1 |
张占成. SCR脱硝过程硫酸氢铵形成及堵塞机理分析[J]. 现代工业经济和信息化, 2017, 7(5): 42-44.
|
|
ZHANG Z C. Analysis of formation and plugging mechanism of ammonium bisulfate in SCR denitrification process[J]. Modern Industrial Economy & Informationization, 2017, 7(5): 42-44.
|
2 |
LIU Z M, WOO S I. Recent advances in catalytic deNOx science and technology[J]. Catalysis Reviews, 2006, 48(1): 43-89.
|
3 |
王文选, 肖志均, 夏怀祥. 火电厂脱硝技术综述[J]. 电力设备, 2006(8): 1-5.
|
|
WANG Wenxuan, XIAO Zhijun, XIA Huaixiang. Review of removal technology in thermal power plants[J]. Power Equipment, 2006(8): 1-5.
|
4 |
程星星, 马春元, 王志强, 等. 一种回转式HC-SCR脱硝反应器: CN203803378U[P]. 2014-09-03.
|
|
CHENG Xingxing, MA Chunyuan, WANG Zhiqiang, et al. A rotary HC-SCR removal reactor: CN203803378U[P].2014-09-03.
|
5 |
程星星, 马春元, 王志强, 等. 一种利用贫富氧交替反应进行烟气脱硝的工艺: CN103920392A[P]. 2014-07-16.
|
|
CHENG Xingxing, MA Chunyuan, WANG Zhiqiang, et al. A flue gas removal process using alternate oxygen reaction between rich and poor: CN103920392A[P]. 2014-07-16.
|
6 |
YAKOV V F T, BURDEINAYA T N, ZAKORCHEVNAYA Y P, et al. The mechanism of selective NOx reduction by hydrocarbons in excess oxygen on oxide catalysts: Ⅲ. adsorption properties of the commercial STK catalyst[J]. Kinetics & Catalysis, 2005, 46(4): 516-524.
|
7 |
OLSSON L, VALL H SJ, BLINT R J. Detailed kinetic modeling of NOx adsorption and NO oxidation over Cu-ZSM-5[J]. Applied Catalysis B: Environmental, 2009, 87(3/4): 200-210.
|
8 |
GÜTHENKE A, CHATTERJEE D, WEIBEL M, et al. Development and application of a model for a NO, storage and reduction catalyst[J]. Chemical Engineering Science, 2007, 62(18/19/20): 5357-5363.
|
9 |
CLAUDINO A, SOARES J L, MOREIRA R F P M, et al. Adsorption equilibrium and breakthrough analysis for NO adsorption on activated carbons at low temperatures[J]. Carbon, 2004, 42(8/9): 1483-1490.
|
10 |
柯希玮, 王康, 王志宁, 等. CaO表面CO对NO还原作用的实验与模型研究[J]. 工程热物理学报, 2020, 41(1): 215-222.
|
|
KE Xiwei, WANG Kang, WANG Zhining, et al. Experimental and model study on reduction of NO by CaO surface CO[J]. Journal of Engineering Thermophysics, 2020, 41(1): 215-222.
|
11 |
马英利, 高凤雨, 贾广如, 等. SCR脱硝催化剂的发展、应用及其成型工艺综述[J]. 现代化工, 2019, 39(8): 33-37.
|
|
MA Yingli, GAO Fengyu, JIA Guangru, et al. Development, application and molding process of SCR removal catalyst[J]. Modern Chemical Industry, 2019, 39(8): 33-37.
|
12 |
曾红, 刘平乐, 张喻升, 等. 表面涂覆型低温脱硝催化剂的开发与中试应用[J]. 过程工程学报, 2017, 17(6): 1208-1216.
|
|
ZENG H, LIU P L, ZHANG Y S, et al. Development and pilot scale application of surface coated low temperature removal catalyst[J]. The Chinese Journal of Process Engineering, 2017, 17(6): 1208-1216.
|
13 |
郭学华, 李英霞, 陈健, 等. 蜂窝状整体式分子筛催化剂制备研究进展[J]. 环境科学与技术, 2014(5): 76-80.
|
|
GUO Xuehua, LI Yingxia, CHEN Jian, et al. Progress in preparation of honeycomb monolithic molecular sieve catalysts[J]. Environmental Science and Technology, 2014(5): 76-80.
|
14 |
赵阳, 郑亚锋, 辛峰. 整体式催化剂性能及应用的研究进展[J]. 化学反应工程与工艺, 2004, 20(4): 357-362.
|
|
ZHAO Yang, ZHENG Yafeng, XIN Feng. Research progress on properties and applications of monolithic catalysts[J]. Chemical Reaction Engineering and Technology, 2004, 20(4): 357-362.
|
15 |
RODRIGUES M I, ZAROR C A, MAUGERI F, et al. Dynamic modelling, simulation and control of continuous adsorption recycle extraction[J]. Chemical Engineering Ence, 1992, 47(1): 263-269.
|
16 |
LAURENT F, POPE C J, MAHZOUL H, et al. Modelling of NOx adsorption over NOx adsorbers[J]. Chemical Engineering Science, 2003, 58(9): 1793-1803.
|
17 |
RICHARD D, DE LOURDEE D N M, SCHWEICHE D. Adsorption of complex phenolic compounds on active charcoal: breakthrough curves[J]. Chemical Engineering Journal, 2010, 158(2): 213-219.
|
18 |
WHITMAN W G. The two film theory of gas absorption[J]. International Journal of Heat and Mass Transfer, 1962, 5(5): 429-433.
|
19 |
CHENG X, BI X T. Modeling NOx adsorption onto Fe/ZSM-5 catalysts in a fixed bed reactor[J]. International Journal of Chemical Reactor Engineering, 2013,11(1):1-12.
|
20 |
丁兆阳, 韩治洋, 石文荣, 等. 快速变压吸附制氧动态传质系数模拟分析[J]. 化工学报, 2018, 69(2):759-768.
|
|
DING Zhaoyang, HAN Zhiyang, SHI Wenrong, et al. Simulation and analysis of dynamic mass transfer coefficient of fast variable pressure adsorption oxygen production[J]. CIESC Journal, 2018, 69(2):759-768.
|
21 |
王莹, 雷宏军, 胡兴骥, 等. 压力与表面活性剂对循环曝气氧传质特性的影响[J]. 排灌机械工程学报, 2019, 37(8): 724-729.
|
|
WANG Y, LEI H J, HU X J, et al. Effects of pressure and surfactants on the mass transfer characteristics of cyclic aeration[J]. Chinese Journal of Irrigation and Drainage Machinery Engineering, 2019, 37(8): 724-729.
|
22 |
李青阳, 刘国际, 雒廷亮, 等. 粒状催化剂孔隙率对气体有效扩散系数的影响[J]. 天然气化工, 1999(2):18-22.
|
|
LI Qingyang, LIU Guoji, LUO Tingliang, et al. Effect of porosity of granular catalyst on effective diffusion coefficient of gas[J]. Natural Gas Chemical Industry, 1999(2):18-22.
|
23 |
吴正舜, 邸青, 李学慧, 等. Polymath软件在化学工程中非均相催化反应的模拟研究[J]. 计算机与应用化学, 2009, 26(2): 229-232.
|
|
WU Z S, SI Q, LI X H, et al. Simulation of non-homogeneous catalytic reactions in chemical engineering using polymath software[J]. Computer and Applied Chemistry, 2009, 26(2): 229-232.
|