1 | ROBESON L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1): 390-400. | 2 | HYUN Taehoon, JEONG Jinhong, CHAE Ari, et al. 2D-enabled membranes: materials and beyond[J]. BMC Chemical Engineering, 2019, 1(1): 12. | 3 | ZHANG Hua. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469. | 4 | LIU Gongping, JIN Wanqin, XU Nanping. Graphene-based membranes[J]. Chemical Society Reviews, 2015, 44(15): 5016-5030. | 5 | CHHOWALLA M, SHIN Hyeon Suk, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5: 263. | 6 | DING Li, WEI Yanying, WANG Yanjie, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie: International Edition, 2017, 56(7): 1825-1829. | 7 | WANG Yanjie, LI Yanying, WEI Yanying, et al. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers[J]. Angewandte Chemie: International Edition, 2017, 56(31): 8974-8980. | 8 | VAROON K, ZHANG Xueyi, ELYASSI B, et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane[J]. Science, 2011, 334(6052): 72-75. | 9 | JEON Mi Young, KIM Donghun, KUMAR P, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets[J]. Nature, 2017, 543(7647): 690-694. | 10 | PENG Yuan, LI Yanshuo, BAN Yujie, et al. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation[J]. Angewandte Chemie International Edition, 2017, 56(33): 9757-9761. | 11 | 周胜, 侯倩倩, 魏嫣莹, 等. 金属有机骨架膜的制备与应用进展[J]. 化工进展, 2019, 38(1): 467-484. | 11 | ZHOU Sheng, HOU Qianqian, WEI Yanying, et al. Recent progress on the preparation and applications of metal organic framework membranes[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 467-484. | 12 | LI Gang, ZHANG Kai, TSURU T. Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated cof nanosheets[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 8433-8436. | 13 | HUO Chengxue, YAN Zhong, SONG Xiufeng, et al. 2D materials via liquid exfoliation: a review on fabrication and applications[J]. Science Bulletin, 2015, 60(23): 1994-2008. | 14 | COLEMAN J N. Liquid exfoliation of defect-free graphene[J]. Accounts of Chemical Research, 2013, 46(1): 14-22. | 15 | YAO Yagang, LIN Ziyin, LI Zhuo, et al. Large-scale production of two-dimensional nanosheets[J]. Journal of Materials Chemistry, 2012, 22(27): 13494-13499. | 16 | RODENAS T, LUZ I, PRIETO G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1): 48-55. | 17 | ZHAO Meiting, WANG Yixian, MA Qinglang, et al. Ultrathin 2D metal-organic framework nanosheets[J]. Advanced Materials, 2015, 27(45): 7372-7378. | 18 | DING Li, WEI Yanying, LI Libo, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nature Communications, 2018, 9(1): 155. | 19 | KIM Hyo Won, YOON Hee Wook, YOON Seon-Mi, et al. Selective gas transport through few-layered graphene and graphene oxide membranes[J]. Science, 2013, 342(6154): 91-95. | 20 | PHAM V H, CUONG T V, HUR S H, et al. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating[J]. Carbon, 2010, 48(7): 1945-1951. | 21 | PENG Yuan, LI Yanshuo, BAN Yujie, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359. | 22 | DIBA M, FAM D W H, BOCCACCINI A R, et al. Electrophoretic deposition of graphene-related materials: a review of the fundamentals[J]. Progress in Materials Science, 2016, 82: 83-117. | 23 | HU Meng, MI Baoxia. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction[J]. Journal of Membrane Science, 2014, 469: 80-87. | 24 | WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5): 16018. | 25 | MOHAMMAD A W, TEOW Y H, ANG W L, et al. Nanofiltration membranes review: recent advances and future prospects[J]. Desalination, 2015, 356: 226-254. | 26 | LIU Guozhen, SHEN Jie, LIU Quan, et al. Ultrathin two-dimensional MXene membrane for pervaporation desalination[J]. Journal of Membrane Science, 2018, 548: 548-558. | 27 | LI Zhongkun, LIU Yanchang, LI Libo, et al. Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation[J]. Journal of Membrane Science, 2019, 592: 117361. | 28 | MOGHADAM F, PARK Ho Bum. Two-dimensional materials: an emerging platform for gas separation membranes[J]. Current Opinion in Chemical Engineering, 2018, 20: 28-38. | 29 | NIE Lina, Kunli GOH, WANG Yu, et al. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration[J]. Science Advances, 2020, 6(17): eaaz9184. | 30 | NIELSEN L E. Models for the permeability of filled polymer systems[J]. Journal of Macromolecular Science, Part A, 1967, 1(5): 929-942. | 31 | RAN Jin, ZHANG Pengpeng, CHU Chengquan, et al. Ultrathin lamellar MoS2 membranes for organic solvent nanofiltration[J]. Journal of Membrane Science, 2020, 602: 117963. | 32 | IBRAHIM A, LIN Y S. Gas permeation and separation properties of large-sheet stacked graphene oxide membranes[J]. Journal of Membrane Science, 2018, 550: 238-245. | 33 | O’HERN S C, STEWART C A, BOUTILIER M S H, et al. Selective molecular transport through intrinsic defects in a single layer of CVD graphene[J]. ACS Nano, 2012, 6(11): 10130-10138. | 34 | CELEBI K, BUCHHEIM J, WYSS R M, et al. Ultimate permeation across atomically thin porous graphene[J]. Science, 2014, 344(6181): 289-292. | 35 | SURWADE S P, SMIRNOV S N, VLASSIOUK I V, et al. Water desalination using nanoporous single-layer graphene[J]. Nature Nanotechnology, 2015, 10(5): 459-464. | 36 | LI Yang, ZHAO Wang, WEYLAND M, et al. Thermally reduced nanoporous graphene oxide membrane for desalination[J]. Environmental Science & Technology, 2019, 53(14): 8314-8323. | 37 | FISCHBEIN M D, DRNDI? M. Electron beam nanosculpting of suspended graphene sheets[J]. Applied Physics Letters, 2008, 93(11): 113107. | 38 | KOENIG S P, WANG Luda, PELLEGRINO J, et al. Selective molecular sieving through porous graphene[J]. Nature Nanotechnology, 2012, 7(11): 728-732. | 39 | O’HERN S C, BOUTILIER M S H, J-C IDROBO, et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes[J]. Nano Letters, 2014, 14(3): 1234-1241. | 40 | LIU Gongping, JIN Wanqin, XU Nanping. Two-dimensional-material membranes: a new family of high-performance separation membranes[J]. Angewandte Chemie: International Edition, 2016, 55(43): 13384-13397. | 41 | WANG Wentai, EFTEKHARI E, ZHU Guangshan, et al. Graphene oxide membranes with tunable permeability due to embedded carbon dots[J]. Chemical Communications, 2014, 50(86): 13089-13092. | 42 | HAN Yi, JIANG Yanqiu, GAO Chao. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8147-8155. | 43 | RAN Jin, PAN Ting, WU Yuying, et al. Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers[J]. Angewandte Chemie: International Edition, 2019, 58(46): 16463-16468. | 44 | WANG Yanjie, LIU Lingfei, XUE Jian, et al. Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid[J]. AIChE Journal, 2018, 64(6): 2181-2188. | 45 | AI Xinyu, ZHANG Pengpeng, DOU Yan, et al. Graphene oxide membranes with hierarchical structures used for molecule sieving[J]. Separation and Purification Technology, 2020, 230: 115879. | 46 | AMADEI C A, MONTESSORI A, KADOW J P, et al. Role of oxygen functionalities in graphene oxide architectural laminate subnanometer spacing and water transport[J]. Environmental Science & Technology, 2017, 51(8): 4280-4288. | 47 | SUN Pengzhan, ZHENG Feng, ZHU Miao, et al. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions[J]. ACS Nano, 2014, 8(1): 850-859. | 48 | PENG Jing, WU Jiajing, LI Xiaoting, et al. Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking[J]. Journal of the American Chemical Society, 2017, 139(26): 9019-9025. | 49 | LI Zhongkun, WEI Yanying, GAO Xue, et al. Antibiotics separation with MXene membranes based on regularly stacked high-aspect-ratio nanosheets[J]. Angewandte Chemie: International Edition, 2020, 59(24): 9751-9756. | 50 | SUN Pengzhan, LIU He, WANG Kunlin, et al. Ultrafast liquid water transport through graphene-based nanochannels measured by isotope labelling[J]. Chemical Communications, 2015, 51(15): 3251-3254. | 51 | KANG Yuan, XIA Yun, WANG Huanting, et al. 2D laminar membranes for selective water and ion transport[J]. Advanced Functional Materials, 2019, 29(29): 1902014. | 52 | SUN Luwei, HUANG Hubiao, PENG Xinsheng. Laminar MoS2 membranes for molecule separation[J]. Chemical Communications, 2013, 49(91): 10718-10720. | 53 | HUANG Kang, LIU Gongping, SHEN Jie, et al. High-efficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates[J]. Advanced Functional Materials, 2015, 25(36): 5809-5815. | 54 | WANG Shaofei, YANG Leixin, HE Guangwei, et al. Two-dimensional nanochannel membranes for molecular and ionic separations[J]. Chemical Society Reviews, 2020, 49(4): 1071-1089. | 55 | CHONG Jeng Yi, WANG Bo, MATTEVI C, et al. Dynamic microstructure of graphene oxide membranes and the permeation flux[J]. Journal of Membrane Science, 2018, 549: 385-392. | 56 | AKBARI A, SHEATH P, MARTIN S T, et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide[J]. Nature Communications, 2016, 7(1): 10891. | 57 | SHEN Jie, LIU Gongping, HUANG Kang, et al. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving[J]. ACS Nano, 2016, 10(3): 3398-3409. | 58 | XI Yueheng, LIU Zhuang, JI Junyi, et al. Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions[J]. Journal of Membrane Science, 2018, 550: 208-218. | 59 | CHEN Liang, SHI Guosheng, SHEN Jie, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550: 380. | 60 | ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12(6): 546-550. | 61 | WANG Shaofei, WU Yingzhen, ZHANG Ning, et al. A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture[J]. Energy & Environmental Science, 2016, 9(10): 3107-3112. | 62 | WANG Yang, WU Niannian, WANG Yan, et al. Graphite phase carbon nitride based membrane for selective permeation[J]. Nature Communications, 2019, 10(1): 2500. | 63 | RAN Jin, CHU Chengquan, PAN Ting, et al. Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes[J]. Journal of Materials Chemistry A, 2019, 7(14): 8085-8091. | 64 | YANG Hao, YANG Leixin, WANG Hongjian, et al. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations[J]. Nature Communications, 2019, 10(1): 2101. | 65 | SUN Pengzhan, ZHU Miao, WANG Kunlin, et al. Selective ion penetration of graphene oxide membranes[J]. ACS Nano, 2013, 7(1): 428-437. | 66 | DENG Mengmeng, KWAC Kijeong, LI Meng, et al. Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide[J]. Nano Letters, 2017, 17(4): 2342-2348. | 67 | YU Wenzheng, YU Tong, GRAHAM N. Development of a stable cation modified graphene oxide membrane for water treatment[J]. 2D Materials, 2017, 4(4): 045006. | 68 | XU Xiangfan, PEREIRA L F C, WANG Yu, et al. Length-dependent thermal conductivity in suspended single-layer graphene[J]. Nature Communications, 2014, 5(1): 3689. | 69 | ZHANG Mengchen, GUAN Kecheng, JI Yufan, et al. Controllable ion transport by surface-charged graphene oxide membrane[J]. Nature Communications, 2019, 10(1): 1253. | 70 | HU Chengzhi, LIU Zhongtao, LU Xinglin, et al. Enhancement of the donnan effect through capacitive ion increase using an electroconductive rGO-CNT nanofiltration membrane[J]. Journal of Materials Chemistry A, 2018, 6(11): 4737-4745. | 71 | WALKER M I, UBYCH K, SARASWAT V, et al. Extrinsic cation selectivity of 2D membranes[J]. ACS Nano, 2017, 11(2): 1340-1346. | 72 | KIM Sunho, NHAM Jeasun, JEONG Yo Sub, et al. Biomimetic selective ion transport through graphene oxide membranes functionalized with ion recognizing peptides[J]. Chemistry of Materials, 2015, 27(4): 1255-1261. | 73 | DING Li, XIAO Dan, LU Zong, et al. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting[J]. Angewandte Chemie: International Edition, 2020, 59(22): 8720-8726. | 74 | ZHENG Sunxiang, TU Qingsong, URBAN J J, et al. Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms[J]. ACS Nano, 2017, 11(6): 6440-6450. | 75 | Che Ning YEH, RAIDONGIA K, SHAO Jiaojing, et al. On the origin of the stability of graphene oxide membranes in water[J]. Nature Chemistry, 2015, 7(2): 166-170. | 76 | XI Yueheng, HU Jiaqi, LIU Zhuang, et al. Graphene oxide membranes with strong stability in aqueous solutions and controllable lamellar spacing[J]. ACS Applied Materials & Interfaces, 2016, 8(24): 15557-15566. | 77 | SINGH V, JOUNG Daeha, ZHAI Lei, et al. Graphene based materials: past, present and future[J]. Progress in Materials Science, 2011, 56(8): 1178-1271. | 78 | 刘露月, 吕荥宾, 刘壮, 等. 层层堆叠石墨烯膜的稳定性强化及层间距调控研究进展[J]. 膜科学与技术, 2020, 40(1): 228-239. | 78 | LIU Luyue, Xingbin Lü, LIU Zhuang, et al. Research progress on the stability improvement and interlayer-spacing regulation of graphene-based membranes with laminar structures[J]. Membrane Science and Technology, 2020, 40(1): 228-239. | 79 | HUANG Liang, LI Yingru, ZHOU Qinqin, et al. Graphene oxide membranes with tunable semipermeability in organic solvents[J]. Advanced Materials, 2015, 27(25): 3797-3802. | 80 | SU Yang, KRAVETS V G, WONG S L, et al. Impermeable barrier films and protective coatings based on reduced graphene oxide[J]. Nature Communications, 2014, 5(1): 4843. | 81 | JI Jinzhao, KANG Qian, ZHOU Yi, et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs[J]. Advanced Functional Materials, 2017, 27(2): 1603623. | 82 | CHENG Peng, CHEN Yan, GU Yihang, et al. Hybrid 2D WS2/GO nanofiltration membranes for finely molecular sieving[J]. Journal of Membrane Science, 2019, 591: 117308. | 83 | ZHU Junyong, HOU Jingwei, ULIANA A, et al. The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes[J]. Journal of Materials Chemistry A, 2018, 6(9): 3773-3792. | 84 | DING Li, LI Libo, LIU Yanchang, et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater[J]. Nature Sustainability, 2020, 3(4): 296-302. | 85 | LU Zong, WEI Yanying, DENG Junjie, et al. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion[J]. ACS Nano, 2019, 13(9): 10535-10544. | 86 | ZHANG Hao, TAYMAZOV D, LI Mengping, et al. Construction of MoS2 composite membranes on ceramic hollow fibers for efficient water desalination[J]. Journal of Membrane Science, 2019, 592: 117369. | 87 | THEBO K H, QIAN Xitang, ZHANG Xitang, et al. Highly stable graphene-oxide-based membranes with superior permeability[J]. Nature Communications, 2018, 9(1): 1486. | 88 | ZHANG Mengchen, MAO Yangyang, LIU Guozhen, et al. Molecular bridges stabilize graphene oxide membranes in water[J]. Angewandte Chemie: International Edition, 2020, 59(4): 1689-1695. | 89 | SHUCK C E, SARYCHEVA A, ANAYEE M, et al. Scalable synthesis of Ti3C2Tx MXene[J]. Advanced Engineering Materials, 2020, 22(3): 1901241. |
|