化工进展 ›› 2020, Vol. 39 ›› Issue (2): 429-438.DOI: 10.16085/j.issn.1000-6613.2019-0890
收稿日期:
2019-05-31
出版日期:
2020-02-05
发布日期:
2020-03-12
通讯作者:
栾金义
作者简介:
王成鸿(1990—),男,工程师,博士研究生,研究方向为化学(环境)工程。E-mail:Chenghong WANG1(),Fanning MENG1,Xin WEI1,Tiantian CAO2,Jinyi LUAN1()
Received:
2019-05-31
Online:
2020-02-05
Published:
2020-03-12
Contact:
Jinyi LUAN
摘要:
石油化工是我国的支柱产业,也是环境污染的主要来源。近年来,随着国家环保形势的日益严峻和相应环保法规的陆续出台,高效处理石化行业所涉及的各类污染问题已成为重中之重。作为一种新型的纳米多孔材料,金属-有机框架(MOF)在石化环保领域展现出了广阔的应用前景。该材料可作为高性能吸附剂、分离膜以及催化材料去除或降解石化行业中的典型污染物。本文系统梳理了MOF材料及其相关工艺在石化环保领域的潜在应用,重点介绍了近年来国内外取得的突破性进展,并在此基础上深入分析了该材料的应用现状、存在问题及未来的研发方向。总体而言,MOF材料具有比传统多孔材料更优异的结构特征和应用性能;展望未来,其能够作为吸附剂、分离膜或是催化材料在石化环保领域得到更大规模的推广与应用。
中图分类号:
王成鸿,孟凡宁,魏昕,曹田田,栾金义. 金属-有机框架材料在石化环保领域的应用[J]. 化工进展, 2020, 39(2): 429-438.
Chenghong WANG,Fanning MENG,Xin WEI,Tiantian CAO,Jinyi LUAN. Environmental applications of metal-organic frameworks in petrochemical industries[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 429-438.
应用领域 | 具体应用 |
---|---|
吸附分离 | 气体储存,碳捕获,废水处理,燃油净化,萃取吸附剂,色谱固定相等 |
催化反应 | 氢化反应,光催化反应,烃类、醇类氧化反应,酯化反应,水解反应等 |
生物医学 | 药物负载,药物缓释等 |
传感 | 电化学传感器,荧光化学传感器等 |
电学 | 电池,超级电容器等 |
表1 MOF材料的潜在应用领域
应用领域 | 具体应用 |
---|---|
吸附分离 | 气体储存,碳捕获,废水处理,燃油净化,萃取吸附剂,色谱固定相等 |
催化反应 | 氢化反应,光催化反应,烃类、醇类氧化反应,酯化反应,水解反应等 |
生物医学 | 药物负载,药物缓释等 |
传感 | 电化学传感器,荧光化学传感器等 |
电学 | 电池,超级电容器等 |
吸附材料 | 吸附应用 | 吸附容量/mmol·g-1 | 参考文献 |
---|---|---|---|
MOF-177 | CO2吸附 | 33.5 | [ |
[Cu24(TPBTM6-)8(H2O)24]·xG | CO2吸附 | 23.5 | [ |
PCN-61 | CO2吸附 | 21.4 | [ |
bio-MOF-11 | CO2吸附 | 6.0 | [ |
1-Eu | CO2吸附 | 166.3cm3·g-1 | [ |
MIL-101 | VOC(正己烷、甲苯、甲醇、丁酮、二氯甲烷和正丁胺)吸附 | 12.8(正丁胺) | [ |
UiO-66-NH2 | VOC(甲苯)吸附 | 2.7 | [ |
BUT-66 | VOC(苯等芳香性气体)吸附 | 1.65 | [ |
[Zn4(μ4-O)(μ4-4-carboxy-3,5-dimethyl-4-carboxy-pyrazolato)3] | 沙林毒气和芥子气等剧毒气体吸附 | — | [ |
沸石13X | CO2吸附 | 7.24 | [ |
活性炭 | VOC(正己烷、甲苯、甲醇、丁酮、二氯甲烷和正丁胺)吸附 | 0.17(正丁胺) | [ |
表2 代表性MOF材料及传统吸附材料用于CO2及VOC气体脱除
吸附材料 | 吸附应用 | 吸附容量/mmol·g-1 | 参考文献 |
---|---|---|---|
MOF-177 | CO2吸附 | 33.5 | [ |
[Cu24(TPBTM6-)8(H2O)24]·xG | CO2吸附 | 23.5 | [ |
PCN-61 | CO2吸附 | 21.4 | [ |
bio-MOF-11 | CO2吸附 | 6.0 | [ |
1-Eu | CO2吸附 | 166.3cm3·g-1 | [ |
MIL-101 | VOC(正己烷、甲苯、甲醇、丁酮、二氯甲烷和正丁胺)吸附 | 12.8(正丁胺) | [ |
UiO-66-NH2 | VOC(甲苯)吸附 | 2.7 | [ |
BUT-66 | VOC(苯等芳香性气体)吸附 | 1.65 | [ |
[Zn4(μ4-O)(μ4-4-carboxy-3,5-dimethyl-4-carboxy-pyrazolato)3] | 沙林毒气和芥子气等剧毒气体吸附 | — | [ |
沸石13X | CO2吸附 | 7.24 | [ |
活性炭 | VOC(正己烷、甲苯、甲醇、丁酮、二氯甲烷和正丁胺)吸附 | 0.17(正丁胺) | [ |
吸附材料 | 吸附应用 | 吸附容量 | 参考文献 |
---|---|---|---|
MIL-101 | 苯吸附 | 16.7mmol·g-1 | [ |
MIL-101(Cr) | 双酚A吸附 | 156mg·g-1 | [ |
ZIF-8 | 苯二甲酸吸附 | 654mg·g-1 | [ |
ZIF-67 | 苯三唑吸附 | 308mg·g-1 | [ |
UiO-67 | 草甘膦吸附 | 537mg·g-1 | [ |
MIL-53(Al)-NH2 | Pb2+吸附 | 492.4mg·g-1 | [ |
Zr-DMBD | Hg2+吸附 | — | [ |
Fe-BTC | Pb2+、Fe2+吸附 | 394mgPb·g-1,1634mgHg·g-1 | [ |
UiO-68 | U吸附 | 217mg·g-1 | [ |
UiO-66 | As吸附 | 303mg·g-1 | [ |
介孔氧化硅SBA-15 | 苯吸附 | 3.0mmol·g-1 | [ |
商用活性炭 | 苯二甲酸吸附 | 249mg·g-1 | [ |
商用活性炭 | As吸附 | 30.5mg·g-1 | [ |
表3 代表性MOF材料用于水体污染物去除
吸附材料 | 吸附应用 | 吸附容量 | 参考文献 |
---|---|---|---|
MIL-101 | 苯吸附 | 16.7mmol·g-1 | [ |
MIL-101(Cr) | 双酚A吸附 | 156mg·g-1 | [ |
ZIF-8 | 苯二甲酸吸附 | 654mg·g-1 | [ |
ZIF-67 | 苯三唑吸附 | 308mg·g-1 | [ |
UiO-67 | 草甘膦吸附 | 537mg·g-1 | [ |
MIL-53(Al)-NH2 | Pb2+吸附 | 492.4mg·g-1 | [ |
Zr-DMBD | Hg2+吸附 | — | [ |
Fe-BTC | Pb2+、Fe2+吸附 | 394mgPb·g-1,1634mgHg·g-1 | [ |
UiO-68 | U吸附 | 217mg·g-1 | [ |
UiO-66 | As吸附 | 303mg·g-1 | [ |
介孔氧化硅SBA-15 | 苯吸附 | 3.0mmol·g-1 | [ |
商用活性炭 | 苯二甲酸吸附 | 249mg·g-1 | [ |
商用活性炭 | As吸附 | 30.5mg·g-1 | [ |
1 | ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674. |
2 | JAMES S L. Metal-organic frameworks[J]. Chemical Society Reviews, 2003, 32(5): 276-288. |
3 | FURUKAWA H, CORDOVA K E, O’KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
4 | SILVA P, VILELA S M, TOME J P, et al. Multifunctional metal-organic frameworks: from academia to industrial applications[J]. Chem. Soc. Rev., 2015, 44(19): 6774-6803. |
5 | WANG C, LIU X, DEMIR K N, et al. Applications of water stable metal-organic frameworks[J]. Chem. Soc. Rev., 2016, 45(18): 5107-5134. |
6 | MATAMOROS V, RODRíGUEZ Y, ALBAIGÉS J. A comparative assessment of intensive and extensive wastewater treatment technologies for removing emerging contaminants in small communities[J]. Water Research, 2016, 88: 777-785. |
7 | 陈小明, 张杰鹏. 金属-有机框架材料[M]. 北京: 化学工业出版社, 2017. |
CHEN X M, ZHANG J P. Metal-organic framework materials[M]. Beijing: Chemical Industry Press, 2017. | |
8 | BURTCH N C, JASUJA H, WALTON K S. Water stability and adsorption in metal-organic frameworks[J]. Chemical Reviews, 2014, 114(20): 10575-10612. |
9 | CANIVET J, FATEEVA A, GUO Y M, et al. Water adsorption in MOFs: fundamentals and applications[J]. Chemical Society Reviews, 2014, 43(16): 5594-5617. |
10 | LI H, EDDAOUDI M, O’KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
11 | EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular mofs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. |
12 | PARK K S, NI Z, CÔTÉ A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. |
13 | CHUI S SY, LO S M F, CHARMANT J P H, et al. Chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283: 1148-1150. |
14 | FÉREY C, MELLOT-DRAZNIEKS C, SERRE C, et al. Chemistry: a chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. |
15 | KANDIAH M, NILSEN M H, USSEGLIO S, et al. Synthesis and stability of tagged UiP-66 Zr-MOFs[J]. Chemistry of Materials, 2010, 22(24): 6632-6640. |
16 | DUAN J G, PAN Y C, LIU G P, et al. Metal-organic framework adsorbents and membranes for separation applications[J]. Current Opinion in Chemical Engineering, 2018, 20: 122-131. |
17 | ZHANG H B, NAI J W, YU L, et al. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications[J]. Joule, 2017, 1(1): 77-107. |
18 | LI X, WANG B, CAO Y H, et al. Water contaminant elimination based on metal-organic frameworks and perspective on their industrial applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 4548-4563. |
19 | SHARMA V K, FENG M B. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: a review[J]. Journal of Hazardous Materials, 2017, 372: 3-16. |
20 | WANG B, XIE L H, WANG X Q, et al. Applications of metal-organic frameworks for green energy and environment: new advances in adsorptive gas separation, storage and removal[J]. Green Energy & Environment, 2018, 3(3): 191-228. |
21 | ZHANG H, LI G L, ZHANG K G, et al. Advances of metal-organic frameworks in adsorption and separation applications[J]. Acta Chimica Sinica, 2017, 75(9): 841. |
22 | LI J, WANG X X, ZHAO G X, et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions[J]. Chem. Soc. Rev., 2018, 47(7): 2322-2356. |
23 | LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504. |
24 | MILLWARD A R, YAGHI O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of the American Chemical Society, 2005, 127(51): 17998-17999. |
25 | ZHENG B S, BAI J F, DUAN J G, et al. Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups[J]. J. Am. Chem. Soc., 2011, 133(4): 748-751. |
26 | AN J, GEIB S J, ROSI N L. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores[J]. Journal of the American Chemical Society, 2010, 132(1): 38-39. |
27 | LIU B, WU W P, HOU L, et al. Four uncommon nanocage-based Ln-MOFs: highly selective luminescent sensing for Cu2+ ions and selective CO2 capture[J]. Chemical Communications, 2014, 50(63): 8731-8734. |
28 | HUANG C Y, SONG M, GU Z Y, et al. Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance[J]. Environ. Sci. Technol., 2011, 45(10): 4490-4496. |
29 | VELLINGIRI K, KUMAR P, DEEP A, et al. Metal-organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure[J]. Chemical Engineering Journal, 2017, 307: 1116-1126. |
30 | XIE L H, LIU X M, HE T, et al. Metal-organic frameworks for the capture of trace aromatic volatile organic compounds[J]. Chem., 2018, 4(8): 1911-1927. |
31 | MONTORO C, LINARES F, PROCOPIO E Q, et al. Capture of nerve agents and mustard gas analogues by hydrophobic robust MOF-5 type metal-organic frameworks[J]. J. Am. Chem. Soc., 2011, 133(31): 11888-11891. |
32 | YANG K, SUN Q, XUE F, et al. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: influence of molecular size and shape[J]. J. Hazard. Mater., 2011, 195: 124-131. |
33 | JHUNG S H, LEE J H, YOON J W, et al. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability[J]. Advanced Materials, 2007, 19(1): 121-124. |
34 | QIN F X, JIA S Y, LIU Y, et al. Adsorptive removal of bisphenol a from aqueous solution using metal-organic frameworks[J]. Desalination and Water Treatment, 2015, 54(1): 93-102. |
35 | KHAN N A, JUNG B K, HASAN Z, et al. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks[J]. J. Hazard. Mater., 2015, 282: 194-200. |
36 | LIN A K Y, LEE W D. Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole[J]. Chemical Engineering Journal, 2016, 284: 1017-1027. |
37 | ZHU X Y, LI B, YANG J, et al. Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67[J]. ACS Appl. Mater. Interfaces, 2015, 7(1): 223-231. |
38 | RICCO R, KONSTAS K, STYLES M J, et al. Lead(Ⅱ) uptake by aluminium based magnetic framework composites(MFCs) in water[J]. Journal of Materials Chemistry A, 2015, 3(39): 19822-19831. |
39 | YEE K K, REIMER N, LIU J, et al. Effective mercury sorption by thiol-laced metal-organic frameworks: in strong acid and the vapor phase[J]. J. Am. Chem. Soc., 2013, 135(21): 7795-7798. |
40 | SUN D T, PENG L, REEDER W S, et al. Rapid, selective heavy metal removal from water by a metal-organic framework/polydopamine composite[J]. ACS Cent. Sci., 2018, 4(3): 349-356. |
41 | CARBONI M, ABNEY C W, LIU S, et al. Highly porous and stable metal-organic frameworks for uranium extraction[J]. Chemical Science, 2013, 4(6): 2396-2402. |
42 | WANG C, LIU X, CHEN J P, et al. Superior removal of arsenic from water with zirconium metal-organic framework UIO-66[J]. Sci. Rep., 2015, 5: 16613. |
43 | WANG C, LUAN J, WU C. Metal-organic frameworks for aquatic arsenic removal[J]. Water Research, 2019, 158: 370-382. |
44 | ACHMANN S, HAGEN G, HäMMERLE M, et al. Sulfur removal from low-sulfur gasoline and diesel fuel by metal-organic frameworks[J]. Chemical Engineering & Technology, 2010, 33(2): 275-280. |
45 | ZHANG H X, HUANG H L, LI C X, et al. Adsorption behavior of metal-organic frameworks for thiophenic sulfur from diesel oil[J]. Industrial & Engineering Chemistry Research, 2012, 51(38): 12449-12455. |
46 | CYCHOSZ K A, WONG-FOY A G, MATZGER A J. Enabling cleaner fuels: desulfurization by adsorption to microporous coordination polymers[J]. Journal of the American Chemical Society, 2009, 131(40): 14538-14543. |
47 | AHMED I, HASAN Z, KHAN N A, et al. Adsorptive denitrogenation of model fuels with porous metal-organic frameworks(MOFs): effect of acidity and basicity of MOFs[J]. Applied Catalysis B: Environmental, 2013, 129: 123-129. |
48 | CYCHOSZ K A, WONG-FOY A G, MATZGER A J. Liquid phase adsorption by microporous coordination polymers: removal of organosulfur compounds[J]. Journal of the American Chemical Society, 2008, 130(22): 6938-6939. |
49 | LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2): 869-932. |
50 | BéTARD A, FISCHER R A. Metal-organic framework thin films: from fundamentals to applications[J]. Chemical Reviews, 2012, 112(2): 1055-1083. |
51 | SHEKHAH O, LIU J, FISCHER R A, et al. MOF thin films: existing and future applications[J]. Chemical Society Reviews, 2011, 40(2): 1081-1106. |
52 | ZACHER D, SHEKHAH O, WÖLL C, et al. Thin films of metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1418-1429. |
53 | QIU S L, XUE M, ZHU G S. Metal-organic framework membranes: from synthesis to separation application[J]. Chemical Society Reviews, 2014, 43(16): 6116-6140. |
54 | WANG N Y, LIU Y, QIAO Z W, et al. Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H2/CO2 selectivity[J]. Journal of Materials Chemistry A, 2015, 3(8): 4722-4728. |
55 | PENG Y, LI Y S, BAN Y J, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359. |
56 | ZHANG C J, XIAO Y L, LIU D H, et al. A hybrid zeolitic imidazolate framework membrane by mixed-linker synthesis for efficient CO2 capture[J]. Chemical Communications, 2013, 49(6): 600-602. |
57 | HUANG K, DONG Z Y, LI Q Q, et al. Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors[J]. Chemical Communications, 2013, 49(87): 10326-10328. |
58 | GHALEI B, SAKURAI K, KINOSHITA Y, et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles[J]. Nature Energy, 2017, 2: 17086. |
59 | XIANG L, SHENG L Q, WANG C Q, et al. Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation[J]. Advanced Materials, 2017, 29(32): 1606999. |
60 | LIU G P, CHERNIKOVA V, LIU Y, et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations[J]. Nature Materials, 2018, 17(3): 283-289. |
61 | LIU X L, DEMIR N K, WU Z T, et al. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination[J]. J. Am. Chem. Soc., 2015, 137(22): 6999-7002. |
62 | MA D C, PEH S B, HAN G, et al. Thin-film nanocomposite(TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection[J]. ACS Applied Materials and Interfaces, 2017, 9(8): 7523-7534. |
63 | LI T, ZHANG W M, ZHAI S, et al. Efficient removal of nickel(Ⅱ) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane[J]. Water Res., 2018, 143: 87-98. |
64 | GUO R X, CAI X H, LIU H W, et al. In situ growth of metal-organic frameworks in three-dimensional aligned lumen arrays of wood for rapid and highly efficient organic pollutant removal[J]. Environ. Sci. Technol., 2019, 53(5): 2705-2712. |
65 | MUKHERJEE S, KANSARA A M, SAHA D, et al. An ultrahydrophobic fluorous metal-organic framework derived recyclable composite as a promising platform to tackle marine oil spills[J]. Chemistry-A European Journal, 2016, 22(31): 10937-10943. |
66 | CAI Y H, CHEN D Y, LI N J, et al. Nanofibrous metal-organic framework composite membrane for selective efficient oil/water emulsion separation[J]. Journal of Membrane Science, 2017, 543: 10-17. |
67 | JIANG D N, XU P, WANG H, et al. Strategies to improve metal organic frameworks photocatalyst’s performance for degradation of organic pollutants[J]. Coordination Chemistry Reviews, 2018, 376: 449-466. |
68 | LEE J, FARHA O K, ROBERTS J, et al. Metal-organic framework materials as catalysts[J]. Chemical Society Reviews, 2009, 38(5): 1450-1459. |
69 | WANG C C, LI J R, LÜ X L, et al. Photocatalytic organic pollutants degradation in metal–organic frameworks[J]. Energy & Environmental Science, 2014, 7(9): 2831-2867. |
70 | CORMA A, GARCíA H, LLABRÉS I XAMENA F X. Engineering metal organic frameworks for heterogeneous catalysis[J]. Chemical Reviews, 2010, 110(8): 4606-4655. |
71 | WU X Y, QI H X, NING J J, et al. One silver(Ⅰ)/tetraphosphine coordination polymer showing good catalytic performance in the photodegradation of nitroaromatics in aqueous solution[J]. Applied Catalysis B: Environmental, 2015, 168/169: 98-104. |
72 | MASOOMI M Y, BAGHERI M, MORSALI A, et al. High photodegradation efficiency of phenol by mixed-metal-organic frameworks[J]. Inorganic Chemistry Frontiers, 2016, 3(7): 944-951. |
73 | LI J, YANG J, LIU Y Y, et al. Two heterometallic-organic frameworks composed of iron(Ⅲ)-salen-based ligands and d10 metals: gas sorption and visible-light photocatalytic degradation of 2-chlorophenol[J]. Chemistry-A European Journal, 2015, 21(11): 4413-4421. |
74 | SUN Q, LIU M, LI K Y, et al. Facile synthesis of Fe-containing metal-organic frameworks as highly efficient catalysts for degradation of phenol at neutral pH and ambient temperature[J]. CrystEngComm, 2015, 17(37): 7160-7168. |
75 | SUN Q L, LIU M, LI K Y, et al. Synthesis of Fe/M(M=Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions[J]. Inorganic Chemistry Frontiers, 2017, 4(1): 144-153. |
76 | LIANG R W, LUO S G, JING F F, et al. A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products(PPCPs)[J]. Applied Catalysis B: Environmental, 2015, 176/177: 240-248. |
77 | ZHAO H Y, CHEN Y, PENG Q S, et al. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and OH generation in solar photo-electro-fenton process[J]. Applied Catalysis B: Environmental, 2017, 203: 127-137. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[9] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[10] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[11] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[12] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[13] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[14] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
[15] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |