1 |
ZAMMITC M, BRUGGERJ, SOUTHAMG, et al. Insitu recovery of uranium—The microbial in fluence [J]. Hydrometallurgy, 2014, 150: 236-244.
|
2 |
PETERSENJ. Heap leaching as a key technology for recovery of values from low-grade ores:a brief overview[J]. Hydrometallurgy, 2016, 165(1): 206-212.
|
3 |
ABHILASH, MEHTAK D, KUMARV, et al. Bioleaching: an alternate uranium ore processing technology for India[J]. Energy Procedia, 2011, 7(1): 158-162.
|
4 |
孟运生, 樊保团, 刘建, 等. 铀矿细菌堆浸的生物接触氧化槽[J]. 铀矿冶, 2004, 23(4): 182-186.
|
|
MENGYunsheng, FANBaotuan, LIUJian, et al. Biomembrane oxidizing tank used in the process of bacterial heap leaching of uranium ore[J]. Uranium Mining and Metallurgy, 2004, 23(4): 182-186.
|
5 |
杨维涨, 刘辉. 浸铀细菌扩大培养中铁沉淀对生物膜的影响[J]. 稀有金属与硬质合金, 2009, 37(1): 47-49.
|
|
YANGWeizhang, LIUHui. The effect of iron precipitate on biomembrane during the amplification culture of uranium-leaching bacteria[J]. Rare Metals and Cemented Carbides, 2009, 37(1): 47-49.
|
6 |
MAZUELOSA, ROMEROR, PALENCIAI, et al. Technical note continuous ferrous iron biooxidation in flooded packed bed reactors[J]. Minerals Engineering, 1999, 12(5): 559.
|
7 |
MAZUELOSA, CARRANZAF, PALENCIAI, et al. High efficiency reactor for the biooxidation of ferrous iron[J]. Hydrometallurgy, 2000, 58(3): 269-275.
|
8 |
MAZUELOSA, CARRANZAF, ROMEROR, et al. Operational pH in packed-bed reactors for ferrous ion bio-oxidation[J]. Hydrometallurgy, 2010, 104: 186-192.
|
9 |
MAZUELOSA, MORENOJ M, CARRANZAF, et al. Biotic factor does not limit operational pH in packed-bed bioreactor for ferrous iron biooxidation[J]. Journal of Industrial Microbiology and Biotechnology, 2012, 39(12): 1851-1858.
|
10 |
CHOWDHURYF, OJUMUT V. Investigation of ferrous-iron biooxidation kinetics by Leptospirillum ferriphilum in a novel packed-column bioreactor: effects of temperature and jarosite accumulation[J]. Hydrometallurgy, 2014, 141: 36-42.
|
11 |
ROWEO F, JOHNSOND B. Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors[J]. Systematic and Applied Microbiology, 2008, 31(1): 68-77.
|
12 |
NIKOLOVL, MEHOCHEVD, DIMITROVD. Continuous bacterial ferrous iron oxidation by Thiobacillus ferrooxidans in rotating biological contactors[J]. Biotechnology Letters, 1986, 8(10): 707-710.
|
13 |
GRISHINTS I, TUOVINENO H. Fast kinetics of Fe2+ oxidation in packed-bed reactors[J]. Applied and Environmental Microbiology, 1988, 54(12): 3092-3100.
|
14 |
JASISANKAS, MODAKJ M. Ferrous iron oxidation by foam immobilized Acidithiobacillus ferrooxidans: experiments and modeling[J]. Biocatalyts and Bioreactor Design, 2010, 25(5): 1328-1342.
|
15 |
NEMATIM, WEBBC. Effect of ferrous iron concentration on the catalytic activity of immobilized cells of Thiobacillus ferrooxidans[J]. Appl. Microbiol. Biotechnol., 1996, 46(3): 250-255.
|
16 |
ARMENTIAH, WEBBC. Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilised in polyurethane foam support particles[J]. Appl. Microbiol. Biotechnol., 1992, 36(5): 697-700.
|
17 |
LANCYE D, TUOVINENO H. Ferrous ion oxidation by Thiobacillusferrooxidans immobilized in calcium alginate[J]. Appl. Microbiol. Biotechnol., 1984, 20(2): 94-99.
|
18 |
LONGZ E, HUANGY H, CAIZ L, et al. Biooxidation of ferrous iron by immobilized Acidithiobacillus ferrooxidans in poly(vinyl alcohol) cryogel carriers[J]. Biotechnology Letters, 2003, 25(3): 245-249.
|
19 |
WANGY F, YANGX F, LIH Y, et al. Immobilization of Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate[J]. Polymer Degradation and Stability, 2006, 91(10): 2408-2414.
|
20 |
WANGY F, YANGX J, TUW, et al. High-rate ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate[J]. Journal of Microbiological Methods, 2007, 68(2): 212-217.
|
21 |
MOUSAVIS M, YAGHMAEIS, JAFARIA. Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillusferrooxidans. PartⅡ: Bioreactor experiments[J]. Fuel, 2007, 86(7/8): 993-999.
|
22 |
GIAVENOA, LAVALLEL, GUIBALE, et al. Biological ferrous sulfate oxidation by A. ferrooxidans immobilized on chitosan beads[J]. Journal of Microbiological Methods, 2008, 72(3): 227-234.
|
23 |
PRADHANN, NATHSARMAK C, RAOK S, et al. Heap bioleaching of chalcopyrite: a review[J]. Minerals Engineering, 2008, 21(5): 355-365.
|
24 |
刘亚洁, 柳建设, 李江, 等. 含氟铀矿石酸法堆浸与生物堆浸体系微生物群落多样性比较[J].有色金属(冶炼部分), 2016(3): 26-31.
|
|
LIUYajie, LIUJianshe, LIJiang, et al. Comparison of microbial diversity in acid heap leaching and bio-heap leaching with fluoride-bearing uranium ores[J]. Nonferrous Metals(Extractive Metallurgy), 2016(3): 26-31.
|
25 |
WANJIYAM, CHOWDHURYF, OJUMUT V. Solution pH and Jarosite management during ferrous iron biooxidation in a novel packed-column bioreactor[J]. Advanced Materials Research, 2015, 1130: 291-295.
|
26 |
DAOUDJ, KARAMANEVD. Formation of jarosite during Fe2+, oxidation by Acidithiobacillus ferrooxidans [J]. Minerals Engineering, 2006, 19(9): 960-967.
|
27 |
CHOWDHURYF, OJUMUT V. Investigation of ferrous-iron biooxidation kinetics by Leptospirillum ferriphilum, in a novel packed-column bioreactor: effects of temperature and jarosite accumulation[J]. Hydrometallurgy, 2014, 141(2): 36-42.
|
28 |
KAKSONENA H, MORRISC, REA S, et al. Biohydrometallurgical iron oxidation and precipitation PartⅠ: Effect of pH on process performance[J]. Hydrometallurgy, 2014, 147/148: 255-263.
|
29 |
MOSHNIAKOVAS A, KARAVAIKOG I. Effect of pH and temperature on the kinetics of Fe2+ oxidation by Thiobacillus ferrooxidans[J]. Mikrobiologiia, 1979, 48(1): 49-52.
|
30 |
MISHRAA K, ROY P, MAHAPATRAS S R. Isolation of Thiobacillus ferrooxidans, from various habitats and their growth pattern on solid medium[J]. Current Microbiology, 1983, 8(3): 147-152.
|
31 |
HALLBERGK B, GONZALEZTORILE, JOHNSOND B. Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments[J]. Extremophiles Life Under Extreme Conditions, 2010, 14(1): 9-19.
|
32 |
陈鹏, 王清良, 胡鄂明, 等. 耐冷嗜酸硫杆菌的生长特性和固定化培养[J].金属矿山, 2018, 47(3): 90-96.
|
|
CHENPeng, WANGQingliang, HUEming, et al. Growth characteristics of Acidithiobacillusferrivorans and its immobilization culture[J]. Metal Mine, 2018, 47(3): 90-96.
|
33 |
JONESR M, JOHNSOND B. Iron kinetics and evolution of microbial populations in low-pH, ferrous iron-oxidizing bioreactors[J]. Environmental Science & Technology, 2016, 50(15): 8239-8245.
|
34 |
AULDR R, MYKYTCZUKN C, LEDUCL G, et al. Seasonal variation in an acid mine drainage microbial community[J]. Canadian Journal of Microbiology, 2017, 63(2): 137-152.
|
35 |
LILJEQVISTM, OSSANDONF J, GONZALEZC, et al. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream[J]. Fems Microbiology Ecology, 2015, 91(4): 131-135.
|
36 |
TRANT T T, MANGENOTS, MAGDELENATG, et al. Comparative genome analysis provides insights into both the lifestyle of Acidithiobacillus ferrivorans strain CF27 and the chimeric nature of the iron-oxidizing acidithiobacilli genomes[J]. Frontiers in Microbiology, 2017, 8: 1-13.
|
37 |
CCORAHUA- SANTOR, ECA A, ABANTOM, et al. Physiological and comparative genomic analysis of Acidithiobacillus ferrivorans PQ33 provides psychrotolerant fitness evidence for oxidation at low temperature[J]. Research in Microbiology, 2017, 168(5): 482-492.
|
38 |
MYKYTCZUKN C, TREVORSJ T, FOOTES J, et al. Proteomic insights into cold adaptation of psychrotrophic and mesophilic Acidithiobacillus ferrooxidans strains[J]. Antonie Van Leeuwenhoek, 2011, 100(2): 259-277.
|
39 |
CHRISTELS, FRIDLUNDJ, WATKINE L, et al. Acidithiobacillus ferrivorans SS3 presents little RNA transcript response related to cold stress during growth at 8℃ suggesting it is a eurypsychrophile[J]. Extremophiles, 2016, 20(6): 903-913.
|
40 |
BARAHONAS, DORADORC, ZHANGR, et al. Isolation and characterization of a novel Acidithiobacillus ferrivorans strain from the Chilean Altiplano: attachment and biofilm formation on pyrite at low temperature[J]. Research in Microbiology, 2014, 165(9): 782-793.
|
41 |
HEDRICHS, JOHNSOND B. Acidithiobacillus ferridurans sp. nov. an acidophilic iron-, sulfur- and hydrogen-metabolizing chemolithotrophic gammaproteobacterium[J]. Int. J. Syst. Evol. Microbiol., 2013, 63: 4018-4025.
|