化工进展 ›› 2020, Vol. 39 ›› Issue (2): 419-428.DOI: 10.16085/j.issn.1000-6613.2019-0861
收稿日期:
2019-05-28
出版日期:
2020-02-05
发布日期:
2020-03-12
通讯作者:
姜岩
作者简介:
姜岩(1971—),教授,硕士生导师,研究方向为生物修复。E-mail:基金资助:
Yan JIANG(),Heping ZHOU,Zhe ZHANG,Hongbing LIU,Shunxiang SHEN
Received:
2019-05-28
Online:
2020-02-05
Published:
2020-03-12
Contact:
Yan JIANG
摘要:
生物修复一直是石油烃污染场地修复技术的研究热点,已经取得了很多实验和理论认知。但是,现有研究主要集中在中高温环境下,而在实地修复中,生物修复往往要跨越中低温期,此时,无论是土著还是外源微生物的生理特性都将发生改变;由于细胞活力低,这一时期经常在修复过程中被忽视,或是采用缺乏针对性的常规工艺而事倍功半。本文围绕低温生物修复技术,概述了低温石油烃降解微生物的研究现状,重点介绍了长链烷烃、苯及其同系物、多环芳烃三大类典型石油烃的低温代谢机制和主要代谢途径;在此基础上,从脂肪酸的组成、蛋白的低温表达、特殊蛋白的合成以及酶的结构适应性等4个方面,进一步剖析了低温环境下细胞生理生化特性的微观变化,这种低温微生物独有的适冷机制决定了其特有的低温降解特性,并成为低温修复的核心。分析表明,低温期生物修复应该得到足够重视:一方面,充分而合理地利用漫长的低温期,针对性实施低温期受控修复,提高营养盐利用率,可以有效提高生物修复效率;另一方面,深入研究细胞低温代谢和适冷机制有助于指导低温修复手段的实施,将成为切实可行的发展方向。
中图分类号:
姜岩,周和平,张哲,刘红兵,沈顺祥. 石油烃污染场地低温修复机制研究进展[J]. 化工进展, 2020, 39(2): 419-428.
Yan JIANG,Heping ZHOU,Zhe ZHANG,Hongbing LIU,Shunxiang SHEN. Bioremediation of contaminated sites by petroleum hydrocarbon under low temperature environment[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 419-428.
来源 | 菌株 | 温度/℃ | 去除效果 | 参考文献 |
---|---|---|---|---|
润滑油污染土壤 | Acidovorax citrulli、Acidovorax avenae | 20 | 403mg/L润滑油摇瓶降解4天,除油率50% 400mg/L润滑油摇瓶降解3天,降解率59% | 张贤明课题组[ |
南极土壤 | Sphingomonas Ant 17、30 | 16 | 5mmol/L喷气发动机燃油的土壤降解8天,除油率80%、87% | Jackie等[ |
Oleispira RB-8T | 15、4 | 1%柴油摇瓶降解22天,降解率81.8%、62.04% | Gentile等[ | |
Exophilia CZ06 | 10 | 1mg/mL甲苯培养基,摇瓶降解8天,降解率60% | Zhang等[ | |
Planococcus、Shewanella、Pseudoalteromonas | 8 | 1%的0#柴油摇瓶降解14天,降解率34%、68%、42% | 刘芳明等[ | |
北极土壤 | Pseudomonas、Shewanella、Marinobacter 5株菌混合降解 | 20、4 | 100mL的1mL/L原油培养基摇瓶降解28天,降解率77%、71% | Uta等[ |
Sphingopyxis HA4-4 | 15 | 50mg/kg萘和菲摇瓶降解60天,降解率82% | Francescal等[ | |
3株Pseudoalteromona | 15 | 10g/L的0#柴油摇瓶降解7天,降解率60%、46%、53% | 张月梅等[ | |
高山土壤 | Rhodococcus(2株)、Trichosporon | 10 | 80天摇瓶实验,降解苯酚12.5mmol/L、18mmol/L | Rosa等[ |
Pseudomonas、Acinetobacter、Rhodococcus混合降解 | 10 | 5g/L的柴油土壤修复14天,除油率72% | Margesin等[ | |
青藏高原 | Rhodococcus YF28-1(8)、Nocardia Y48混合降解 | 20 | 24mg/L原油摇瓶降解10天,几乎完全降解 | Yang等[ |
Sulfuritalea、Rhodococcus、Sphingomonas、Nocardioides | 10 | 0.1mL/g柴油的土壤,混合菌群修复60天,除油率67.13% | 温成成[ | |
Rhodococcus、Acinetobacter | 10 | 2%灭菌原油25mL,摇瓶降解15天,降解率74.14%、98.43% | 王艺霖[ | |
蓝湖油田 | Planococcus Y42 | 20 | 2%的原油摇瓶降解10天,除油率50% | Yang[ |
沈阳生态试验站 | Pseudomonas、Mortierella | 10 | 100mg/L的PAHs土壤混合菌修复45天,除油率64.38% | 巩春娟[ |
抚顺石油二厂 | Acinetobacter | 10~15 | 2000mg/L的35#柴油摇瓶降解72h,降解率71% | 赵全[ |
吉林油田 | Acinetobacter JLS1 | 16 | 体积分数1%的C16摇瓶降解28天,去除率87.89% | 翟真浩[ |
莫斯科 | Basidiomycete | 4 | 32g/kg石油污染土壤修复90天,降解率81% | Kulikova等[ |
日本藤岛集团 | Rhodococcus erythropolis、Gordonia Polyisoprenivorans | 15 | 500mg/kg燃料油的土壤混合菌修复24天,除油率82% | Masaki等[ |
丹麦 | Pseudomonas | 15 | 50mg/L的原油摇瓶降解83天,降解率50%~60% | Leendert等[ |
表1 典型低温石油烃降解菌
来源 | 菌株 | 温度/℃ | 去除效果 | 参考文献 |
---|---|---|---|---|
润滑油污染土壤 | Acidovorax citrulli、Acidovorax avenae | 20 | 403mg/L润滑油摇瓶降解4天,除油率50% 400mg/L润滑油摇瓶降解3天,降解率59% | 张贤明课题组[ |
南极土壤 | Sphingomonas Ant 17、30 | 16 | 5mmol/L喷气发动机燃油的土壤降解8天,除油率80%、87% | Jackie等[ |
Oleispira RB-8T | 15、4 | 1%柴油摇瓶降解22天,降解率81.8%、62.04% | Gentile等[ | |
Exophilia CZ06 | 10 | 1mg/mL甲苯培养基,摇瓶降解8天,降解率60% | Zhang等[ | |
Planococcus、Shewanella、Pseudoalteromonas | 8 | 1%的0#柴油摇瓶降解14天,降解率34%、68%、42% | 刘芳明等[ | |
北极土壤 | Pseudomonas、Shewanella、Marinobacter 5株菌混合降解 | 20、4 | 100mL的1mL/L原油培养基摇瓶降解28天,降解率77%、71% | Uta等[ |
Sphingopyxis HA4-4 | 15 | 50mg/kg萘和菲摇瓶降解60天,降解率82% | Francescal等[ | |
3株Pseudoalteromona | 15 | 10g/L的0#柴油摇瓶降解7天,降解率60%、46%、53% | 张月梅等[ | |
高山土壤 | Rhodococcus(2株)、Trichosporon | 10 | 80天摇瓶实验,降解苯酚12.5mmol/L、18mmol/L | Rosa等[ |
Pseudomonas、Acinetobacter、Rhodococcus混合降解 | 10 | 5g/L的柴油土壤修复14天,除油率72% | Margesin等[ | |
青藏高原 | Rhodococcus YF28-1(8)、Nocardia Y48混合降解 | 20 | 24mg/L原油摇瓶降解10天,几乎完全降解 | Yang等[ |
Sulfuritalea、Rhodococcus、Sphingomonas、Nocardioides | 10 | 0.1mL/g柴油的土壤,混合菌群修复60天,除油率67.13% | 温成成[ | |
Rhodococcus、Acinetobacter | 10 | 2%灭菌原油25mL,摇瓶降解15天,降解率74.14%、98.43% | 王艺霖[ | |
蓝湖油田 | Planococcus Y42 | 20 | 2%的原油摇瓶降解10天,除油率50% | Yang[ |
沈阳生态试验站 | Pseudomonas、Mortierella | 10 | 100mg/L的PAHs土壤混合菌修复45天,除油率64.38% | 巩春娟[ |
抚顺石油二厂 | Acinetobacter | 10~15 | 2000mg/L的35#柴油摇瓶降解72h,降解率71% | 赵全[ |
吉林油田 | Acinetobacter JLS1 | 16 | 体积分数1%的C16摇瓶降解28天,去除率87.89% | 翟真浩[ |
莫斯科 | Basidiomycete | 4 | 32g/kg石油污染土壤修复90天,降解率81% | Kulikova等[ |
日本藤岛集团 | Rhodococcus erythropolis、Gordonia Polyisoprenivorans | 15 | 500mg/kg燃料油的土壤混合菌修复24天,除油率82% | Masaki等[ |
丹麦 | Pseudomonas | 15 | 50mg/L的原油摇瓶降解83天,降解率50%~60% | Leendert等[ |
1 | JIN H J, YU W B, CHEN Y C, et al. Frost heave and thaw settlement in the engineering design and construction of oil pipelines in permafrost regions: a review[J]. Journal of Glaciology and Geocryology, 2005, 27(3): 454-464. |
2 | 杨思忠, 金会军, 吉延峻, 等. 冻土区石油污染物迁移及清除研究进展[J]. 冰川冻土, 2008, 30(3): 501-507. |
YANG S Z, JIN H J, JI Y J, et al. Research progress on migration and removal of petroleum pollutants in permafrost areas[J]. Journal of Glaciology and Geocryology, 2008, 30(3): 501-507. | |
3 | 赵全. 耐低温石油降解菌的筛选及降解特性研究[D]. 沈阳: 辽宁大学, 2014. |
ZHAO Q. Research on the isolation and degradation characteristics of the law temperature-resistant petroleum-degrading bacterium[D]. Shenyang: Liaoning University, 2014. | |
4 | WHYTE L G, BOUEBONNIERE L, GREER C W. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways[J]. Applied and Environmental Microbiology, 1997, 63(9): 3719-3723. |
5 | YANG R Q, ZHANG G S, LI S W, et al. Degradation of crude oil by mixed cultures of bacteria isolated from the Qinghai-Tibet plateau and comparative analysis of metabolic mechanisms[J]. Environmental Science and Pollution Research, 2019, 26: 1834-1847. |
6 | 巩春娟. 耐低温混合菌的固定化及其对多环芳烃污染土壤的修复研究[D]. 沈阳: 辽宁大学, 2018. |
GONG C J. Immobilization of low-temperature mixed bacteria and its remediation of polycyclic aromatic hydrocarbon contaminated soil[D]. Shenyang: Liaoning University, 2014. | |
7 | 王泽华, 王峰. 低温条件下土壤石油烃微生物修复研究进展[J]. 环境科学与技术, 2017, 40(s1): 139-144. |
WANG Z H, WANG F. Review on bioremediation of petroleum hydrocarbon-contaminated soil in cold condition[J]. Environmental Science and Technology, 2017, 40(s1): 139-144. | |
8 | POWELL S, RIDDLE M, SNAPE I, et al. Location and DGGE methodology can influence interpretation of field experimental studies on the response to hydrocarbons by Antarctic benthic microbial community[J]. Antarctic Science, 2005, 17: 353-360. |
9 | BONAUNET K. Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0-5℃) and bacterial communities associated with degradation[J]. Biodegradation,2006, 17: 71–82. |
10 | YAKIMOV M, GENTILE G, BRUNI V, et al. Crudeoil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, RossSea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria[J]. Fems Microbiology Ecology, 2004, 49: 419-432. |
11 | 伍涛. 瓜类果斑嗜酸菌修复润滑油污染土壤研究实验[D]. 重庆: 重庆工商大学, 2015. |
WU T. Experimental study on repairing soil contaminated by lubricating oil by acidophilus versicolor[D]. Chongqing: Chongqing Technology and Business University, 2015. | |
12 | 姜岩,张贤明,吴云. 一种利用燕麦嗜酸菌对含润滑油酸渣生物除油的方法: 201610752545.7[P]. 2019-05-03. |
JIANG Y, ZHANG X M, WU Y. A way to use oats acidophilic bacteria to contain lubrication oleic acid slag oil removal method: 201610752545.7[P]. 2019-05-03. | |
13 | 姜岩, 张贤明. 一种降解废润滑油的燕麦嗜酸菌及用途: CN201610752545.7[P]. 2019-04-09. |
JIANG Y, ZHANG X M. A kind of degradation of waste lubricating oil oats acidophilic bacteria and application: CN201610752545.7[P]. 2019-04-09. | |
14 | JACKIE A, JULIA F, DAVID S. Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica[J]. Polar Biology, 2000, 23: 183-188. |
15 | GENTILE G, BONSIGNORE M, SANTISI S, et al. Biodegradation potentiality of psychrophilic bacterial strain Oleispira antarctica RB-8T[J]. Marine Pollution Bulletin, 2016, 105: 125-130. |
16 | ZHANG C D, NIVK X, LEWIS A, et al. Exophiala macquariensis sp. nov. a cold adapted black yeast species recovered from a hydrocarbon contaminated sub-Antarctic soil[J]. Fungal Biology, 2019, 123: 151-158. |
17 | 刘芳明, 缪锦来, 董春霞, 等. 南极低温降解菌的筛选、鉴定与低温降解适应性分析[J]. 海洋与湖沼, 2010, 41(5): 692-697. |
LIU F M, MIU J L, DONG C X, et al. Screening, identification of Antarctic cold-adaption petroleum hydrocarbon-degrading bacteriia and low-temperature degrading[J]. Oceanologia Et Limnolgia Sinica, 2010, 41(5): 692-697. | |
18 | UTA D, HANS-HERMANN R, WALTER M G A. Degradation of crude oil by an arctic microbial consortium[J]. Extremophiles, 2005, 9: 461-470. |
19 | FRANCESCA C, LAURA G, MICHAIL M Y, et al. Isolation and degradation potential of a cold-adapted oil/PAH-degrading marine bacterial consortium from Kongsfjorden(Arctic region)[J]. Environmental Changes in Arctic, 2016, 27: 261-270. |
20 | 张月梅, 祖国仁, 那广水, 等. 北极耐冷石油降解菌的筛选、鉴定及其碳源利用广谱性[J]. 海洋环境科学, 2010, 29(2): 216-220. |
ZHANG Y M, ZHU G R, NA G S, et al. Selection and identification of oil degradation of cold-resistant psychrotrophsin Arctic Ocean and broad-spectrum of carbon source used[J]. Marine Environmental Science, 2010, 29(2): 216-220. | |
21 | ROSA M, PIERRE-ALAIN F, BERNHARD R. Low-temperature biodegradation of high amounts of phenol by Rhodococcus sp. basidiomycetous yeasts[J]. Research in Microbiology, 2005, 156: 68-75. |
22 | MARGESIN R, LABBE D, SCHINNER F, et al. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine Soils[J]. Applied and Environmental Microbiology, 2003, 69: 3085-3092. |
23 | 温成成. 青藏高原冻土区石油降解优势菌群的筛选及石油污染生物修复特性的研究[D]. 兰州: 兰州交通大学, 2018. |
WEN C C. Screening of dominant microflora for petroleum degradation and study on bioremediation characteristics of petroleum pollution in permafrost region of Qinghai-tibet plateau[D]. Lanzhou: Lanzhou Jiaotong University, 2018. | |
24 | 王艺霖. 青藏高原土壤中低温高效原油降解菌的筛选、鉴定及其降解特性的研究[D]. 兰州: 兰州交通大学, 2015. |
WANG Y L. Screening, identification and degradation characteristics of high-efficiency crude oil degrading bacteria in Qinghai-tibet plateau soil[D]. Lanzhou: Lanzhou Jiaotong University, 2015. | |
25 | YANG R Q, LIU G X, CHEN T, et al. The complete genomic sequence of a novel cold-adapted bacterium, Planococcus maritimus Y42, isolated from crude oil-contaminated soil[J]. Standards in Genomic Sciences, 2018, 13: 23. |
26 | 翟真浩. 耐低温十六烷烃降解菌的筛选及其降解条件研究[D]. 吉林: 长春理工大学, 2016. |
ZHAI Z H. Screening and degradation conditions of low temperature resistant cetane degrading bacteria[D]. Jilin: Changchun University of Science and Technology, 2016. | |
27 | KULIKOVA N A, KLEIN O I, PIVCHENKO D V, et al. Oil degradation by Basidiomycetes in soil and peat at low temperatures[J]. Applied Biochemistry and Microbiology, 2016, 52(6): 629-637. |
28 | MASAKI S, KENGO S, TAKUMA S, et al. Biodegradation of A-fuel oil in soil samples with bacterial mixtures of Rhodococcus and Gordonia strains under low temperature conditions[J]. Journal of Bioscience and Bioengineering, 2019, 127(2): 197-200. |
29 | LEENDERT V, KASPER U, KJELDSEN P, et al. Bacterial community succession and degradation patterns of hydrocarbons in seawater at low temperature[J]. Journal of Hazardous Materials, 2018, 353: 127-134. |
30 | WHYTE L G, SLAGMAN S J, PIETRANTONIO F, et al. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. Strain Q15[J]. Applied and Environmental Microbiology, 1999, 65(7): 2961-2968. |
31 | BARABAS G, VARGHA G, SZABO I M, et al. n-Alkane uptake and utilisation by Streptomyces strains[J]. Antonie van Leeuwenhoek, 2001, 79: 269-276. |
32 | RATAJCZAK A, GEISSDORFER W, HILLEN W. Alkane hydroxylase from Acinetobacter sp. strain ADP 1 is encoded by a1kM and belongs to a new family of bacterial integral-membrane hydrocarbon hydroxylases[J]. Applied and Environment Microbiology, 1998, 64(4): 1175-1179. |
33 | LI L, LIU X Q, YANG W, et al. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase[J]. Molecular Biology, 2008, 376: 453-465. |
34 | WHYTE L G, HAWARI J, ZHOU E, et al. Biodegradation of ariable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp.[J]. Applied and Environmental Microbiology, 1998, 64(7): 2578-2584. |
35 | MORIKAWA M. Dioxygen activation responsible for oxidation of aliphatic and aromatic hydrocarbon compounds: current state and variants[J]. Applied Microbiology and Biotechnology, 2010, 87(5): 1595-1603. |
36 | YOURI M N, FONS A V, ELINOR L S, et al. Biocatalytic, one-pot diterminal oxidation and esterifification of n-alkanes for production of α,ω-diol and α,ω-dicarboxylic acid esters[J]. Metabolic Engineering, 2017, 44: 134-142. |
37 | YASUYOSHI S, JUN H M, SEIGO K, et al. A Non-conventional dissimilation pathway for long chain n-alkanes in Acinetobacter sp. M-l That starts with a dioxygenase reaction[J]. Journal of Fermentation and Bioengineering, 1996, 81(4): 286-291. |
38 | ERIKSSON M, SODERSTEN E, YU Z T, et al. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from Northern soils[J]. Applied and Environmental Microbiology, 2003, 69(1): 275-284. |
39 | HARITASH A K, KAUSHIK C P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 1-15. |
40 | KOSTKA J E, JOYE S B, OVERHOLT W, et al. Biodegradation of petroleum hydrocarbons in the deep sea[J]. Deep Oil Spills, 2019: 107-124. |
41 | 梁强. 南极海洋石油烃低温降解菌Shewanella sp. NJ49加氧酶及其基因研究[D]. 青岛: 国家海洋局第一海洋研究所, 2011. |
LIANG Q. The Antarctic ocean petroleum hydrocarbon degradation bacteria at low temperature Shewanella sp. NJ49 oxygenase and gene research[D]. Qingdao: the First Institute of Ceanography, SOA, 2011. | |
42 | 姜岩, 张晓华, 杨颖, 等. 基于约氏不动杆菌的萘生物降解特性[J]. 化工学报, 2016, 67(9): 3981-3987. |
JIANG Y, ZHANG X H, YANG Y, et al. Naphthalene biodegradation by Acinetobacter johnsonii[J]. Journal of Chemical Industry and Engineering, 2016, 67(9): 3981-3987. | |
43 | GABRIEL A L V, MARIANA J M, RAFAELLA C B, et al. Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: optimization of the degradation process[J]. Brazilian Journal of Microbiology, 2018, 49: 749-756. |
44 | 马迎飞. 南极土壤中多环芳烃(PAHs)降解菌的研究: 分离、鉴定和降解基因的检测[D]. 泰安: 山东农业大学, 2004. |
MA Y F. Study on PAHs-biodegrading bacteria in Antarctic soil: isolation, characterization and degrading genes detection[D]. Tai’an: Shandong Agricultural University, 2014. | |
45 | JIANG Y, QI H, ZHANG X M. Co-biodegradation of anthracene and naphthalene by the bacterium Acinetobacter johnsonii[J]. Journal of Environmental Science and Health, 2017, 53(5): 448-456. |
46 | JIANG Y, QI H, ZHANG X M. Co-biodegradation of anthracene and naphthalene by the bacterium Acinetobacter johnsonii[J]. Polycyclic Aromatic Compounds, 2018, 53(5): 448-456. |
47 | MERJA S, SIMO L. Unsaturated and branched chain-fatty acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium[J]. Biochimica et Biophysica Acla, 1992, 1126: 119-124. |
48 | STANISLAVA K. Role of fatty acids in cold adaptation of Antarctic psychrophilic Flavobacterium sp.[J]. Systematic and Applied Microbiology, 2017, 40: 329-333. |
49 | 黄凌. 低温降油脂菌剂的开发及应用研究[D]. 重庆: 重庆大学, 2012. |
HUANG L. The development and application research on low-temperature oil and grease degrading composite bacterium[D]. Chongqing: Chongqing University, 2012. | |
50 | MARLE I, GANCEL F. Effect of different temperature downshifts on protein synthesis by Aeromonas hydrophila[J]. Current Microbiology, 2004, 49: 79-83. |
51 | JONES P G, VAN B R, NEIDHART F. Induction of proteins in response to low temperature in Escherichia coli[J]. Journal of Bacteriology, 1987, 169: 2092-2095. |
52 | CORIEN B, SANDRA L T, CAROL S G, et al. Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures[J]. Extremophiles,2007, 11: 343–354. |
53 | ZHANG Y, DAVID B, SILVI R, et al. A stress response that monitors and regulates mRNA structure is central to cold shock adaptation[J]. Molecular Cell, 2018, 70: 274-286. |
54 | 刘芳明. 南极海洋石油烃低温降解菌的筛选、鉴定及其低温降解特性研究[D]. 青岛: 国家海洋局第一海洋研究所, 2008. |
LIU F M. The Antarctic ocean petroleum hydrocarbon degradation bacteria at low temperature screening, identification and its degradation characteristics at low temperature[D]. Qingdao: the First Institute of Oceanography, SOA, 2008. | |
55 | BRININGER C, SPRADLIN S, COBANI L. The more adaptive to change, the more likely you are to survive:protein adaptation in extremophiles[J]. Seminars in Cell and Developmental Biology, 2018, 84: 158-169. |
56 | WI A R, JEON S, KIM S, et al. Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus[J]. Biotechnology Letters, 2014, 36: 1295-1302. |
57 | KIM S Y, WANG H, KIN K Y, et al. Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum[J]. Journal of Biologocal Chemistry, 1999, 274: 11761-1 1767. |
58 | 张月梅. 海洋低温石油降解菌的筛选及其降解机理[D]. 大连: 大连工业大学, 2010. |
ZHANG Y M. Screening and degradation mechanism of marine low temperature oil degrading bacteria[D]. Dalian: Dalian Polytechnic University, 2010. |
[1] | 李泽兵,潘昕,刘顺亮,毛静岩,孙占学,张卫民. 复合嗜酸亚铁氧化柱的长期运行特征[J]. 化工进展, 2019, 38(11): 5173-5180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |