)-1 | 选择性(ɑi/j=Pi/Pj) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H2 | CO2 | O2 | CH4 | N2 | C3H6 | C3H8 | H2/N2 | O2/N2 | CO2/CH4 | CO2/N2 | C3H6/C3H8 | |
纤维素-2.45[ | 12 | 4.8 | 0.82 | 0.15 | 0.15 | 15.2 | 5.8 | 80 | 5.5 | 32 | 32 | 2.6 |
聚砜 [ | 14 | 5.6 | 1.4 | 0.25 | 0.25 | 25.0 | 17.8 | 56 | 5.6 | 22.4 | 22.4 | 1.4 |
聚苯醚[ | — | 90 | 16.7 | 5.4 | 3.7 | 9 | 2.1 | — | 4.5 | 16.7 | 24.3 | 4.3 |
聚酰亚胺[ | 480 | 653 | 131 | 25.3 | 39.1 | 30 | 2.7 | 12.3 | 3.4 | 25.8 | 16.7 | 11 |
聚醚酰胺-1657[ | — | 55.8 | 4.7 | 3.1 | 1.4 | — | — | — | 3.4 | 18 | 39.8 | — |
自聚微孔聚合物-1[ | 1300 | 2300 | 370 | 125 | 92 | 1575 | 205 | 14.1 | 4.0 | 18.4 | 25 | 7.7 |
分子量(Mw) /g·mol-1 | 溶剂 | 后处理方式 | 测试条件 | 气体渗透系数(P)/cm3(STP)·cm-3·(cmHg)-1 | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
O2 | N2 | CH4 | CO2 | |||||
— | 四氢呋喃 | — | 30℃ | 370 | 92 | 125 | 2300 | [ |
100000 | 二氯甲烷 | — | 35℃,4atm | 786 | 238 | 360 | 3496 | [ |
66674 | 二氯甲烷 | 120℃真空 | 35℃,3.5atm | 712 | 166 | 204 | 3375 | [ |
— | 氯仿 | 80℃真空 | 25℃,1atm | 969 | 252 | 320 | 5303 | [ |
370000 | 氯仿 | 室温真空 | 25℃,1atm | 580 | 180 | 310 | 4390 | [ |
370000 | 氯仿 | 与水接触后室温真空 | 25℃,1atm | 150 | 45 | 114 | 1550 | [ |
370000 | 氯仿 | 甲醇浸泡后室温真空 | 25℃,1atm | 1610 | 500 | 740 | 12600 | [ |
表2 不同纯相PIM-1膜的气体渗透性能
分子量(Mw) /g·mol-1 | 溶剂 | 后处理方式 | 测试条件 | 气体渗透系数(P)/cm3(STP)·cm-3·(cmHg)-1 | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
O2 | N2 | CH4 | CO2 | |||||
— | 四氢呋喃 | — | 30℃ | 370 | 92 | 125 | 2300 | [ |
100000 | 二氯甲烷 | — | 35℃,4atm | 786 | 238 | 360 | 3496 | [ |
66674 | 二氯甲烷 | 120℃真空 | 35℃,3.5atm | 712 | 166 | 204 | 3375 | [ |
— | 氯仿 | 80℃真空 | 25℃,1atm | 969 | 252 | 320 | 5303 | [ |
370000 | 氯仿 | 室温真空 | 25℃,1atm | 580 | 180 | 310 | 4390 | [ |
370000 | 氯仿 | 与水接触后室温真空 | 25℃,1atm | 150 | 45 | 114 | 1550 | [ |
370000 | 氯仿 | 甲醇浸泡后室温真空 | 25℃,1atm | 1610 | 500 | 740 | 12600 | [ |
1 | USMAN Muhammad, AHMED Adeel, YU Bing, et al. A review of different synthetic approaches of amorphous intrinsic microporous polymers and their potential applications in membrane-based gases separation[J]. European Polymer Journal, 2019, 120: 109626. |
2 | 吴新妹, 张秋根, 朱爱梅, 等. 自具微孔高分子气体分离膜的结构调控与改性研究[J]. 化学进展, 2014, 26 (7): 1214-1222. |
WU Xinmei, ZHANG Qiugen, ZHU Aimei, et al. Advances in structure controls and modifications of PIMs membranes for gas separation[J]. Progress in Chemistry, 2014, 26(7): 1214-1222. | |
3 | 赵莎莎. 基于自聚微孔聚合物的气体分离膜制备及气体分离性能研究[D]. 太原: 太原理工大学, 2018. |
ZHAO Shasha. Preparation of membrane based on microporous polymers and study on gas separation performance[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
4 | GALIZIA Micheme, CHI Won Seok, SMITH Zachary P, et al. 50th Anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities[J]. Macromolecules, 2017, 50(20): 7809-7843. |
5 | BAKER Richard. Future directions of membrane gas separation technology[J]. Industrial and Engineering Chemistry Research, 2002, 41(6): 1393-1411. |
6 | DAWSON Robert, COOPER Andrew I, ADAMS Dave J. Nanoporous organic polymer networks[J]. Progress in Polymer Science, 2012, 37(4): 530-563. |
7 | BUDD Peter M, GHANEM Bader S, MAKHSEED Saad, et al. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials[J]. Chemical Communications, 2004, 2: 230-231. |
8 | BUDD Peter M, MSAYIB Kadhum J, TATTERSHALL Carin E, et al. Gas separation membranes from polymers of intrinsic microporosity[J]. Journal of Membrane Science, 2005, 251(1/2): 263-269. |
9 | BUDD Peter M, MCKEOWN Neil B, GHANEM Bader S, et al. Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1[J]. Journal of Membrane Science, 2008, 325(2): 851-860. |
10 | MASUDA Toshio, ISOBE Eiji, HIGASHIMURA Toshinobu, et al. Poly[1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability[J]. Journal of the American Chemical Society, 1983, 105(25): 7473-7474. |
11 | PINNAU I, TOY L G. Transport of organic vapors through poly(1-trimethylsilyl-1-propyne)[J]. Journal of Membrane Science, 1996, 116: 199-209. |
12 | NAGAI Kazukiyo, MASUDA Toshio, NAKAGWA Tsutomu, et al. Poly[1-(trimethylsilyl)-1-propyne] and related polymers: synthesis, properties and functions[J]. Progress in Polymer Science, 2001, 26(5): 721-798. |
13 | MCKEOWN Neil B, BUDD Peter M, MSAYIB Kadhum J, et al. Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials[J]. Chemistry, 2005, 11(9): 2610-2620. |
14 | BEZZU Grazia C, CARTA Mariolino, TONKINS Alexander, et al. A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation[J]. Advanced Materials, 2012, 24(44): 5930-5933. |
15 | ROSE Ian, BEZZU Grazia C, CARTA Mariolino, et al. Polymer ultrapermeability from the inefficient packing of 2D chains[J]. Nature Materials, 2017, 16(9): 932-937. |
16 | CARTA Mriolino, Richard MALPASS-EVANS, CROAD Matthhew, et al. An efficient polymer molecular sieve for membrane gas separations[J]. Science, 2013, 339(6117): 303-307. |
17 | ELENA Tocci, LUANA Lorenzo De, PAOLA Bernardo, et al. Molecular modeling and gas permeation properties of a polymer of intrinsic microporosity composed of ethanoanthracene and Tröger’s base units[J]. Macromolecules, 2014, 42(22): 7900-7916. |
18 | XIAO Youchang, ZHANG Liling, XU Li, et al. Molecular design of Tröger’s base-based polymers with intrinsic microporosity for gas separation[J]. Journal of Membrane Science, 2017, 521: 65-72. |
19 | GHANEM Bader, MCKEOWN Neil B, BUDD Peter M, et al. Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides[J]. Macromolecules, 2009, 42(20): 7881-7888. |
20 | GHANEM Bader S, SWAIDAN Raja, LITWILLER Eric, et al. Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation[J]. Advanced Materials, 2014, 26: 3688-3692. |
21 | ALASLAI Nasser, GHANEM Bader, ALGHUNAIMI Fahd, et al. High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation[J]. Polymer, 2016, 91: 128-135. |
22 | LEE Michael, BEZZU Grazia C, CARTA Mariolino, et al. Enhancing the gas permeability of Tröger’s base derived polyimides of intrinsic microporosity[J]. Macromolecules, 2016, 49: 4147-4154. |
23 | BUDD Peter M, MCKEOWN Neil B, FRITSCH Detlev. Polymers of intrinsic microporosity (PIMs): high free volume polymers for membrane applications[J]. Macromolecular Symposia, 2006, 245(1): 403-405. |
24 | MCKEOWN Neil B, BUDD Peter M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage[J]. Chemical Society Reviews, 2006, 35(8): 675-683. |
25 | ROBESON Lloyd M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science, 1991, 62(2): 165-185. |
26 | ROBESON Lloyd. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320: 390-400. |
27 | SWAIDAN Raja, GHANEM Bader, PINNAU Ingo. Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations[J]. ACS Macro Letters, 2015, 4: 947-951. |
28 | 时飞, 李奕帆. 混合基质膜在碳捕集领域的研究进展[J]. 化工进展, 2020, 39(6): 2453-2462. |
SHI Fei, LI Yifan. Advances of mixed matrix membrane for CO2 capture[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2453-2462. | |
29 | WIJMANS J G, BAKER R W. The solution-diffusion model: a review[J]. Journal of Membrane Science, 1995, 107(1/2): 1-21. |
30 | MCKEOWN Neil B. The synthesis of polymers of intrinsic microporosity (PIMs)[J]. Science China Chemistry, 2017, 60(8): 1023-1032. |
31 | HOU Junjun, LIU Pengchao, JIANG Meihuizi, et al. Olefin/paraffin separation through membranes: from mechanisms to critical materials[J]. Journal of Materials Chemistry A, 2019, 7(41): 23489-23511. |
32 | LI Pei, CHUNG T S, PAUL D R. Gas sorption and permeation in PIM-1[J]. Journal of Membrane Science, 2013, 432: 50-57. |
33 | LI Yifan, WANG Shaofeng, HE Guangwei, et al. Facilitated transport of small molecules and ions for energy-efficient membranes[J]. Chemical Society Reviews, 2015, 44(1): 103-118. |
34 | WENG Xilun, BAEZ Jose, KHITERER Mariya, et al. Chiral polymers of intrinsic microporosity: selective membrane permeation of enantiomers[J]. Angewandte Chemie, 2015, 54(38): 11214-11218. |
35 | SWAIDAN Raja, GHANEM Bader, LITWILLER Eric, et al. Pure and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1[J]. Journal of Membrane Science, 2014, 457: 95-102. |
36 | 沈钦. 高性能自具微孔聚合物气体分离膜的设计与性能研究[D]. 郑州: 郑州大学, 2019. |
SHEN Q. Designing and property investigation of novel PIMs membranes for high performance gas separation [D]. Zhengzhou: Zhengzhou University, 2019. | |
37 | FOSTER Andrew B, TAMADDONDAR Marzieh, LUQUE-ALLED Jose M, et al. Understanding the topology of the polymer of intrinsic microporosity PIM-1: cyclics, tadpoles, and network structures and their impact on membrane performance[J]. Macromolecules, 2020, 53(2): 569-583. |
38 | BUDD Peter M, ELABAS Elssalhen S, BADER Bader S, et al. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity[J]. Advanced Materials, 2004,16(5): 456-459. |
39 | MADKOUR Tarek M, MARK James E. Molecular modeling investigation of the fundamental structural parameters of polymers of intrinsic microporosity for the design of tailor-made ultra-permeable and highly selective gas separation membranes[J]. Journal of Membrane Science, 2013, 431: 37-46. |
40 | BURNS Ryan L, KOROS William J. Defining the challenges for C3H6/C3H8 separation using polymeric membranes[J]. Journal of Membrane Science, 2003, 211(2): 299-309. |
41 | HAMAD F, MATSUURA T. Performance of gas separation membranes made from sulfonated brominated high molecular weight poly(2,4-dimethyl-l,6-phenyIene oxide)[J]. Journal of Membrane Science, 2005, 253(1/2): 183-189. |
42 | BAI S, SRIDHAR S, KHAN A A. Metal-ion mediated separation of propylene from propane using PPO membranes[J]. Journal of Membrane Science, 1998, 147(1): 131-139. |
43 | TANAKA K, TAGUCHI A, HAO Jianqiang, et al. Permeation and separation properties of polyimide membranes to olefins and paraffins[J]. Journal of Membrane Science, 1996, 121(2): 197-207. |
44 | ZORNOZA Beatriz, Carlos TéLLEZ, CORONAS Joaquín, et al. Mixed matrix membranes based on 6FDA polyimide with silica and zeolite microsphere dispersed phases[J]. Aiche Journal, 2015, 61(12): 4481-4490. |
45 | MURALI Suria R, ISMAIL A F, RAHMAN M A, et al. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations[J]. Separation and Purification Technology, 2014, 129: 1-8. |
46 | BERNARDO P, BAZZARELLI F, TASSELLI F, et al. Effect of physical aging on the gas transport and sorption in PIM-1 membranes[J]. Polymer, 2017, 113: 283-294. |
47 | MASON Christopher R, Louise MAYNARD-ATEM, AL-HARBI Nasser M, et al. Polymer of intrinsic microporosity incorporating thioamide functionality: preparation and gas transport properties[J]. Macromolecules, 2011, 44: 6471-6479. |
48 | WOJCIECH Ogieglo, BADER Ghanem, MA Xiaohua, et al. How much do ultrathin polymers with intrinsic microporosity swell in liquids[J]. The Journal of Physical Chemistry B, 2016, 120(39): 10403-10410. |
49 | Staiger CHAD L, Pas STEVEN J, Hill ANITA J, et al. Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer[J]. Chem. Mater., 2008, 20(8): 2606-2608. |
50 | LI F Y, XIAO Y C, CHUNG T S, et al. High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development[J]. Macromolecules, 2012, 45(3): 1427-1437. |
51 | HARMS S, RäTZKE K, FAUPEL F, et al. Aging and free volume in a polymer of intrinsic microporosity (PIM-1)[J]. The Journal of Adhesion, 2012, 88(7): 608-619. |
52 | ROWE Brandon W, FREEMAN Benny D, PAUL Donald R. Physical aging of ultrathin glassy polymer films tracked by gas permeability[J]. Polymer, 2009, 50(23): 5565-5575. |
53 | KOROS W J, FLEMING G K, JORDAN S M, et al. Polymric membrane materials for solution-diffusion based permeation separations[J]. Journal of Membrane Science, 1988, 13(4): 339-401. |
54 | VISSER T, MASETTO N, WESSLING M. Materials dependence of mixed gas plasticization behavior in asymmetric membranes[J]. Journal of Membrane Science, 2007, 306(1/2): 16-28. |
55 | YONG Waifen, KWEK K H A, LIAO Kuosung, et al. Suppression of aging and plasticization in highly permeable polymers[J]. Polymer, 2015, 77: 377-386. |
56 | DU Naiying, ROBERTSON Gilles P, SONG Jingshe, et al. High-performance carboxylated polymers of intrinsic microporosity (PIMs) with tunable gas transport properties[J]. Macromolecules, 2009, 42(16): 6038-6043. |
57 | SATILMIS Bakir, BUDD Peter M. Base-catalysed hydrolysis of PIM-1: amide versus carboxylate formation[J]. RSC Advance, 2014, 4(94): 52189-52198. |
58 | JEON Jun Woo, KIM Dong-Gyun, SOHN Eun-ho, et al. Highly carboxylate-functionalized polymers of intrinsic microporosity for CO2-selective polymer membranes[J]. Macromolecules, 2017, 50(20): 8019-8027. |
59 | PATEL Hasmukh A, YAVUZ Cafer T. Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture[J]. Chemical Communications, 2012, 48(80): 9989-9991. |
60 | DU Naiying, PARK Ho Bum, ROBERTSON Gilles P, et al. Polymer nanosieve membranes for CO2-capture applications[J]. Nature Materials, 2011, 11(5): 372-375. |
61 | MA Canghai, URBAN Jeffrey J. Polymers of intrinsic microporosity (PIMs) gas separation membranes: a mini review[J]. Proceedings of the Nature Research Society, 2018, 2(1): 1-19. |
62 | SONG Qilei, CAO Shuai, PRITCHARD Robyn H, et al. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes[J]. Nature Communications, 2014, 5(1): 4813. |
63 | MCDONALD Tom O, AKHTAR Riaz, LAU Cher Hou, et al. Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties[J]. Journal of Materials Chemistry A, 2015, 3(10): 4855-4864. |
64 | ZHAO Hongyong, XIE Qian, DING Xiaoli, et al. High performance post-modified polymers of intrinsic microporosity (PIM-1) membranes based on multivalent metal ions for gas separation[J]. Journal of Membrane Science, 2016, 514: 305-312. |
65 | DU Naiying, Mauro M CIN, PINNAU Ingo, et al. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation[J]. Macromolecular Rapid Communications, 2011, 32(8): 631-636. |
66 | KHAN Muntazim Munir, BENGTSON Gisela, SHISHATSKIY S, et al. Cross-linking of polymer of intrinsic microporosity (PIM-1) via nitrene reaction and its effect on gas transport property[J]. European Polymer Journal, 2013, 49(12): 4157-4166. |
67 | LI Fuyun, CHUNG Taishung. Physical aging, high temperature and water vapor permeation studies of UV-rearranged PIM-1 membranes for advanced hydrogen purification and production[J]. International Journal of Hydrogen Energy, 2013, 38(23): 9786-9793. |
68 | SONG Qilei, CAO Shuai, ZAVALA-RIVERA P, et al. Photo-oxidative enhancement of polymeric molecular sieve membranes[J]. Nature Communications, 2013, 4(1): 1918. |
69 | Juhyeon AHN, CHUNG Wook Jin, PINNAU Ingo, et al. Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)[J]. Journal of Membrane Science, 2010, 346(2): 280-287. |
70 | KHAN Muntazim M, FILIZ Volkan, BENGTSON Gengtson, et al. Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM)[J]. Journal of Membrane Science, 2013, 436: 109-120. |
71 | CHEN Mengmeng, SOYEKWO Faizal, ZHANG Qiugen, et al. Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation[J]. Journal of Industrial and Engineering Chemistry, 2018, 63: 2. |
72 | ADATOZ Elda, AVCI Ahemt K, KESKIN Seda. Opportunities and challenges of MOF-based membranes in gas separations[J]. Separation and Purification Technology, 2015, 152: 207-237. |
73 | SHEN Qin, CONG Shenzhen, HE Rongrong, et al. SIFSIX-3-Zn/PIM-1 mixed matrix membranes with enhanced permeability for propylene/propane separation[J]. Journal of Membrane Science, 2019, 588: 117201. |
74 | BUSHELL Alexandra F, ATTFIELD Martin P, MASON Christopher R, et al. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8[J]. Journal of Membrane Science, 2013, 427: 48-62. |
75 | YE Chumei, WU Xingyu, WU Hong, et al. Incorporating nano-sized ZIF-67 to enhance selectivity of polymers of intrinsic microporosity membranes for biogas upgrading[J]. Chemical Engineering Science, 2020, 216: 115497. |
76 | GHALEI Behnam, SAKURAI Kento, INOSHITA Yosuke, et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles[J]. Nature Energy, 2017, 2(7): 17086. |
77 | DING Sanyuan, WANG Wei. Covalent organic frameworks (COFs): from design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. |
78 | WU Xingyu, TIAN Zhizhang, WANG Shaofei, et al. Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation[J]. Journal of Membrane Science, 2017, 528: 273-283. |
79 | LAU Cher Hon, NGUYEN Phuc Tien, HILL Matthew R, et al. Ending aging in super glassy polymer membranes[J]. Angewandte Communications, 2014, 53(21): 5322-5326. |
80 | SMITH Stefan J D, HOU Rujing, KONSTAS Kristina, et al. Control of physical aging in super-glassy polymer mixed matrix membranes[J]. Accounts of Chemical Research, 2020, 53(7): 1381-1388. |
81 | Nguyen TIEN-BINH, RODRIGUE Denis, KALIAGUINE Serge. In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control[J]. Journal of Membrane Science, 2018, 548: 429-438. |
82 | YU Guangli, ZOU Xiaoqin, Lei SUM, et al. Constructing connected paths between UiO-66 and PIM-1 to improve membrane CO2 separation with crystal-like gas selectivity[J]. Advanced Materials, 2019, 31(15): 1806853. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[3] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[4] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[5] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[6] | 陆诗建, 刘苗苗, 杨菲, 张俊杰, 陈思铭, 刘玲, 康国俊, 李清方. 改良型CO2湿壁塔内气液两相流动规律及传质特性[J]. 化工进展, 2023, 42(7): 3457-3467. |
[7] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[8] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[9] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[10] | 任重远, 何金龙, 袁清. 分子筛膜晶间缺陷控制与修复技术研究进展[J]. 化工进展, 2023, 42(5): 2454-2463. |
[11] | 王林, 辛梅华, 李明春, 陈琦, 毛扬帆. 季铵化/磺化壳聚糖的制备及其抗生物被膜活性[J]. 化工进展, 2023, 42(5): 2577-2585. |
[12] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[13] | 赵珍珍, 郑喜, 王雪琪, 王涛, 冯英楠, 任永胜, 赵之平. 聚酰胺复合膜微孔支撑基底的研究进展[J]. 化工进展, 2023, 42(4): 1917-1933. |
[14] | 叶海星, 陈宇昊, 陈仪, 孙海翔, 牛青山. 镁锂分离复合纳滤膜研究进展[J]. 化工进展, 2023, 42(4): 1934-1943. |
[15] | 常晓青, 彭东来, 李东洋, 张延武, 王景, 张亚涛. MOFs基丙烯/丙烷高效分离混合基质膜研究进展[J]. 化工进展, 2023, 42(4): 1961-1973. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |