1 |
任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013,64(1): 91-101.
|
|
REN N Q, ZHOU X J, GUO W Q, et al. Research progress on treatment technology of dye wastewater[J]. CIESC Journal, 2013, 64(1): 91-101.
|
2 |
LI H Y. Catalytic wet peroxide oxidation with hydrogen peroxide treatment of simulated dye wastewater[D]. Xi’an: Northwest University, 2008.
|
3 |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
|
4 |
XU T, ZHU R, ZHU G, et al. Mechanisms for the enhanced photo-Fenton activity of ferrihydrite modified with BiVO4 at neutral pH[J]. Applied Catalysis B: Environmental, 2017, 212: 50-58.
|
5 |
LI H Y, SUN Y J, CAI B, et al. Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance[J]. Applied Catalysis B: Environmental, 2015, 170/171: 206-214.
|
6 |
CAO R R, ZHANG T, HUANG H W, et al. Novel Y doped Bi2WO6 photocatalyst: hydrothermal fabrication, characterization and enhanced visible-light-driven photocatalytic activity for Rhodamine B degradation and photocurrent generation[J]. Materials Characterization, 2015, 101(19): 166-172.
|
7 |
XU Y S, YU Y X, ZHANG W D. Wide bandgap Bi2O2CO3-coupled Bi2MoO6 heterostructured hollow microspheres: one-pot synthesis and enhanced visible-light photocatalytic activity[J]. Journal of Nanoscience & Nanotechnology, 2014, 14(9):6800.
|
8 |
ZHAO Z, ZHOU Y, WANG F, et al. Polyaniline-decorated (001) facets of Bi2O2CO3 nanosheets: in situ oxygen vacancy formation and enhanced visible light photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 730-737.
|
9 |
ZAI J, CAO F, LIANG N, et al. Rose-like I-doped Bi2O2CO3 microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance[J]. Journal of Hazardous Materials, 2017, 321: 464-472.
|
10 |
PENG S, LI L, TAN H, et al. Monodispersed Ag nanoparticles loaded on the PVP-assisted synthetic Bi2O2CO3 microspheres with enhanced photocatalytic and supercapacitive performances[J]. Journal of Materials Chemistry A, 2013, 1: 7630-7638.
|
11 |
ZHENG Y, DUAN F, CHEN M, et al. Synthetic Bi2O2CO3 nanostructures: novel photocatalyst with controlled special surface exposed[J]. Journal of Molecular Catalysis A: Chemical, 2010, 317(1/2): 34-40.
|
12 |
HU L H, PENG Q, LI Y D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion[J]. Journal of the American Chemical Society, 2008, 130(48): 16136-16137.
|
13 |
WANG C, REN B, HURSTHOUSE A S, et al. Visible light-driven photocatalytic degradation of 1,2,4-trichlorobenzene with synthesized Co3O4 photocatalyst[J]. Polish Journal of Environmental Studies, 2018, 27(5): 2285-2292.
|
14 |
LIN Z C, QIAO X W. Coral-like Co3O4 decorated N-doped carbonp articles as active materials for oxygen reduction reaction and supercapacitor[J]. Scientific Reports, 2018, 8(1): 1802.
|
15 |
LIANG Y, LI Y, WANG H, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Materials, 2011, 10(10): 780-786.
|
16 |
XIA X H, TU J P, ZHANG Y Q, et al. Freestanding Co3O4 nanowire array for high performance supercapacitors[J]. RSC Advances, 2012, 2(5): 1835.
|
17 |
LI Y, HUANG K, ZENG D, et al. Preparation and application of Co3O4 nanostructures with various morphologies[J]. Progress in Chemistry, 2010, 22(11): 2119-2125.
|
18 |
YUSUF S, JIAO F. Effect of the support on the photocatalytic water oxidation activity of cobalt oxide nanoclusters[J]. ACS Catalysis, 2012, 2(12): 2753-2760.
|
19 |
ZHANG N, SHI J, MAO S S, et al. Co3O4 quantum dots: reverse micelle synthesis and visible-light-driven photocatalytic overall water splitting[J]. Chemical Communications, 2014, 50(16): 2002-2004.
|
20 |
JANA T K, PAL A, CHATTERJEE K, et al. Magnetic and photocatalytic study of Co3O4-ZnO nanocomposite[J]. Journal of Alloys & Compounds, 2015, 653: 338-344.
|
21 |
HUANG R, HUANG S, CHEN D, et al. Environmentally benign synthesis of Co3O4-SnO2 heteronanorods with efficient photocatalytic performance activated by visible light[J]. Journal of Colloid & Interface Science, 2019, 542: 460-468.
|
22 |
HSIEH S H, LEE G J, CHEN C Y, et al. Hydrothermal synthesis of mesoporous Bi2O3/Co3O4 microsphere and photocatalytic degradation of orange Ⅱ dyes by visible light[J]. Topics in Catalysis, 2013, 56(9/10): 623-629.
|
23 |
WARANG T, PATEL N, FERNANDES R, et al. Co3O4 nanoparticles assembled coatings synthesized by different techniques for photo-degradation of methylene blue dye[J]. Applied Catalysis B: Environmental, 2013, 132/133: 204-211.
|
24 |
LIANG N, WANG M, JIN L, et al. Highly efficient Ag2O/Bi2O2CO3 p-n heterojunction photocatalysts with improved visible-light responsive activity[J]. ACS Applied Materials & Interfaces, 2014, 6(14):11698.
|
25 |
TANG C N, LIU E Z, WAN J, et al. Co3O4 nanoparticles decorated Ag3PO4 tetrapods as an efficient visible-light-driven heterojunction photocatalyst[J]. Applied Catalysis B: Environmental, 2016, 181:707-715.
|
26 |
XIAO Q, ZHANG J, XIAO C, et al. Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation[J]. Catalysis Communications, 2008, 9(6):1247-1253.
|
27 |
AI Z H, HO W K, LEE S, et al. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environmental Science & Technology, 2009, 43(11):4143.
|
28 |
LU H J, XU L L, WEI B, et al. Enhanced photosensitization process induced by the p-n junction of Bi2O2CO3/BiOCl heterojunctions on the degradation of rhodamine B[J]. Applied Surface Science, 2014, 303(5):360-366.
|
29 |
LIOTTA L F, CARLO G D, PANTALEO G, et al. Co3O4/CeO2 composite oxides for methane emissions abatement: relationship between Co3O4-CeO2 interaction and catalytic activity[J]. Applied Catalysis B: Environmental, 2006, 66(3/4): 217-227.
|
30 |
QIU F, LI W, WANG F, et al. Preparation of novel p-n heterojunction Bi2O2CO3/BiOBr photocatalysts with enhanced visible light photocatalytic activity[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2017, 517: 25-32.
|
31 |
ZHAO W, LIU Y, WEI Z B, et al. Fabrication of a novel p-n heterojunction photocatalyst n-BiVO4@p-MoS2 with core-shell structure and its excellent visible-light photocatalytic reduction and oxidation activities[J]. Applied Catalysis B: Environmental, 2016, 185: 242-252.
|
32 |
WANG F, ZHAO Z, ZHANG K, et al. Topochemical transformation of low-energy crystal facets to high-energy facets: a case from Bi2O2CO3{001} facets to β-Bi2O3{001} facets with improved photocatalytic oxidation of NO[J]. Crystengcomm, 2015, 17: 6098-6102.
|
33 |
JIN L, ZHU G Q, HOJAMBERDIEV M, et al. A Plasmonic Ag-AgBr/Bi2O2CO3 composite photocatalyst with enhanced visible-light photocatalytic activity[J]. Industrial & Engineering Chemistry Research, 2014, 53(35): 13718-13727.
|
34 |
WANG Q, YUN G, BAI Y, et al. Photodegradation of rhodamine B with MoS2/Bi2O2CO3 composites under UV light irradiation[J]. Applied Surface Science, 2014, 313: 537-544.
|
35 |
LONG M, CAI W, CAI J, et al. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation[J]. The Journal of Physical Chemistry B, 2006, 110(41): 20211-20216.
|