化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2710-2718.DOI: 10.16085/j.issn.1000-6613.2020-1289
收稿日期:
2020-07-08
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
牛利
作者简介:
胡琼(1988—),男,博士,副教授,研究方向为电化学生物传感。E-mail:基金资助:
HU Qiong(), GAN Shiyu, BAO Yu, HAN Dongxue, NIU Li()
Received:
2020-07-08
Online:
2021-05-06
Published:
2021-05-24
Contact:
NIU Li
摘要:
传统信号放大策略存在成本高昂和操作复杂等不足,无法满足早期诊断等领域的实际应用需求。近年来,科研人员探索建立了一类基于原子转移自由基聚合(ATRP)和可逆加成-断裂链转移(RAFT)聚合等可控/“活性”自由基聚合(CLRP)技术的新型信号放大策略,用于蛋白质和核酸等生物分子的简便、快速、低成本、高灵敏和高选择性检测。本文综述了基于CLRP的生物传感分析的研究进展。首先介绍了生物传感器的概念及特点,简述了传统信号放大策略及基于聚合物的信号放大策略的优缺点。接着,对CLRP技术进行了概述,并重点回顾了基于ATRP和RAFT聚合的信号放大策略在高灵敏生物传感中的应用。最后,对基于CLRP的生物传感分析进行了展望。基于CLRP的信号放大策略,具有操作简便、成本低廉和高效等优良特性,在生物分子的高灵敏检测中具有相当广阔的应用前景。
中图分类号:
胡琼, 甘世宇, 包宇, 韩冬雪, 牛利. 基于可控/“活性”自由基聚合的生物传感分析[J]. 化工进展, 2021, 40(5): 2710-2718.
HU Qiong, GAN Shiyu, BAO Yu, HAN Dongxue, NIU Li. Controlled/“living” radical polymerization-based biosensing[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2710-2718.
1 | HU Qiong, ZHOU Baojing, LI Feng, et al. Turn-on colorimetric platform for dual activity detection of acid and alkaline phosphatase in human whole blood[J]. Chemistry: an Asian Journal, 2016, 11(21): 3040-3045. |
2 | ROGERS K R. Recent advances in biosensor techniques for environmental monitoring[J]. Analytica: Chimica Acta, 2006, 568(1/2): 222-231. |
3 | POHANKA M, SKLÁDAL P, KROÈA M. Biosensors for biological warfare agent detection[J]. Defence Science Journal, 2007, 57(3): 185-193. |
4 | SCOGNAMIGLIO V, ARDUINI F, PALLESCHI G, et al. Biosensing technology for sustainable food safety[J]. TrAC Trends in Analytical Chemistry, 2014, 62: 1-10. |
5 | PIERMARINI S, VOLPE G, ESTI M, et al. Real time monitoring of alcoholic fermentation with low-cost amperometric biosensors[J]. Food Chemistry, 2011, 127(2): 749-754. |
6 | CHEN Aicheng, CHATTERJEE S. Nanomaterials based electrochemical sensors for biomedical applications[J]. Chemical Society Reviews, 2013, 42(12): 5425-5438. |
7 | MITTAL S, KAUR H, GAUTAM N, et al. Biosensors for breast cancer diagnosis: a review of bioreceptors, biotransducers and signal amplification strategies[J]. Biosensors and Bioelectronics, 2017, 88: 217-231. |
8 | TURNER A P F. Biosensors: sense and sensibility[J]. Chemical Society Reviews, 2013, 42(8): 3184-3196. |
9 | LABIB M, SARGENT E H, KELLEY S O. Electrochemical methods for the analysis of clinically relevant biomolecules[J]. Chemical Reviews, 2016, 116(16): 9001-9090. |
10 | DIEHL F, SCHMIDT K, CHOTI M A, et al. Circulating mutant DNA to assess tumor dynamics[J]. Nature Medicine, 2008, 14(9): 985-990. |
11 | XU Shaohua, OUYANG Wenjun, XIE Peisi, et al. Highly uniform gold nanobipyramids for ultrasensitive colorimetric detection of influenza virus[J]. Analytical Chemistry, 2017, 89(3): 1617-1623. |
12 | WANG Danni, ZHANG Yingzhi, ZHAO Xiayu, et al. Plasmonic colorimetric biosensor for visual detection of telomerase activity based on horseradish peroxidase-encapsulated liposomes and etching of Au nanobipyramids[J]. Sensors and Actuators B: Chemical, 2019, 296: 126646. |
13 | ZHAO Li, SUN Ruijiao, HE Peng, et al. Ultrasensitive detection of exosomes by target-triggered three-dimensional DNA walking machine and exonuclease III-assisted electrochemical ratiometric biosensing[J]. Analytical Chemistry, 2019, 91(22): 14773-14779. |
14 | XUE Liyun, ZHOU Xiaoming, XING Da. Sensitive and homogeneous protein detection based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescence signal amplification[J]. Analytical Chemistry, 2012, 84(8): 3507-3513. |
15 | WANG Quanbo, LEI Jianping, DENG Shengyuan, et al. Graphene-supported ferric porphyrin as a peroxidase mimic for electrochemical DNA biosensing[J]. Chemical Communications, 2013, 49(9): 916-918. |
16 | NANDHAKUMAR P, KIM Byeongyoon, Nam-Sihk LEE, et al. Nitrosoreductase-like nanocatalyst for ultrasensitive and stable biosensing[J]. Analytical Chemistry, 2018, 90(1): 807-813. |
17 | YANG Guohai, LI Lingling, RANA R K, et al. Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase-2[J]. Carbon, 2013, 61: 357-366. |
18 | HU Qiong, MA Kefeng, MEI Yaqi, et al. Metal-to-ligand charge-transfer: applications to visual detection of β-galactosidase activity and sandwich immunoassay[J]. Talanta, 2017, 167: 253-259. |
19 | HU Qiong, HU Weiwen, KONG Jinming, et al. Ultrasensitive electrochemical DNA biosensor by exploiting hematin as efficient biomimetic catalyst toward in situ metallization[J]. Biosensors and Bioelectronics, 2015, 63: 269-275. |
20 | LING Pinghua, LEI Jianping, ZHANG Lei, et al. Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA[J]. Analytical Chemistry, 2015, 87(7): 3957-3963. |
21 | ZHENG Tingting, ZHANG Qingfeng, FENG Sheng, et al. Robust nonenzymatic hybrid nanoelectrocatalysts for signal amplification toward ultrasensitive electrochemical cytosensing[J]. Journal of the American Chemical Society, 2014, 136(6): 2288-2291. |
22 | HU Qiong, LI Li, SUN Gengzhi, et al. 5-Carboxyfluorescein: intrinsic peroxidase-like catalytic activity and its application in the biomimetic synthesis of polyaniline nanoplatelets[J]. Journal of Materials Chemistry B, 2017, 5(30): 5937-5941. |
23 | LIANG Ruping, TIAN XiaocCui, QIU Ping, et al. Multiplexed electrochemical detection of trypsin and chymotrypsin based on distinguishable signal nanoprobes[J]. Analytical Chemistry, 2014, 86(18): 9256-9263. |
24 | WANG Zonghua, SUN Na, HE Yao, et al. DNA assembled gold nanoparticles polymeric network blocks modular highly sensitive electrochemical biosensors for protein kinase activity analysis and inhibition[J]. Analytical Chemistry, 2014, 86(12): 6153-6159. |
25 | GIBBS J M, PARK So Jung, ANDERSON D R, et al. Polymer-DNA hybrids as electrochemical probes for the detection of DNA[J]. Journal of the American Chemical Society, 2005, 127(4): 1170-1178. |
26 | HU Qiong, HU Weiwen, KONG Jinming, et al. PNA-based DNA assay with attomolar detection limit based on polygalacturonic acid mediated in-situ deposition of metallic silver on a gold electrode[J]. Microchimica Acta, 2015, 182(1-2): 427-434. |
27 | HO H A, DORÉ K, BOISSINOT M, et al. Direct molecular detection of nucleic acids by fluorescence signal amplification[J]. Journal of the American Chemical Society, 2005, 127(36): 12673-12676. |
28 | FENG Xuli, LIU Libing, WANG Shu, et al. Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors[J]. Chemical Society Reviews, 2010, 39(7): 2411-2419. |
29 | CHMIELARZ P, YAN Jiajun, KRYS P, et al. Synthesis of nanoparticle copolymer brushes via surface-initiated seATRP[J]. Macromolecules, 2017, 50(11): 4151-4159. |
30 | WANG Shuang, LU Shasha, ZHAO Jiahui, et al. An electric potential modulated cascade of catalyzed hairpin assembly and rolling chain amplification for microRNA detection[J]. Biosensors and Bioelectronics, 2019, 126: 565-571. |
31 | YANG Fan, YANG Xian, WANG Yunzhao, et al. Template-independent, in situ grown DNA nanotail enabling label-free femtomolar chronocoulometric detection of nucleic acids[J]. Analytical Chemistry, 2014, 86(23): 11905-11912. |
32 | HOU Ting, LI Wei, LIU Xiaojuan, et al. Label-free and enzyme-free homogeneous electrochemical biosensing strategy based on hybridization chain reaction: a facile, sensitive, and highly specific microRNA assay[J]. Analytical Chemistry, 2015, 87(22): 11368-11374. |
33 | LIU Jintong, DU Ping, ZHANG Jing, et al. Sensitive detection of intracellular microRNA based on a flowerlike vector with catalytic hairpin assembly[J]. Chemical Communications, 2018, 54(20): 2550-2553. |
34 | BRAUNECKER W A, MATYJASZEWSKI K. Controlled/living radical polymerization: features, developments, and perspectives[J]. Progress in Polymer Science, 2007, 32(1): 93-146. |
35 | GEORGES M K, VEREGIN R P N, KAZMAIER P M, et al. Narrow molecular weight resins by a free-radical polymerization process[J]. Macromolecules, 1993, 26(11): 2987-2988. |
36 | HU Qiong, GAN Shiyu, BAO Yu, et al. Controlled/“living” radical polymerization-based signal amplification strategies for biosensing[J]. Journal of Materials Chemistry B, 2020, 8(16): 3327-3340. |
37 | WANG Jinshan, MATYJASZEWSKI K. Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes[J]. Journal of the American Chemical Society, 1995, 117(20): 5614-5615. |
38 | MATYJASZEWSKI K, XIA Jianhui. Atom transfer radical polymerization[J]. Chemical Reviews, 2001, 101(9): 2921-2990. |
39 | BOYER C, CORRIGAN N A, JUNG K, et al. Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): from fundamentals to bioapplications[J]. Chemical Reviews, 2015, 116(4): 1803-1949. |
40 | MATYJASZEWSKI K. Advanced materials by atom transfer radical polymerization[J]. Advanced Materials, 2018, 30(23): 1706441. |
41 | LI Nan, LI Tong, QIAO Xinyu, et al. Universal strategy for efficient fabrication of blood compatible surfaces via polydopamine-assisted surface-initiated activators regenerated by electron transfer atom-transfer radical polymerization of zwitterions[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 12337-12344. |
42 | CHIEFARI J, CHONG Y K, ERCOLE F, et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process[J]. Macromolecules, 1998, 31(16): 5559-5562. |
43 | BOYER C, BULMUS V, DAVIS T P, et al. Bioapplications of RAFT polymerization[J]. Chemical Reviews, 2009, 109(11): 5402-5436. |
44 | PERRIER S. 50th Anniversary perspective: RAFT polymerization — a user guide[J]. Macromolecules, 2017, 50(19): 7433-7447. |
45 | WU Yafeng, WEI Wei, LIU Songqin. Target-triggered polymerization for biosensing[J]. Accounts of Chemical Research, 2012, 45(9): 1441-1450. |
46 | HE Peng, LOU Xinhui, WOODY S M, et al. Amplification-by-polymerization in biosensing for human genomic DNA detection[J]. ACS Sensors, 2019, 4(4): 992-1000. |
47 | KIM Seunghyeon, SIKES H D. Radical polymerization reactions for amplified biodetection signals[J]. Polymer Chemistry, 2020, 11(8): 1424-1444. |
48 | LOU Xinhui, LEWIS M S, GORMAN C B, et al. Detection of DNA point mutation by atom transfer radical polymerization[J]. Analytical Chemistry, 2005, 77(15): 4698-4705. |
49 | QIAN Hong, HE Lin. Detection of protein binding using activator generated by electron transfer for atom transfer radical polymerization[J]. Analytical Chemistry, 2009, 81(23): 9824-9827. |
50 | XU Lingling, YUAN Liang, LIU Songqin. Macroinitiator triggered polymerization for versatile immunoassay[J]. RSC Advances, 2014, 4(1): 140-146. |
51 | WU Yafeng, SHI Hongyan, YUAN Liang, et al. A novel electrochemiluminescence immunosensor via polymerization-assisted amplification[J]. Chemical Communications, 2010, 46(41): 7763-7765. |
52 | HU Qiong, WANG Qiangwei, SUN Gengzhi, et al. Electrochemically mediated surface-initiated de novo growth of polymers for amplified electrochemical detection of DNA[J]. Analytical Chemistry, 2017, 89(17): 9253-9259. |
53 | HU Qiong, WANG Qiangwei, KONG Jinming, et al. Electrochemically mediated in situ growth of electroactive polymers for highly sensitive detection of double-stranded DNA without sequence-preference[J]. Biosensors and Bioelectronics, 2018, 101: 1-6. |
54 | HU Qiong, WANG Qiangwei, JIANG Cuihua, et al. Electrochemically mediated polymerization for highly sensitive detection of protein kinase activity[J]. Biosensors and Bioelectronics, 2018, 110: 52-57. |
55 | HU Qiong, BAO Yu, GAN Shiyu, et al. Electrochemically controlled grafting of polymers for ultrasensitive electrochemical assay of trypsin activity[J]. Biosensors and Bioelectronics, 2020, 165: 112358. |
56 | HE Peng, ZHENG Weiming, TUCKER E Z, et al. Reversible addition-fragmentation chain transfer polymerization in DNA biosensing[J]. Analytical Chemistry, 2008, 80(10): 3633-3639. |
57 | HU Qiong, HAN Dongxue, GAN Shiyu, et al. Surface-initiated-reversible-addition-fragmentation-chain-transfer polymerization for electrochemical DNA biosensing[J]. Analytical Chemistry, 2018, 90(20): 12207-12213. |
58 | HU Qiong, KONG Jinming, HAN Dongxue, et al. Ultrasensitive peptide-based electrochemical detection of protein kinase activity amplified by RAFT polymerization[J]. Talanta, 2019, 206: 120173. |
59 | HU Qiong, BAO Yu, GAN Shiyu, et al. Amplified electrochemical biosensing of thrombin activity by RAFT polymerization[J]. Analytical Chemistry, 2020, 92(4): 3470-3476. |
60 | BAUSSARD J F, HABIB-JIWAN J L, LASCHEWSKY A, et al. New chain transfer agents for reversible addition-fragmentation chain transfer (RAFT) polymerisation in aqueous solution[J]. Polymer, 2004, 45(11): 3615-3626. |
61 | HU Qiong, KONG Jinming, HAN Dongxue, et al. Electrochemical DNA biosensing via electrochemically controlled reversible addition-fragmentation chain transfer polymerization[J]. ACS Sensors, 2019, 4(1): 235-241. |
62 | HU Qiong, KONG Jinming, HAN Dongxue, et al. Electrochemically controlled RAFT polymerization for highly sensitive electrochemical biosensing of protein kinase activity[J]. Analytical Chemistry, 2019, 91(3): 1936-1943. |
63 | WANG Yi, FANTIN M, PARK Sangwoo, et al. Electrochemically mediated reversible addition-fragmentation chain-transfer polymerization[J]. Macromolecules, 2017, 50(20): 7872-7879. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[5] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[6] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[7] | 白志华, 张军. 二乙烯三胺五亚甲基膦酸/Fenton体系氧化脱除NO[J]. 化工进展, 2023, 42(9): 4967-4973. |
[8] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[9] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[10] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[11] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[12] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[13] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[14] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[15] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |